1
|
Mamońska MD, Basczok MM, Stein EM, Kurzawska J, Olejniczak M. Different RNA recognition by ProQ and FinO depends on the sequence surrounding intrinsic terminator hairpins. RNA (NEW YORK, N.Y.) 2025; 31:692-708. [PMID: 40044219 PMCID: PMC12001967 DOI: 10.1261/rna.080206.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/13/2025] [Indexed: 03/28/2025]
Abstract
Escherichia coli ProQ and FinO proteins both have RNA-binding FinO domains, which bind to intrinsic transcription terminators, but each protein recognizes distinct RNAs. To explore how ProQ and FinO discriminate between RNAs, we transplanted sequences surrounding terminator hairpins between RNAs specific for each protein, and compared their binding to ProQ, the isolated FinO domain of ProQ (ProQNTD), and FinO. The results showed that the binding specificity of chimeric RNAs toward ProQ, ProQNTD, or FinO was determined by the origin of the transplanted sequence. Further analysis showed that the sequence surrounding the terminator hairpin, including a purine-purine mismatch, in natural RNA ligands of FinO and in chimeric RNAs, weakened their binding by ProQNTD Overall, our studies suggest that RNA sequence elements surrounding the intrinsic terminator hairpin contribute to the discrimination between RNAs by ProQ and FinO.
Collapse
Affiliation(s)
- Maria D Mamońska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Maciej M Basczok
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Ewa M Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Kurzawska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Basczok M, Olejniczak M. RNA recognition by minimal ProQ from Neisseria meningitidis. RNA (NEW YORK, N.Y.) 2025; 31:549-565. [PMID: 39875175 PMCID: PMC11912907 DOI: 10.1261/rna.080207.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Neisseria meningitidis minimal ProQ is a global RNA-binding protein belonging to the family of FinO-domain proteins. The N. meningitidis ProQ consists only of the FinO domain accompanied by short N- and C-terminal extensions. To better understand how this minimal FinO-domain protein recognizes RNAs, we compared its binding to seven different natural RNA ligands of this protein. Next, two of these RNAs, rpmG-3' and AniS, were subject to further mutational studies. The data showed that N. meningitidis ProQ binds the lower part of the intrinsic transcription terminator hairpin, and that the single-stranded sequences on the 5' and 3' side of the terminator stem are required for tight binding. However, the specific lengths of 5' and 3' RNA sequences required for optimal binding differed between the two RNAs. Additionally, our data show that the 2'-OH and 3'-OH groups of the 3' terminal ribose contribute to RNA binding by N. meningitidis ProQ. In summary, the minimal ProQ protein from N. meningitidis has generally similar requirements for RNA binding as the isolated FinO domains of other proteins of this family, but differs from them in detailed RNA features that are optimal for specific RNA recognition.
Collapse
Affiliation(s)
- Maciej Basczok
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Stein EM, Wang S, Dailey KG, Gravel CM, Wang S, Olejniczak M, Berry KE. Biochemical and genetic dissection of the RNA-binding surface of the FinO domain of Escherichia coli ProQ. RNA (NEW YORK, N.Y.) 2023; 29:1772-1791. [PMID: 37607742 PMCID: PMC10578477 DOI: 10.1261/rna.079697.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
RNA-binding proteins play important roles in bacterial gene regulation through interactions with both coding and noncoding RNAs. ProQ is a FinO-domain protein that binds a large set of RNAs in Escherichia coli, though the details of how ProQ binds these RNAs remain unclear. In this study, we used a combination of in vivo and in vitro binding assays to confirm key structural features of E. coli ProQ's FinO domain and explore its mechanism of RNA interactions. Using a bacterial three-hybrid assay, we performed forward genetic screens to confirm the importance of the concave face of ProQ in RNA binding. Using gel shift assays, we directly probed the contributions of ten amino acids on ProQ binding to seven RNA targets. Certain residues (R58, Y70, and R80) were found to be essential for binding of all seven RNAs, while substitutions of other residues (K54 and R62) caused more moderate binding defects. Interestingly, substitutions of two amino acids (K35, R69), which are evolutionarily variable but adjacent to conserved residues, showed varied effects on the binding of different RNAs; these may arise from the differing sequence context around each RNA's terminator hairpin. Together, this work confirms many of the essential RNA-binding residues in ProQ initially identified in vivo and supports a model in which residues on the conserved concave face of the FinO domain such as R58, Y70, and R80 form the main RNA-binding site of E. coli ProQ, while additional contacts contribute to the binding of certain RNAs.
Collapse
Affiliation(s)
- Ewa M Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Suxuan Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Katherine G Dailey
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Shiying Wang
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
| |
Collapse
|
4
|
FinO/ProQ-family proteins: an evolutionary perspective. Biosci Rep 2023; 43:232566. [PMID: 36787218 PMCID: PMC9977716 DOI: 10.1042/bsr20220313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023] Open
Abstract
RNA-binding proteins are key actors of post-transcriptional networks. Almost exclusively studied in the light of their interactions with RNA ligands and the associated functional events, they are still poorly understood as evolutionary units. In this review, we discuss the FinO/ProQ family of bacterial RNA chaperones, how they evolve and spread across bacterial populations and what properties and opportunities they provide to their host cells. We reflect on major conserved and divergent themes within the family, trying to understand how the same ancestral RNA-binding fold, augmented with additional structural elements, could yield either highly specialised proteins or, on the contrary, globally acting regulatory hubs with a pervasive impact on gene expression. We also consider dominant convergent evolutionary trends that shaped their RNA chaperone activity and recurrently implicated the FinO/ProQ-like proteins in bacterial DNA metabolism, translation and virulence. Finally, we offer a new perspective in which FinO/ProQ-family regulators emerge as active evolutionary players with both negative and positive roles, significantly impacting the evolutionary modes and trajectories of their bacterial hosts.
Collapse
|
5
|
Kim HJ, Black M, Edwards RA, Peillard-Fiorente F, Panigrahi R, Klingler D, Eidelpes R, Zeindl R, Peng S, Su J, Omar AR, MacMillan AM, Kreutz C, Tollinger M, Charpentier X, Attaiech L, Glover JNM. Structural basis for recognition of transcriptional terminator structures by ProQ/FinO domain RNA chaperones. Nat Commun 2022; 13:7076. [PMID: 36400772 PMCID: PMC9674577 DOI: 10.1038/s41467-022-34875-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
The ProQ/FinO family of RNA binding proteins mediate sRNA-directed gene regulation throughout gram-negative bacteria. Here, we investigate the structural basis for RNA recognition by ProQ/FinO proteins, through the crystal structure of the ProQ/FinO domain of the Legionella pneumophila DNA uptake regulator, RocC, bound to the transcriptional terminator of its primary partner, the sRNA RocR. The structure reveals specific recognition of the 3' nucleotide of the terminator by a conserved pocket involving a β-turn-α-helix motif, while the hairpin portion of the terminator is recognized by a conserved α-helical N-cap motif. Structure-guided mutagenesis reveals key RNA contact residues that are critical for RocC/RocR to repress the uptake of environmental DNA in L. pneumophila. Structural analysis and RNA binding studies reveal that other ProQ/FinO domains also recognize related transcriptional terminators with different specificities for the length of the 3' ssRNA tail.
Collapse
Affiliation(s)
- Hyeong Jin Kim
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | - Mazzen Black
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | - Flora Peillard-Fiorente
- CIRI, Centre International de Recherche en Infectiologie, Team "Horizontal gene transfer in bacterial pathogens", Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, 69100, Villeurbanne, France
| | - Rashmi Panigrahi
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | - David Klingler
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Reiner Eidelpes
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Ricarda Zeindl
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Shiyun Peng
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | - Jikun Su
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | - Ayat R Omar
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | - Andrew M MacMillan
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2H7, Canada
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Martin Tollinger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Xavier Charpentier
- CIRI, Centre International de Recherche en Infectiologie, Team "Horizontal gene transfer in bacterial pathogens", Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, 69100, Villeurbanne, France
| | - Laetitia Attaiech
- CIRI, Centre International de Recherche en Infectiologie, Team "Horizontal gene transfer in bacterial pathogens", Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, 69100, Villeurbanne, France.
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G2H7, Canada.
| |
Collapse
|
6
|
Characterization of a Novel Carbapenem-Resistant Klebsiella michiganensis Strain Coharboring the bla SIM-1, bla OXA-1, bla CTX-M-14, qnrS, and aac(6')-Ib-cr Genes. Curr Microbiol 2022; 79:228. [PMID: 35751714 DOI: 10.1007/s00284-022-02920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/30/2022] [Indexed: 12/31/2022]
Abstract
Carbapenem-resistant Klebsiella michiganensis (CRKM) and Klebsiella oxytoca (CRKO) strains have occasionally been reported to cause severe infections. However, SIM-producing K. michiganensis strains have never been described. In this study, we phenotypically and genetically characterized 6 CRKM and CRKO strains isolated over the past 10 years at a Chinese tertiary hospital. All six strains were positive for the mCIM test, and five were positive for the MBL test. Carbapenemase-encoding genes (blaKPC, blaNDM, blaVIM, blaIMP, blaOXA-23, blaOXA-24, blaOXA-51, and blaOXA-58) and another 12 resistance genes were screened by PCR, and blaKPC, blaNDM, and blaIMP were identified in five strains. However, the CRKM strain KM41, which was resistant to IPM and MEM with minimum inhibitory concentrations (MICs) of 4 µg/ml and 16 µg/ml, respectively, had positive mCIM and MBL results but lacked the eight carbapenemase-encoding genes. Whole-genome sequencing of the KM41 strain revealed more than 20 drug resistance genes; in particular, blaSIM-1, blaOXA-1, blaCTX-M-14, qnrS, aac(6')-Ib-cr, aadA17, and aar-3 were found to be located in a single plasmid. To the best of our knowledge, this is the first description of a K. michiganensis strain coharboring blaSIM-1, blaOXA-1, blaCTX-M-14, qnrS, and aac(6')-Ib-cr in China.
Collapse
|
7
|
Shen Z, Tang CM, Liu GY. Towards a better understanding of antimicrobial resistance dissemination: what can be learnt from studying model conjugative plasmids? Mil Med Res 2022; 9:3. [PMID: 35012680 PMCID: PMC8744291 DOI: 10.1186/s40779-021-00362-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria can evolve rapidly by acquiring new traits such as virulence, metabolic properties, and most importantly, antimicrobial resistance, through horizontal gene transfer (HGT). Multidrug resistance in bacteria, especially in Gram-negative organisms, has become a global public health threat often through the spread of mobile genetic elements. Conjugation represents a major form of HGT and involves the transfer of DNA from a donor bacterium to a recipient by direct contact. Conjugative plasmids, a major vehicle for the dissemination of antimicrobial resistance, are selfish elements capable of mediating their own transmission through conjugation. To spread to and survive in a new bacterial host, conjugative plasmids have evolved mechanisms to circumvent both host defense systems and compete with co-resident plasmids. Such mechanisms have mostly been studied in model plasmids such as the F plasmid, rather than in conjugative plasmids that confer antimicrobial resistance (AMR) in important human pathogens. A better understanding of these mechanisms is crucial for predicting the flow of antimicrobial resistance-conferring conjugative plasmids among bacterial populations and guiding the rational design of strategies to halt the spread of antimicrobial resistance. Here, we review mechanisms employed by conjugative plasmids that promote their transmission and establishment in Gram-negative bacteria, by following the life cycle of conjugative plasmids.
Collapse
Affiliation(s)
- Zhen Shen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.,Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Guang-Yu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
8
|
Djapgne L, Oglesby AG. Impacts of Small RNAs and Their Chaperones on Bacterial Pathogenicity. Front Cell Infect Microbiol 2021; 11:604511. [PMID: 34322396 PMCID: PMC8311930 DOI: 10.3389/fcimb.2021.604511] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are critical post-transcriptional regulators that exert broad effects on cell physiology. One class of sRNAs, referred to as trans-acting sRNAs, base-pairs with mRNAs to cause changes in their stability or translation. Another class of sRNAs sequesters RNA-binding proteins that in turn modulate mRNA expression. RNA chaperones play key roles in these regulatory events by promoting base-pairing of sRNAs to mRNAs, increasing the stability of sRNAs, inducing conformational changes on mRNA targets upon binding, or by titrating sRNAs away from their primary targets. In pathogenic bacteria, sRNAs and their chaperones exert broad impacts on both cell physiology and virulence, highlighting the central role of these systems in pathogenesis. This review provides an overview of the growing number and roles of these chaperone proteins in sRNA regulation, highlighting how these proteins contribute to bacterial pathogenesis.
Collapse
Affiliation(s)
- Louise Djapgne
- Department of Chemistry, Georgetown College, Washington, DC, United States
| | - Amanda G Oglesby
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
9
|
El Mouali Y, Gerovac M, Mineikaitė R, Vogel J. In vivo targets of Salmonella FinO include a FinP-like small RNA controlling copy number of a cohabitating plasmid. Nucleic Acids Res 2021; 49:5319-5335. [PMID: 33939833 PMCID: PMC8136791 DOI: 10.1093/nar/gkab281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
FinO-domain proteins represent an emerging family of RNA-binding proteins (RBPs) with diverse roles in bacterial post-transcriptional control and physiology. They exhibit an intriguing targeting spectrum, ranging from an assumed single RNA pair (FinP/traJ) for the plasmid-encoded FinO protein, to transcriptome-wide activity as documented for chromosomally encoded ProQ proteins. Thus, the shared FinO domain might bear an unusual plasticity enabling it to act either selectively or promiscuously on the same cellular RNA pool. One caveat to this model is that the full suite of in vivo targets of the assumedly highly selective FinO protein is unknown. Here, we have extensively profiled cellular transcripts associated with the virulence plasmid-encoded FinO in Salmonella enterica. While our analysis confirms the FinP sRNA of plasmid pSLT as the primary FinO target, we identify a second major ligand: the RepX sRNA of the unrelated antibiotic resistance plasmid pRSF1010. FinP and RepX are strikingly similar in length and structure, but not in primary sequence, and so may provide clues to understanding the high selectivity of FinO-RNA interactions. Moreover, we observe that the FinO RBP encoded on the Salmonella virulence plasmid controls the replication of a cohabitating antibiotic resistance plasmid, suggesting cross-regulation of plasmids on the RNA level.
Collapse
Affiliation(s)
- Youssef El Mouali
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Raminta Mineikaitė
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| |
Collapse
|
10
|
Yang J, Wang HH, Lu Y, Yi LX, Deng Y, Lv L, Burrus V, Liu JH. A ProQ/FinO family protein involved in plasmid copy number control favours fitness of bacteria carrying mcr-1-bearing IncI2 plasmids. Nucleic Acids Res 2021; 49:3981-3996. [PMID: 33721023 PMCID: PMC8053102 DOI: 10.1093/nar/gkab149] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/03/2023] Open
Abstract
The plasmid-encoded colistin resistance gene mcr-1 challenges the use of polymyxins and poses a threat to public health. Although IncI2-type plasmids are the most common vector for spreading the mcr-1 gene, the mechanisms by which these plasmids adapt to host bacteria and maintain resistance genes remain unclear. Herein, we investigated the regulatory mechanism for controlling the fitness cost of an IncI2 plasmid carrying mcr-1. A putative ProQ/FinO family protein encoded by the IncI2 plasmid, designated as PcnR (plasmid copy number repressor), balances the mcr-1 expression and bacteria fitness by repressing the plasmid copy number. It binds to the first stem-loop structure of the repR mRNA to repress RepA expression, which differs from any other previously reported plasmid replication control mechanism. Plasmid invasion experiments revealed that pcnR is essential for the persistence of the mcr-1-bearing IncI2 plasmid in the bacterial populations. Additionally, single-copy mcr-1 gene still exerted a fitness cost to host bacteria, and negatively affected the persistence of the IncI2 plasmid in competitive co-cultures. These findings demonstrate that maintaining mcr-1 plasmid at a single copy is essential for its persistence, and explain the significantly reduced prevalence of mcr-1 following the ban of colistin as a growth promoter in China.
Collapse
Affiliation(s)
- Jun Yang
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs,Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hai-Hong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yaoyao Lu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs,Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ling-Xian Yi
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs,Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Luchao Lv
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs,Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Vincent Burrus
- Département de biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, Québec, Canada
| | - Jian-Hua Liu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs,Center for Emerging and Zoonotic Diseases, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
11
|
Eidelpes R, Kim HJ, Glover JNM, Tollinger M. NMR resonance assignments of the FinO-domain of the RNA chaperone RocC. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:61-64. [PMID: 33179208 PMCID: PMC7973641 DOI: 10.1007/s12104-020-09983-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/31/2020] [Indexed: 05/08/2023]
Abstract
In prokaryotic species, gene expression is commonly regulated by small, non-coding RNAs (sRNAs). In the gram-negative bacterium Legionella pneumophila, the regulatory, trans-acting sRNA molecule RocR base pairs with a complementary sequence in the 5'-untranslated region of mRNAs encoding for proteins in the bacterial DNA uptake system, thereby controlling natural competence. Sense-antisense duplexing of RocR with targeted mRNAs is mediated by the recently described RNA chaperone RocC. RocC contains a 12 kDa FinO-domain, which acts as sRNA binding platform, along with an extended C-terminal segment that is predicted to be mostly disordered but appears to be required for repression of bacterial competence. In this work we assigned backbone and side chain 1H, 13C, and 15N chemical shifts of RocC's FinO-domain by solution NMR spectroscopy. The chemical shift data for this protein indicate a mixed α/β fold that is reminiscent of FinO from Escherichia coli. Our NMR resonance assignments provide the basis for a comprehensive analysis of RocC's chaperoning mechanism on a structural level.
Collapse
Affiliation(s)
- Reiner Eidelpes
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Hyeong Jin Kim
- Department of Biochemistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, T6G 2H7, Edmonton, AB, Canada.
| | - Martin Tollinger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
12
|
Irastortza-Olaziregi M, Amster-Choder O. Coupled Transcription-Translation in Prokaryotes: An Old Couple With New Surprises. Front Microbiol 2021; 11:624830. [PMID: 33552035 PMCID: PMC7858274 DOI: 10.3389/fmicb.2020.624830] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 01/17/2023] Open
Abstract
Coupled transcription-translation (CTT) is a hallmark of prokaryotic gene expression. CTT occurs when ribosomes associate with and initiate translation of mRNAs whose transcription has not yet concluded, therefore forming "RNAP.mRNA.ribosome" complexes. CTT is a well-documented phenomenon that is involved in important gene regulation processes, such as attenuation and operon polarity. Despite the progress in our understanding of the cellular signals that coordinate CTT, certain aspects of its molecular architecture remain controversial. Additionally, new information on the spatial segregation between the transcriptional and the translational machineries in certain species, and on the capability of certain mRNAs to localize translation-independently, questions the unanimous occurrence of CTT. Furthermore, studies where transcription and translation were artificially uncoupled showed that transcription elongation can proceed in a translation-independent manner. Here, we review studies supporting the occurrence of CTT and findings questioning its extent, as well as discuss mechanisms that may explain both coupling and uncoupling, e.g., chromosome relocation and the involvement of cis- or trans-acting elements, such as small RNAs and RNA-binding proteins. These mechanisms impact RNA localization, stability, and translation. Understanding the two options by which genes can be expressed and their consequences should shed light on a new layer of control of bacterial transcripts fate.
Collapse
Affiliation(s)
- Mikel Irastortza-Olaziregi
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Corsi ID, Dutta S, van Hoof A, Koehler TM. AtxA-Controlled Small RNAs of Bacillus anthracis Virulence Plasmid pXO1 Regulate Gene Expression in trans. Front Microbiol 2021; 11:610036. [PMID: 33519762 PMCID: PMC7843513 DOI: 10.3389/fmicb.2020.610036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
Small regulatory RNAs (sRNAs) are short transcripts that base-pair to mRNA targets or interact with regulatory proteins. sRNA function has been studied extensively in Gram-negative bacteria; comparatively less is known about sRNAs in Firmicutes. Here we investigate two sRNAs encoded by virulence plasmid pXO1 of Bacillus anthracis, the causative agent of anthrax. The sRNAs, named “XrrA and XrrB” (for pXO1-encoded regulatory RNA) are abundant and highly stable primary transcripts, whose expression is dependent upon AtxA, the master virulence regulator of B. anthracis. sRNA levels are highest during culture conditions that promote AtxA expression and activity, and sRNA levels are unaltered in Hfq RNA chaperone null-mutants. Comparison of the transcriptome of a virulent Ames-derived strain to the transcriptome of isogenic sRNA-null mutants revealed multiple 4.0- to >100-fold differences in gene expression. Most regulatory effects were associated with XrrA, although regulation of some transcripts suggests functional overlap between the XrrA and XrrB. Many sRNA-regulated targets were chromosome genes associated with branched-chain amino acid metabolism, proteolysis, and transmembrane transport. Finally, in a mouse model for systemic anthrax, the lungs and livers of animals infected with xrrA-null mutants had a small reduction in bacterial burden, suggesting a role for XrrA in B. anthracis pathogenesis.
Collapse
Affiliation(s)
- Ileana D Corsi
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| | - Soumita Dutta
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, United States
| |
Collapse
|
14
|
Immer C, Hacker C, Wöhnert J. Solution structure and RNA-binding of a minimal ProQ-homolog from Legionella pneumophila (Lpp1663). RNA (NEW YORK, N.Y.) 2020; 26:2031-2043. [PMID: 32989045 PMCID: PMC7668265 DOI: 10.1261/rna.077354.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/23/2020] [Indexed: 05/04/2023]
Abstract
Small regulatory RNAs (sRNAs) play an important role for posttranscriptional gene regulation in bacteria. sRNAs recognize their target messenger RNAs (mRNAs) by base-pairing, which is often facilitated by interactions with the bacterial RNA-binding proteins Hfq or ProQ. The FinO/ProQ RNA-binding protein domain was first discovered in the bacterial repressor of conjugation, FinO. Since then, the functional role of FinO/ProQ-like proteins in posttranscriptional gene regulation was extensively studied in particular in the enterobacteria E. coli and Salmonella enterica and a wide range of sRNA-targets was identified for these proteins. In addition, enterobacterial ProQ homologs also recognize and protect the 3'-ends of a number of mRNAs from exonucleolytic degradation. However, the RNA-binding properties of FinO/ProQ proteins with regard to the recognition of different RNA targets are not yet fully understood. Here, we present the solution NMR structure of the so far functionally uncharacterized ProQ homolog Lpp1663 from Legionella pneumophila as a newly confirmed member and a minimal model system of the FinO/ProQ protein family. In addition, we characterize the RNA-binding preferences of Lpp1663 with high resolution NMR spectroscopy and isothermal titration calorimetry (ITC). Our results suggest a binding preference for single-stranded uridine-rich RNAs in the vicinity of stable stem-loop structures. According to chemical shift perturbation experiments, the single-stranded U-rich RNAs interact mainly with a conserved RNA-binding surface on the concave site of Lpp1663.
Collapse
Affiliation(s)
- Carina Immer
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University, Frankfurt 60438, Germany
| | - Carolin Hacker
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University, Frankfurt 60438, Germany
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-University, Frankfurt 60438, Germany
| |
Collapse
|
15
|
Gerovac M, El Mouali Y, Kuper J, Kisker C, Barquist L, Vogel J. Global discovery of bacterial RNA-binding proteins by RNase-sensitive gradient profiles reports a new FinO domain protein. RNA (NEW YORK, N.Y.) 2020; 26:1448-1463. [PMID: 32646969 PMCID: PMC7491321 DOI: 10.1261/rna.076992.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 05/20/2023]
Abstract
RNA-binding proteins (RBPs) play important roles in bacterial gene expression and physiology but their true number and functional scope remain little understood even in model microbes. To advance global RBP discovery in bacteria, we here establish glycerol gradient sedimentation with RNase treatment and mass spectrometry (GradR). Applied to Salmonella enterica, GradR confirms many known RBPs such as CsrA, Hfq, and ProQ by their RNase-sensitive sedimentation profiles, and discovers the FopA protein as a new member of the emerging family of FinO/ProQ-like RBPs. FopA, encoded on resistance plasmid pCol1B9, primarily targets a small RNA associated with plasmid replication. The target suite of FopA dramatically differs from the related global RBP ProQ, revealing context-dependent selective RNA recognition by FinO-domain RBPs. Numerous other unexpected RNase-induced changes in gradient profiles suggest that cellular RNA helps to organize macromolecular complexes in bacteria. By enabling poly(A)-independent generic RBP discovery, GradR provides an important element in the quest to build a comprehensive catalog of microbial RBPs.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
| | - Youssef El Mouali
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Jochen Kuper
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Institute for Structural Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
| |
Collapse
|
16
|
Protein Dynamics in F-like Bacterial Conjugation. Biomedicines 2020; 8:biomedicines8090362. [PMID: 32961700 PMCID: PMC7555446 DOI: 10.3390/biomedicines8090362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Efficient in silico development of novel antibiotics requires high-resolution, dynamic models of drug targets. As conjugation is considered the prominent contributor to the spread of antibiotic resistance genes, targeted drug design to disrupt vital components of conjugative systems has been proposed to lessen the proliferation of bacterial antibiotic resistance. Advancements in structural imaging techniques of large macromolecular complexes has accelerated the discovery of novel protein-protein interactions in bacterial type IV secretion systems (T4SS). The known structural information regarding the F-like T4SS components and complexes has been summarized in the following review, revealing a complex network of protein-protein interactions involving domains with varying degrees of disorder. Structural predictions were performed to provide insight on the dynamicity of proteins within the F plasmid conjugative system that lack structural information.
Collapse
|
17
|
Stein EM, Kwiatkowska J, Basczok MM, Gravel CM, Berry KE, Olejniczak M. Determinants of RNA recognition by the FinO domain of the Escherichia coli ProQ protein. Nucleic Acids Res 2020; 48:7502-7519. [PMID: 32542384 PMCID: PMC7367173 DOI: 10.1093/nar/gkaa497] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
The regulation of gene expression by small RNAs in Escherichia coli depends on RNA binding proteins Hfq and ProQ, which bind mostly distinct RNA pools. To understand how ProQ discriminates between RNA substrates, we compared its binding to six different RNA molecules. Full-length ProQ bound all six RNAs similarly, while the isolated N-terminal FinO domain (NTD) of ProQ specifically recognized RNAs with Rho-independent terminators. Analysis of malM 3′-UTR mutants showed that tight RNA binding by the ProQ NTD required a terminator hairpin of at least 2 bp preceding an 3′ oligoU tail of at least four uridine residues. Substitution of an A-rich sequence on the 5′ side of the terminator to uridines strengthened the binding of several ProQ-specific RNAs to the Hfq protein, but not to the ProQ NTD. Substitution of the motif in the malM-3′ and cspE-3′ RNAs also conferred the ability to bind Hfq in E. coli cells, as measured using a three-hybrid assay. In summary, these data suggest that the ProQ NTD specifically recognizes 3′ intrinsic terminators of RNA substrates, and that the discrimination between RNA ligands by E. coli ProQ and Hfq depends both on positive determinants for binding to ProQ and negative determinants against binding to Hfq.
Collapse
Affiliation(s)
- Ewa M Stein
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Joanna Kwiatkowska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Maciej M Basczok
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA.,Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Mikołaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
18
|
Pandey S, Gravel CM, Stockert OM, Wang CD, Hegner CL, LeBlanc H, Berry KE. Genetic identification of the functional surface for RNA binding by Escherichia coli ProQ. Nucleic Acids Res 2020; 48:4507-4520. [PMID: 32170306 PMCID: PMC7192607 DOI: 10.1093/nar/gkaa144] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022] Open
Abstract
The FinO-domain-protein ProQ is an RNA-binding protein that has been known to play a role in osmoregulation in proteobacteria. Recently, ProQ has been shown to act as a global RNA-binding protein in Salmonella and Escherichia coli, binding to dozens of small RNAs (sRNAs) and messenger RNAs (mRNAs) to regulate mRNA-expression levels through interactions with both 5′ and 3′ untranslated regions (UTRs). Despite excitement around ProQ as a novel global RNA-binding protein, and its potential to serve as a matchmaking RNA chaperone, significant gaps remain in our understanding of the molecular mechanisms ProQ uses to interact with RNA. In order to apply the tools of molecular genetics to this question, we have adapted a bacterial three-hybrid (B3H) assay to detect ProQ’s interactions with target RNAs. Using domain truncations, site-directed mutagenesis and an unbiased forward genetic screen, we have identified a group of highly conserved residues on ProQ’s NTD as the primary face for in vivo recognition of two RNAs, and propose that the NTD structure serves as an electrostatic scaffold to recognize the shape of an RNA duplex.
Collapse
Affiliation(s)
- Smriti Pandey
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Chandra M Gravel
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Oliver M Stockert
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Clara D Wang
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Courtney L Hegner
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Hannah LeBlanc
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| | - Katherine E Berry
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA.,Department of Chemistry, Mount Holyoke College, South Hadley, MA 01075, USA
| |
Collapse
|
19
|
Holmqvist E, Berggren S, Rizvanovic A. RNA-binding activity and regulatory functions of the emerging sRNA-binding protein ProQ. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194596. [PMID: 32565402 DOI: 10.1016/j.bbagrm.2020.194596] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
Regulatory small RNAs (sRNAs) ubiquitously impact bacterial physiology through antisense-mediated control of mRNA translation and stability. In Gram negative bacteria, sRNAs often associate with RNA-binding proteins (RBPs), both to gain cellular stability and to enable regulatory efficiency. The Hfq and CsrA proteins were for long the only known global RBPs implicated in sRNA biology. During the last five years, the FinO domain-containing protein ProQ has emerged as another global RBP with a broad spectrum of sRNA and mRNA ligands. This review provides a summary of the current knowledge of enterobacterial ProQ, with a special focus on RNA binding activity, RNA ligand preferences, influence on RNA stability and gene expression, and impact on bacterial physiology. Considering that characterization of ProQ is still in its infancy, we highlight aspects that, when addressed, will provide important clues to the physiological functions and regulatory mechanisms of this globally acting RBP.
Collapse
MESH Headings
- Gene Expression Regulation, Bacterial
- Ligands
- Protein Binding
- Protein Interaction Domains and Motifs
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, Husargatan 3, S-75124 Uppsala, Sweden.
| | - Sofia Berggren
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, Husargatan 3, S-75124 Uppsala, Sweden
| | - Alisa Rizvanovic
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, Husargatan 3, S-75124 Uppsala, Sweden
| |
Collapse
|
20
|
Biochemical Methods for the Study of the FinO Family of Bacterial RNA Chaperones. Methods Mol Biol 2020. [PMID: 31889248 DOI: 10.1007/978-1-0716-0231-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The FinO family of proteins constitutes a group of RNA chaperones that interacts with small RNAs (sRNAs) to regulate gene expression in many bacterial species. Here we describe detailed protocols for the biochemical analysis of the RNA chaperone activity of these proteins. Methods are described for preparation of RNA, RNA 5' end labeling with radioisotope and modified EMSA protocols to test the ability of these proteins to catalyze RNA strand exchange and RNA duplex formation.
Collapse
|
21
|
Babitzke P, Lai YJ, Renda AJ, Romeo T. Posttranscription Initiation Control of Gene Expression Mediated by Bacterial RNA-Binding Proteins. Annu Rev Microbiol 2019; 73:43-67. [PMID: 31100987 PMCID: PMC9404307 DOI: 10.1146/annurev-micro-020518-115907] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNA-binding proteins play vital roles in regulating gene expression and cellular physiology in all organisms. Bacterial RNA-binding proteins can regulate transcription termination via attenuation or antitermination mechanisms, while others can repress or activate translation initiation by affecting ribosome binding. The RNA targets for these proteins include short repeated sequences, longer single-stranded sequences, RNA secondary or tertiary structure, and a combination of these features. The activity of these proteins can be influenced by binding of metabolites, small RNAs, or other proteins, as well as by phosphorylation events. Some of these proteins regulate specific genes, while others function as global regulators. As the regulatory mechanisms, components, targets, and signaling circuitry surrounding RNA-binding proteins have become better understood, in part through rapid advances provided by systems approaches, a sense of the true nature of biological complexity is becoming apparent, which we attempt to capture for the reader of this review.
Collapse
Affiliation(s)
- Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Ying-Jung Lai
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA; ,
| | - Andrew J Renda
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; ,
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA; ,
| |
Collapse
|
22
|
Immer C, Hacker C, Wöhnert J. NMR resonance assignments for a ProQ homolog from Legionella pneumophila. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:319-322. [PMID: 29934867 DOI: 10.1007/s12104-018-9831-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/20/2018] [Indexed: 05/20/2023]
Abstract
Regulation of gene expression on a post-transcriptional level by small non-coding regulatory RNAs (sRNAs) is very common in bacteria. sRNAs base pair with sequences in their target messenger RNAs (mRNAs) and thereby regulate translation initiation or mRNA stability. Specialized RNA-binding proteins (RBPs) facilitate these regulatory sRNA/mRNA interactions by acting as RNA chaperones. A well-known example for such an RNA chaperone which is widespread in bacteria is the Hfq protein. Recently, the ProQ/FinO protein family was identified as a new class of RNA chaperones involved in sRNA based regulation. Only a few members of this protein family have been structurally characterized so far. In particular, the structural basis for RNA-binding and recognition has not yet been established for this class of proteins. Here, we report the 1H, 13C and 15N NMR resonance assignments for a ProQ homolog (Lpp 1663) from the gram-negative pathogenic bacterium Legionella pneumophila which will facilitate further structural and dynamic studies of this protein and its interaction with RNA targets.
Collapse
Affiliation(s)
- Carina Immer
- Institute for Molecular Biosciences, Goethe University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| | - Carolin Hacker
- Institute for Molecular Biosciences, Goethe University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
| |
Collapse
|
23
|
Holmqvist E, Li L, Bischler T, Barquist L, Vogel J. Global Maps of ProQ Binding In Vivo Reveal Target Recognition via RNA Structure and Stability Control at mRNA 3′ Ends. Mol Cell 2018; 70:971-982.e6. [DOI: 10.1016/j.molcel.2018.04.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 12/17/2022]
|
24
|
Ghosh P, Sowdhamini R. Bioinformatics comparisons of RNA-binding proteins of pathogenic and non-pathogenic Escherichia coli strains reveal novel virulence factors. BMC Genomics 2017; 18:658. [PMID: 28836963 PMCID: PMC5571608 DOI: 10.1186/s12864-017-4045-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/09/2017] [Indexed: 12/03/2022] Open
Abstract
Background Pathogenic bacteria have evolved various strategies to counteract host defences. They are also exposed to environments that are undergoing constant changes. Hence, in order to survive, bacteria must adapt themselves to the changing environmental conditions by performing regulations at the transcriptional and/or post-transcriptional levels. Roles of RNA-binding proteins (RBPs) as virulence factors have been very well studied. Here, we have used a sequence search-based method to compare and contrast the proteomes of 16 pathogenic and three non-pathogenic E. coli strains as well as to obtain a global picture of the RBP landscape (RBPome) in E. coli. Results Our results show that there are no significant differences in the percentage of RBPs encoded by the pathogenic and the non-pathogenic E. coli strains. The differences in the types of Pfam domains as well as Pfam RNA-binding domains, encoded by these two classes of E. coli strains, are also insignificant. The complete and distinct RBPome of E. coli has been established by studying all known E. coli strains till date. We have also identified RBPs that are exclusive to pathogenic strains, and most of them can be exploited as drug targets since they appear to be non-homologous to their human host proteins. Many of these pathogen-specific proteins were uncharacterised and their identities could be resolved on the basis of sequence homology searches with known proteins. Detailed structural modelling, molecular dynamics simulations and sequence comparisons have been pursued for selected examples to understand differences in stability and RNA-binding. Conclusions The approach used in this paper to cross-compare proteomes of pathogenic and non-pathogenic strains may also be extended to other bacterial or even eukaryotic proteomes to understand interesting differences in their RBPomes. The pathogen-specific RBPs reported in this study, may also be taken up further for clinical trials and/or experimental validations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4045-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pritha Ghosh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, Karnataka, 560 065, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, Karnataka, 560 065, India.
| |
Collapse
|
25
|
Olejniczak M, Storz G. ProQ/FinO-domain proteins: another ubiquitous family of RNA matchmakers? Mol Microbiol 2017; 104:905-915. [PMID: 28370625 DOI: 10.1111/mmi.13679] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2017] [Indexed: 02/02/2023]
Abstract
Small RNAs (sRNAs), particularly those that act by limited base pairing with mRNAs, are part of most regulatory networks in bacteria. In many cases, the base-pairing interaction is facilitated by the RNA chaperone Hfq. However, not all bacteria encode Hfq and some base-pairing sRNAs do not require Hfq raising the possibility of other RNA chaperones. Candidates are proteins with homology to FinO, a factor that promotes base pairing between the FinP antisense sRNA and the traJ mRNA to control F plasmid transfer. Recent papers have shown that the Salmonella enterica FinO-domain protein ProQ binds a large suite of sRNAs, including the RaiZ sRNA, which represses translation of the hupA mRNA, and the Legionella pneumophila protein RocC binds the RocR sRNA, which blocks expression of competence genes. Here we discuss what is known about FinO-domain structures, including the recently solved Escherichia coli ProQ structure, as well as the RNA binding properties of this family of proteins and evidence they act as chaperones. We compare these properties with those of Hfq. We further summarize what is known about the physiological roles of FinO-domain proteins and enumerate outstanding questions whose answers will establish whether they constitute a second major class of RNA chaperones.
Collapse
Affiliation(s)
- Mikolaj Olejniczak
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan, 61-614, Poland
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, Bethesda, MD, 20892-4417, USA
| |
Collapse
|
26
|
Gonzalez GM, Hardwick SW, Maslen SL, Skehel JM, Holmqvist E, Vogel J, Bateman A, Luisi BF, Broadhurst RW. Structure of the Escherichia coli ProQ RNA-binding protein. RNA (NEW YORK, N.Y.) 2017; 23:696-711. [PMID: 28193673 PMCID: PMC5393179 DOI: 10.1261/rna.060343.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/03/2017] [Indexed: 05/20/2023]
Abstract
The protein ProQ has recently been identified as a global small noncoding RNA-binding protein in Salmonella, and a similar role is anticipated for its numerous homologs in divergent bacterial species. We report the solution structure of Escherichia coli ProQ, revealing an N-terminal FinO-like domain, a C-terminal domain that unexpectedly has a Tudor domain fold commonly found in eukaryotes, and an elongated bridging intradomain linker that is flexible but nonetheless incompressible. Structure-based sequence analysis suggests that the Tudor domain was acquired through horizontal gene transfer and gene fusion to the ancestral FinO-like domain. Through a combination of biochemical and biophysical approaches, we have mapped putative RNA-binding surfaces on all three domains of ProQ and modeled the protein's conformation in the apo and RNA-bound forms. Taken together, these data suggest how the FinO, Tudor, and linker domains of ProQ cooperate to recognize complex RNA structures and serve to promote RNA-mediated regulation.
Collapse
Affiliation(s)
- Grecia M Gonzalez
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Steven W Hardwick
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, 75124 Uppsala, Sweden
| | - Jörg Vogel
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, D-97080 Wurzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), University of Würzburg, D-97080 Wurzburg, Germany
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - R William Broadhurst
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
27
|
Smirnov A, Wang C, Drewry LL, Vogel J. Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA. EMBO J 2017; 36:1029-1045. [PMID: 28336682 PMCID: PMC5391140 DOI: 10.15252/embj.201696127] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 12/26/2022] Open
Abstract
Research into post-transcriptional control of mRNAs by small noncoding RNAs (sRNAs) in the model bacteria Escherichia coli and Salmonella enterica has mainly focused on sRNAs that associate with the RNA chaperone Hfq. However, the recent discovery of the protein ProQ as a common binding partner that stabilizes a distinct large class of structured sRNAs suggests that additional RNA regulons exist in these organisms. The cellular functions and molecular mechanisms of these new ProQ-dependent sRNAs are largely unknown. Here, we report in Salmonella Typhimurium the mode-of-action of RaiZ, a ProQ-dependent sRNA that is made from the 3' end of the mRNA encoding ribosome-inactivating protein RaiA. We show that RaiZ is a base-pairing sRNA that represses in trans the mRNA of histone-like protein HU-α. RaiZ forms an RNA duplex with the ribosome-binding site of hupA mRNA, facilitated by ProQ, to prevent 30S ribosome loading and protein synthesis of HU-α. Similarities and differences between ProQ- and Hfq-mediated regulation will be discussed.
Collapse
Affiliation(s)
- Alexandre Smirnov
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Chuan Wang
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lisa L Drewry
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany .,Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| |
Collapse
|
28
|
Lu Y, Zeng J, Wu B, E S, Wang L, Cai R, Zhang N, Li Y, Huang X, Huang B, Chen C. Quorum Sensing N-acyl Homoserine Lactones-SdiA Suppresses Escherichia coli- Pseudomonas aeruginosa Conjugation through Inhibiting traI Expression. Front Cell Infect Microbiol 2017; 7:7. [PMID: 28164039 PMCID: PMC5247672 DOI: 10.3389/fcimb.2017.00007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/05/2017] [Indexed: 01/03/2023] Open
Abstract
Conjugation is a key mechanism for horizontal gene transfer and plays an important role in bacterial evolution, especially with respect to antibiotic resistance. However, little is known about the role of donor and recipient cells in regulation of conjugation. Here, using an Escherichia coli (SM10λπ)-Pseudomonas aeruginosa (PAO1) conjugation model, we demonstrated that deficiency of lasI/rhlI, genes associated with generation of the quorum sensing signals N-acyl homoserine lactones (AHLs) in PAO1, or deletion of the AHLs receptor SdiA in the donor SM10λπ both facilitated conjugation. When using another AHLs-non-producing E. coli strain EC600 as recipient cells, deficiency of sdiA in donor SM10λπ hardly affect the conjugation. More importantly, in the presence of exogenous AHLs, the conjugation efficiency between SM10λπ and EC600 was dramatically decreased, while deficiency of sdiA in SM10λπ attenuated AHLs-inhibited conjugation. These data suggest the conjugation suppression function of AHLs-SdiA chemical signaling. Further bioinformatics analysis, β-galactosidase reporter system and electrophoretic mobility shift assays characterized the binding site of SdiA on the promoter region of traI gene. Furthermore, deletion of lasI/rhlI or sdiA promoted traI mRNA expression in SM10λπ and PAO1 co-culture system, which was abrogated by AHLs. Collectively, our results provide new insight into an important contribution of quorum sensing system AHLs-SdiA to the networks that regulate conjugation.
Collapse
Affiliation(s)
- Yang Lu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou, China; Postdoctoral Mobile Station, Guangzhou University of Chinese MedicineGuangzhou, China
| | - Jianming Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou, China
| | - Binning Wu
- The Second Clinical College, Guangzhou University of Chinese Medicine Guangzhou, China
| | - Shunmei E
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou, China
| | - Lina Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou, China
| | - Renxin Cai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou, China
| | - Ni Zhang
- Clinical Microbiology Laboratory, Guangdong Academy of Medical Science and Guangdong General Hospital Guangzhou, China
| | - Youqiang Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou, China
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou, China; Postdoctoral Mobile Station, Guangzhou University of Chinese MedicineGuangzhou, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University Guangzhou, China
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou, China
| |
Collapse
|
29
|
Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. Proc Natl Acad Sci U S A 2016; 113:8813-8. [PMID: 27432973 DOI: 10.1073/pnas.1601626113] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A highly conserved DNA uptake system allows many bacteria to actively import and integrate exogenous DNA. This process, called natural transformation, represents a major mechanism of horizontal gene transfer (HGT) involved in the acquisition of virulence and antibiotic resistance determinants. Despite evidence of HGT and the high level of conservation of the genes coding the DNA uptake system, most bacterial species appear non-transformable under laboratory conditions. In naturally transformable species, the DNA uptake system is only expressed when bacteria enter a physiological state called competence, which develops under specific conditions. Here, we investigated the mechanism that controls expression of the DNA uptake system in the human pathogen Legionella pneumophila We found that a repressor of this system displays a conserved ProQ/FinO domain and interacts with a newly characterized trans-acting sRNA, RocR. Together, they target mRNAs of the genes coding the DNA uptake system to control natural transformation. This RNA-based silencing represents a previously unknown regulatory means to control this major mechanism of HGT. Importantly, these findings also show that chromosome-encoded ProQ/FinO domain-containing proteins can assist trans-acting sRNAs and that this class of RNA chaperones could play key roles in post-transcriptional gene regulation throughout bacterial species.
Collapse
|
30
|
Mark Glover JN, Chaulk SG, Edwards RA, Arthur D, Lu J, Frost LS. The FinO family of bacterial RNA chaperones. Plasmid 2014; 78:79-87. [PMID: 25102058 DOI: 10.1016/j.plasmid.2014.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 11/25/2022]
Abstract
Antisense RNAs have long been known to regulate diverse aspects of plasmid biology. Here we review the FinOP system that modulates F plasmid gene expression through regulation of the F plasmid transcription factor, TraJ. FinOP is a two component system composed of an antisense RNA, FinP, which represses TraJ translation, and a protein, FinO, which is required to stabilize FinP and facilitate its interactions with its traJ mRNA target. We review the evidence that FinO acts as an RNA chaperone to bind and destabilize internal stem-loop structures within the individual RNAs that would otherwise block intermolecular RNA duplexing. Recent structural studies have provided mechanistic insights into how FinO may facilitate interactions between FinP and traJ mRNA. We also review recent findings that two other proteins, Escherichia coli ProQ and Neisseria meningitidis NMB1681, may represent FinO-like RNA chaperones.
Collapse
Affiliation(s)
- J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Steven G Chaulk
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David Arthur
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jun Lu
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Laura S Frost
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
31
|
Miller DP, Frederick JR, Sarkar J, Marconi RT. The Treponema denticola AtcR LytTR domain-containing response regulator interacts with three architecturally distinct promoter elements: implications for understanding the molecular signaling mechanisms that drive the progression of periodontal disease. Mol Oral Microbiol 2014; 29:219-32. [PMID: 24890414 DOI: 10.1111/omi.12059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2014] [Indexed: 12/27/2022]
Abstract
Treponema denticola is an oral spirochete and periopathogen that transitions from low abundance in healthy subgingival crevices to high abundance in periodontal pockets. The T. denticola response regulator AtcR harbors the relatively rare, LytTR DNA-binding domain. LytTR domain containing response regulators control critical transcriptional responses required for environmental adaptation. Using a multi-step bioinformatics approach, 26 strong lytTR recognition motifs were identified in the genome of T. denticola strain 35405. Electrophoretic mobility shift assays demonstrated that AtcR binds to these recognition motifs. High specificity-high affinity complexes formed with phosphorylated AtcR. The LytTR recognition sequences were found to exist in three distinct promoter architectures designated as LytTR1, LytTR2 and LytTR3 promoters. LytTR1 and LytTR2 promoters harbor σ(54) binding sites. The functional diversity of the proteins encoded by the putative AtcR regulon suggests that AtcR sits at the top of a regulatory cascade that plays a central role in facilitating T. denticola's ability to adapt to changing environmental conditions and thrive in periodontal pockets.
Collapse
Affiliation(s)
- D P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | | | | | | |
Collapse
|
32
|
Chaulk SG, Xu Z, Glover MJN, Fahlman RP. MicroRNA miR-92a-1 biogenesis and mRNA targeting is modulated by a tertiary contact within the miR-17~92 microRNA cluster. Nucleic Acids Res 2014; 42:5234-44. [PMID: 24520115 PMCID: PMC4005684 DOI: 10.1093/nar/gku133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
While functional mature microRNAs (miRNAs) are small ∼22 base oligonucleotides that target specific mRNAs, miRNAs are initially expressed as long transcripts (pri-miRNAs) that undergo sequential processing to yield the mature miRNAs. We have previously reported that the pri-miR-17∼92 cluster adopts a compact globular folded structure that internalizes a 3' core domain resulting in reduced miRNA maturation and subsequent mRNA targeting. Using a site-specific photo-cross-linker we have identified a tertiary contact within the 3' core domain of the pri-miRNA between a non-miRNA stem-loop and the pre-miR-19b hairpin. This tertiary contact is involved in the formation of the compact globular fold of the cluster while its disruption enhances miR-92a expression and mRNA targeting. We propose that this tertiary contact serves as a molecular scaffold to restrict expression of the proposed antiangiogenic miR-92a, allowing for the overall pro-angiogenic effect of miR-17∼92 expression.
Collapse
Affiliation(s)
- Steven G Chaulk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
33
|
Schuurmans JM, van Hijum SAFT, Piet JR, Händel N, Smelt J, Brul S, ter Kuile BH. Effect of growth rate and selection pressure on rates of transfer of an antibiotic resistance plasmid between E. coli strains. Plasmid 2014; 72:1-8. [PMID: 24525238 DOI: 10.1016/j.plasmid.2014.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
Antibiotic resistance increases costs for health care and causes therapy failure. An important mechanism for spreading resistance is transfer of plasmids containing resistance genes and subsequent selection. Yet the factors that influence the rate of transfer are poorly known. Rates of plasmid transfer were measured in co-cultures in chemostats of a donor and a acceptor strain under various selective pressures. To document whether specific mutations in either plasmid or acceptor genome are associated with the plasmid transfer, whole genome sequencing was performed. The DM0133 TetR tetracycline resistance plasmid was transferred between Escherichia coli K-12 strains during co-culture at frequencies that seemed higher at increased growth rate. Modeling of the take-over of the culture by the transformed strain suggests that in reality more transfer events occurred at low growth rates. At moderate selection pressure due to an antibiotic concentration that still allowed growth, a maximum transfer frequency was determined of once per 10(11) cell divisions. In the absence of tetracycline or in the presence of high concentrations the frequency of transfer was sometimes zero, but otherwise reduced by at least a factor of 5. Whole genome sequencing showed that the plasmid was transferred without mutations, but two functional mutations in the genome of the recipient strain accompanied this transfer. Exposure to concentrations of antibiotics that fall within the mutant selection window stimulated transfer of the resistance plasmid most.
Collapse
Affiliation(s)
- Jasper M Schuurmans
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sacha A F T van Hijum
- NIZO Food Research B.V., Kernhemseweg 2, 6718 ZB Ede, The Netherlands; Centre for Molecular and Biomolecular Informatics (CMBI), NCMLS, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jurgen R Piet
- Department of Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Nadine Händel
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jan Smelt
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Benno H ter Kuile
- Department of Molecular Biology & Microbial Food Safety, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, Catharijnesingel 59, 3511 GG Utrecht, The Netherlands.
| |
Collapse
|
34
|
Hennig J, Wang I, Sonntag M, Gabel F, Sattler M. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex. JOURNAL OF BIOMOLECULAR NMR 2013; 56:17-30. [PMID: 23456097 DOI: 10.1007/s10858-013-9719-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 02/19/2013] [Indexed: 05/12/2023]
Abstract
Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.
Collapse
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
35
|
Classen S, Hura GL, Holton JM, Rambo RP, Rodic I, McGuire PJ, Dyer K, Hammel M, Meigs G, Frankel KA, Tainer JA. Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source. J Appl Crystallogr 2013; 46:1-13. [PMID: 23396808 PMCID: PMC3547225 DOI: 10.1107/s0021889812048698] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/27/2012] [Indexed: 12/02/2022] Open
Abstract
The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B(4)C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources.
Collapse
Affiliation(s)
- Scott Classen
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Greg L. Hura
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James M. Holton
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2330, USA
| | - Robert P. Rambo
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ivan Rodic
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Patrick J. McGuire
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kevin Dyer
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michal Hammel
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - George Meigs
- Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kenneth A. Frankel
- Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John A. Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
36
|
Wong JJW, Lu J, Glover JNM. Relaxosome function and conjugation regulation in F-like plasmids - a structural biology perspective. Mol Microbiol 2012; 85:602-17. [PMID: 22788760 DOI: 10.1111/j.1365-2958.2012.08131.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tra operon of the prototypical F plasmid and its relatives enables transfer of a copy of the plasmid to other bacterial cells via the process of conjugation. Tra proteins assemble to form the transferosome, the transmembrane pore through which the DNA is transferred, and the relaxosome, a complex of DNA-binding proteins at the origin of DNA transfer. F-like plasmid conjugation is characterized by a high degree of plasmid specificity in the interactions of tra components, and is tightly regulated at the transcriptional, translational and post-translational levels. Over the past decade, X-ray crystallography of conjugative components has yielded insights into both specificity and regulatory mechanisms. Conjugation is repressed by FinO, an RNA chaperone which increases the lifetime of the small RNA, FinP. Recent work has resulted in a detailed model of FinO/FinP interactions and the discovery of a family of FinO-like RNA chaperones. Relaxosome components include TraI, a relaxase/helicase, and TraM, which mediates signalling between the transferosome and relaxosome for transfer initiation. The structures of TraI and TraM bound to oriT DNA reveal the basis of specific recognition of DNA for their cognate plasmid. Specificity also exists in TraI and TraM interactions with the transferosome protein TraD.
Collapse
Affiliation(s)
- Joyce J W Wong
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | | | | |
Collapse
|
37
|
Sobrero P, Valverde C. The bacterial protein Hfq: much more than a mere RNA-binding factor. Crit Rev Microbiol 2012; 38:276-99. [DOI: 10.3109/1040841x.2012.664540] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|