1
|
Thatikonda V, Supper V, Wachter J, Kaya O, Kombara A, Bilgilier C, Ravichandran MC, Lipp JJ, Sharma R, Badertscher L, Boghossian AS, Rees MG, Ronan MM, Roth JA, Grosche S, Neumüller RA, Mair B, Mauri F, Popa A. Genetic dependencies associated with transcription factor activities in human cancer cell lines. Cell Rep 2024; 43:114175. [PMID: 38691456 DOI: 10.1016/j.celrep.2024.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Transcription factors (TFs) are important mediators of aberrant transcriptional programs in cancer cells. In this study, we focus on TF activity (TFa) as a biomarker for cell-line-selective anti-proliferative effects, in that high TFa predicts sensitivity to loss of function of a given gene (i.e., genetic dependencies [GDs]). Our linear-regression-based framework identifies 3,047 pan-cancer and 3,952 cancer-type-specific candidate TFa-GD associations from cell line data, which are then cross-examined for impact on survival in patient cohorts. One of the most prominent biomarkers is TEAD1 activity, whose associations with its predicted GDs are validated through experimental evidence as proof of concept. Overall, these TFa-GD associations represent an attractive resource for identifying innovative, biomarker-driven hypotheses for drug discovery programs in oncology.
Collapse
Affiliation(s)
- Venu Thatikonda
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria.
| | - Verena Supper
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Johannes Wachter
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Onur Kaya
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Anju Kombara
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Ceren Bilgilier
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | | | - Jesse J Lipp
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Rahul Sharma
- Myllia Biotechnology GmbH, Am Kanal 27, Vienna 1110, Austria
| | | | | | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah Grosche
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Ralph A Neumüller
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Barbara Mair
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Federico Mauri
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria
| | - Alexandra Popa
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, Vienna 1120, Austria.
| |
Collapse
|
2
|
Marin P, Jaquet A, Picarle J, Fablet M, Merel V, Delignette-Muller ML, Ferrarini MG, Gibert P, Vieira C. Phenotypic and Transcriptomic Responses to Stress Differ According to Population Geography in an Invasive Species. Genome Biol Evol 2021; 13:evab208. [PMID: 34505904 PMCID: PMC8483892 DOI: 10.1093/gbe/evab208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/14/2022] Open
Abstract
Adaptation to rapid environmental changes must occur within a short-time scale. In this context, studies of invasive species may provide insights into the underlying mechanisms of rapid adaptation as these species have repeatedly encountered and adapted to novel environmental conditions. We investigated how invasive and noninvasive genotypes of Drosophila suzukii deal with oxidative stress at the phenotypic and molecular levels. We also studied the impact of transposable element (TE) insertions on the gene expression in response to stress. Our results show that flies from invasive areas (France and the United States) live longer in natural conditions than the ones from native Japanese areas. As expected, lifespan for all genotypes was significantly reduced following exposure to paraquat, but this reduction varied among genotypes (genotype-by-environment interaction) with invasive genotypes appearing more affected by exposure than noninvasive ones. A transcriptomic analysis of genotypes upon paraquat treatment detected many genes differentially expressed (DE). Although a small core set of genes were DE in all genotypes following paraquat exposure, much of the response of each genotype was unique. Moreover, we showed that TEs were not activated after oxidative stress and DE genes were significantly depleted of TEs. In conclusion, it is likely that transcriptomic changes are involved in the rapid adaptation to local environments. We provide new evidence that in the decade since the invasion from Asia, the sampled genotypes in Europe and the United States of D. suzukii diverged from the ones from the native area regarding their phenotypic and genomic response to oxidative stress.
Collapse
Affiliation(s)
- Pierre Marin
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Angelo Jaquet
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Justine Picarle
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Marie Fablet
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Vincent Merel
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Marie-Laure Delignette-Muller
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Mariana Galvão Ferrarini
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
- Université de Lyon, INSA-Lyon, INRAE, BF2I, UMR0203, Villeurbanne, France
| | - Patricia Gibert
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| |
Collapse
|
3
|
Gao Y, Yurkovich JT, Seo SW, Kabimoldayev I, Dräger A, Chen K, Sastry AV, Fang X, Mih N, Yang L, Eichner J, Cho BK, Kim D, Palsson BO. Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Res 2018; 46:10682-10696. [PMID: 30137486 PMCID: PMC6237786 DOI: 10.1093/nar/gky752] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/11/2018] [Accepted: 08/08/2018] [Indexed: 02/03/2023] Open
Abstract
Transcriptional regulation enables cells to respond to environmental changes. Of the estimated 304 candidate transcription factors (TFs) in Escherichia coli K-12 MG1655, 185 have been experimentally identified, but ChIP methods have been used to fully characterize only a few dozen. Identifying these remaining TFs is key to improving our knowledge of the E. coli transcriptional regulatory network (TRN). Here, we developed an integrated workflow for the computational prediction and comprehensive experimental validation of TFs using a suite of genome-wide experiments. We applied this workflow to (i) identify 16 candidate TFs from over a hundred uncharacterized genes; (ii) capture a total of 255 DNA binding peaks for ten candidate TFs resulting in six high-confidence binding motifs; (iii) reconstruct the regulons of these ten TFs by determining gene expression changes upon deletion of each TF and (iv) identify the regulatory roles of three TFs (YiaJ, YdcI, and YeiE) as regulators of l-ascorbate utilization, proton transfer and acetate metabolism, and iron homeostasis under iron-limited conditions, respectively. Together, these results demonstrate how this workflow can be used to discover, characterize, and elucidate regulatory functions of uncharacterized TFs in parallel.
Collapse
Affiliation(s)
- Ye Gao
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - James T Yurkovich
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ilyas Kabimoldayev
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Andreas Dräger
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Center for Bioinformatics Tübingen (ZBIT), 72076 Tübingen, Germany
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Ke Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Xin Fang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathan Mih
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Laurence Yang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Johannes Eichner
- Computational Systems Biology of Infection and Antimicrobial-Resistant Pathogens, Center for Bioinformatics Tübingen (ZBIT), 72076 Tübingen, Germany
| | - Byung-Kwan Cho
- Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghyuk Kim
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, 2800 Kongens Lyngby, Denmark
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
El Khoury JY, Boucher N, Bergeron MG, Leprohon P, Ouellette M. Penicillin induces alterations in glutamine metabolism in Streptococcus pneumoniae. Sci Rep 2017; 7:14587. [PMID: 29109543 PMCID: PMC5673960 DOI: 10.1038/s41598-017-15035-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/19/2017] [Indexed: 11/09/2022] Open
Abstract
Penicillin is a bactericidal antibiotic that inhibits the synthesis of the peptidoglycan by targeting penicillin-binding proteins. This study aimed to assess through transcriptional profiling the stress response of S. pneumoniae strains after exposure to lethal penicillin concentrations to understand further the mode of action of penicillin. Two experimental designs (time-course and dose-response) were used for monitoring the effect of penicillin on the transcriptional profile. The expression of some genes previously shown to be modulated by penicillin was altered, including ciaRH, pstS and clpL. Genes of the glnRA and glnPQ operons were among the most downregulated genes in the three strains. These genes are involved in glutamine synthesis and uptake and LC-MS work confirmed that penicillin treatment increases the intracellular glutamine concentrations. Glutamine conferred a protective role against penicillin when added to the culture medium. Glutamine synthetase encoded by glnA catalyses the transformation of glutamate and ammonium into glutamine and its chemical inhibition by the inhibitor L-methionine sulfoximine is shown to sensitize S. pneumoniae to penicillin, including penicillin-resistant clinical isolates. In summary, a combination of RNA-seq and metabolomics revealed that penicillin interferes with glutamine metabolism suggesting strategies that could eventually be exploited for combination therapy or for reversal of resistance.
Collapse
Affiliation(s)
- Jessica Y El Khoury
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Nancy Boucher
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Michel G Bergeron
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
5
|
|
6
|
Heath KD, Burke PV, Stinchcombe JR. Coevolutionary genetic variation in the legume-rhizobium transcriptome. Mol Ecol 2012; 21:4735-47. [PMID: 22672103 DOI: 10.1111/j.1365-294x.2012.05629.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Katy D Heath
- Department of Plant Biology, University of Illinois, 250 Morrill Hall, 505 S. Goodwin Ave., Urbana, IL 61801, USA.
| | | | | |
Collapse
|
7
|
Drug-target network and polypharmacology studies of a Traditional Chinese Medicine for type II diabetes mellitus. Comput Biol Chem 2011; 35:293-7. [PMID: 22000800 DOI: 10.1016/j.compbiolchem.2011.07.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 06/18/2011] [Accepted: 07/03/2011] [Indexed: 11/20/2022]
Abstract
Many Traditional Chinese Medicines (TCMs) are effective to relieve complicated diseases such as type II diabetes mellitus (T2DM). In this work, molecular docking and network analysis were employed to elucidate the action mechanism of a medical composition which had clinical efficacy for T2DM. We found that multiple active compounds contained in this medical composition would target multiple proteins related to T2DM and the biological network would be shifted. We predicted the key players in the medical composition and some of them have been reported in literature. Meanwhile, several compounds such as Rheidin A, Rheidin C, Sennoside C, procyanidin C1 and Dihydrobaicalin were notable although no one have reported their pharmacological activity against T2DM. The association between active compounds, target proteins and other diseases was also discussed.
Collapse
|