1
|
Lima-Noronha MA, Fonseca DLH, Oliveira RS, Freitas RR, Park JH, Galhardo RS. Sending out an SOS - the bacterial DNA damage response. Genet Mol Biol 2022; 45:e20220107. [PMID: 36288458 PMCID: PMC9578287 DOI: 10.1590/1678-4685-gmb-2022-0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
The term “SOS response” was first coined by Radman in 1974, in an intellectual effort to put together the data suggestive of a concerted gene expression program in cells undergoing DNA damage. A large amount of information about this cellular response has been collected over the following decades. In this review, we will focus on a few of the relevant aspects about the SOS response: its mechanism of control and the stressors which activate it, the diversity of regulated genes in different species, its role in mutagenesis and evolution including the development of antimicrobial resistance, and its relationship with mobile genetic elements.
Collapse
Affiliation(s)
- Marco A. Lima-Noronha
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Douglas L. H. Fonseca
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Renatta S. Oliveira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rúbia R. Freitas
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Jung H. Park
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rodrigo S. Galhardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Javkar K, Rand H, Hoffmann M, Luo Y, Sarria S, Thirunavukkarasu N, Pillai CA, McGann P, Johnson JK, Strain E, Pop M. Whole-Genome Assessment of Clinical Acinetobacter baumannii Isolates Uncovers Potentially Novel Factors Influencing Carbapenem Resistance. Front Microbiol 2021; 12:714284. [PMID: 34659144 PMCID: PMC8518998 DOI: 10.3389/fmicb.2021.714284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Carbapenems-one of the important last-line antibiotics for the treatment of gram-negative infections-are becoming ineffective for treating Acinetobacter baumannii infections. Studies have identified multiple genes (and mechanisms) responsible for carbapenem resistance. In some A. baumannii strains, the presence/absence of putative resistance genes is not consistent with their resistance phenotype-indicating the genomic factors underlying carbapenem resistance in A. baumannii are not fully understood. Here, we describe a large-scale whole-genome genotype-phenotype association study with 349 A. baumannii isolates that extends beyond the presence/absence of individual antimicrobial resistance genes and includes the genomic positions and pairwise interactions of genes. Ten known resistance genes exhibited statistically significant associations with resistance to imipenem, a type of carbapenem: blaOXA-23, qacEdelta1, sul1, mphE, msrE, ant(3")-II, aacC1, yafP, aphA6, and xerD. A review of the strains without any of these 10 genes uncovered a clade of isolates with diverse imipenem resistance phenotypes. Finer resolution evaluation of this clade revealed the presence of a 38.6 kbp conserved chromosomal region found exclusively in imipenem-susceptible isolates. This region appears to host several HTH-type DNA binding transcriptional regulators and transporter genes. Imipenem-susceptible isolates from this clade also carried two mutually exclusive plasmids that contain genes previously known to be specific to imipenem-susceptible isolates. Our analysis demonstrates the utility of using whole genomes for genotype-phenotype correlations in the context of antibiotic resistance and provides several new hypotheses for future research.
Collapse
Affiliation(s)
- Kiran Javkar
- Department of Computer Science, University of Maryland, College Park, MD, United States.,Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD, United States
| | - Hugh Rand
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Yan Luo
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Saul Sarria
- Center for Veterinary Medicine, United States Food and Drug Administration, Department of Health and Human Services, Laurel, MD, United States
| | - Nagarajan Thirunavukkarasu
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Christine A Pillai
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Health and Human Services, College Park, MD, United States
| | - Patrick McGann
- Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Errol Strain
- Center for Veterinary Medicine, United States Food and Drug Administration, Department of Health and Human Services, Laurel, MD, United States
| | - Mihai Pop
- Department of Computer Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
3
|
Ramisetty BCM, Ghosh D, Roy Chowdhury M, Santhosh RS. What Is the Link between Stringent Response, Endoribonuclease Encoding Type II Toxin-Antitoxin Systems and Persistence? Front Microbiol 2016; 7:1882. [PMID: 27933045 PMCID: PMC5120126 DOI: 10.3389/fmicb.2016.01882] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/09/2016] [Indexed: 11/21/2022] Open
Abstract
Persistence is a transient and non-inheritable tolerance to antibiotics by a small fraction of a bacterial population. One of the proposed determinants of bacterial persistence is toxin–antitoxin systems (TASs) which are also implicated in a wide range of stress-related phenomena. Maisonneuve E, Castro-Camargo M, Gerdes K. 2013. Cell 154:1140–1150 reported an interesting link between ppGpp mediated stringent response, TAS, and persistence. It is proposed that accumulation of ppGpp enhances the accumulation of inorganic polyphosphate which modulates Lon protease to degrade antitoxins. The decrease in the concentration of antitoxins supposedly activated the toxin to increase in the number of persisters during antibiotic treatment. In this study, we show that inorganic polyphosphate is not required for transcriptional activation of yefM/yoeB TAS, which is an indirect indication of Lon-dependent degradation of YefM antitoxin. The Δ10 strain, an Escherichia coli MG1655 derivative in which the 10 TAS are deleted, is more sensitive to ciprofloxacin compared to wild type MG1655. Furthermore, we show that the Δ10 strain has relatively lower fitness compared to the wild type and hence, we argue that the persistence related implications based on Δ10 strain are void. We conclude that the transcriptional regulation and endoribonuclease activity of YefM/YoeB TAS is independent of ppGpp and inorganic polyphosphate. Therefore, we urge for thorough inspection and debate on the link between chromosomal endoribonuclease TAS and persistence.
Collapse
Affiliation(s)
- Bhaskar C M Ramisetty
- School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India; Department of Biochemistry and Molecular Biology, University of Southern DenmarkOdense, Denmark
| | - Dimpy Ghosh
- School of Chemical and Biotechnology, SASTRA University Thanjavur, India
| | | | | |
Collapse
|
4
|
Rajaraman E, Agarwal A, Crigler J, Seipelt-Thiemann R, Altman E, Eiteman MA. Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate. Appl Microbiol Biotechnol 2016; 100:7777-85. [DOI: 10.1007/s00253-016-7724-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/25/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
|
5
|
Abstract
All living organisms are continually exposed to agents that damage their DNA, which threatens the integrity of their genome. As a consequence, cells are equipped with a plethora of DNA repair enzymes to remove the damaged DNA. Unfortunately, situations nevertheless arise where lesions persist, and these lesions block the progression of the cell's replicase. In these situations, cells are forced to choose between recombination-mediated "damage avoidance" pathways or a specialized DNA polymerase (pol) to traverse the blocking lesion. The latter process is referred to as Translesion DNA Synthesis (TLS). As inferred by its name, TLS not only results in bases being (mis)incorporated opposite DNA lesions but also bases being (mis)incorporated downstream of the replicase-blocking lesion, so as to ensure continued genome duplication and cell survival. Escherichia coli and Salmonella typhimurium possess five DNA polymerases, and while all have been shown to facilitate TLS under certain experimental conditions, it is clear that the LexA-regulated and damage-inducible pols II, IV, and V perform the vast majority of TLS under physiological conditions. Pol V can traverse a wide range of DNA lesions and performs the bulk of mutagenic TLS, whereas pol II and pol IV appear to be more specialized TLS polymerases.
Collapse
|
6
|
Hentchel KL, Escalante-Semerena JC. Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress. Microbiol Mol Biol Rev 2015; 79:321-46. [PMID: 26179745 PMCID: PMC4503791 DOI: 10.1128/mmbr.00020-15] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acylation of biomolecules (e.g., proteins and small molecules) is a process that occurs in cells of all domains of life and has emerged as a critical mechanism for the control of many aspects of cellular physiology, including chromatin maintenance, transcriptional regulation, primary metabolism, cell structure, and likely other cellular processes. Although this review focuses on the use of acetyl moieties to modify a protein or small molecule, it is clear that cells can use many weak organic acids (e.g., short-, medium-, and long-chain mono- and dicarboxylic aliphatics and aromatics) to modify a large suite of targets. Acetylation of biomolecules has been studied for decades within the context of histone-dependent regulation of gene expression and antibiotic resistance. It was not until the early 2000s that the connection between metabolism, physiology, and protein acetylation was reported. This was the first instance of a metabolic enzyme (acetyl coenzyme A [acetyl-CoA] synthetase) whose activity was controlled by acetylation via a regulatory system responsive to physiological cues. The above-mentioned system was comprised of an acyltransferase and a partner deacylase. Given the reversibility of the acylation process, this system is also referred to as reversible lysine acylation (RLA). A wealth of information has been obtained since the discovery of RLA in prokaryotes, and we are just beginning to visualize the extent of the impact that this regulatory system has on cell function.
Collapse
Affiliation(s)
- Kristy L Hentchel
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
7
|
Ikeda M, Shinozaki Y, Uchida K, Ohshika Y, Furukohri A, Maki H, Akiyama MT. Quick replication fork stop by overproduction of Escherichia coli DinB produces non-proliferative cells with an aberrant chromosome. Genes Genet Syst 2013; 87:221-31. [PMID: 23229309 DOI: 10.1266/ggs.87.221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli dinB encodes the translesion DNA polymerase DinB, which can inhibit progression of replication forks in a dose-dependent manner, independent of exogenous DNA damage. We reported previously that overproduction of DinB from a multicopy dinB plasmid immediately abolished ongoing replication fork progression, and the cells rapidly and drastically lost colony-forming ability, although the mechanisms underlying this lethality by severe replication fork stress remained unclear. Here, we show that the reduced colony-forming ability in the dinB-overexpressing cells is independent of the specific toxin genes that trigger programmed bacterial cell death when replication is blocked by depletion of the dNTP pool. After DinB abolished replication fork progression and colony-forming ability, most of the cells were still viable, as judged by fluorescent dye staining, but contained irregularly shaped nucleoids in which chromosomal DNA was preferentially lost in the replication terminus region relative to the replication origin region. Flow cytometric analysis of the cells revealed chromosomal damage and the eventual appearance of cell populations with less than single-chromosome DNA content, reminiscent of sub-G1 cells with lethal DNA content produced during eukaryotic apoptosis. This reduced DNA content was not observed after replication fork progression was quickly stopped in temperature-sensitive dnaB helicase mutant cells at a non-permissive temperature. Thus, the quick replication stop provoked by excess DinB uniquely generates temporarily viable but non-reproductive cells possessing a fatally depleted chromosomal content, which may represent one of the possible fates of an E. coli cell whose replication is overwhelmingly compromised.
Collapse
Affiliation(s)
- Mio Ikeda
- Division of Systems Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama,Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Gawel D, Seed PC. Urinary tract infection drives genome instability in uropathogenic Escherichia coli and necessitates translesion synthesis DNA polymerase IV for virulence. Virulence 2011; 2:222-32. [PMID: 21597325 DOI: 10.4161/viru.2.3.16143] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) produces ~80% of community-acquired UTI, the second most common infection in humans. During UTI, UPEC has a complex life cycle, replicating and persisting in intracellular and extracellular niches. Host and environmental stresses may affect the integrity of the UPEC genome and threaten its viability. We determined how the host inflammatory response during UTI drives UPEC genome instability and evaluated the role of multiple factors of genome replication and repair for their roles in the maintenance of genome integrity and thus virulence during UTI. The urinary tract environment enhanced the mutation frequency of UPEC ~100-fold relative to in vitro levels. Abrogation of inflammation through a host TLR4-signaling defect significantly reduced the mutation frequency, demonstrating in the importance of the host response as a driver of UPEC genome instability. Inflammation induces the bacterial SOS response, leading to the hypothesis that the UPEC SOS-inducible translesion synthesis (TLS) DNA polymerases would be key factors in UPEC genome instability during UTI. However, while the TLS DNA polymerases enhanced in vitro, they did not increase in vivo mutagenesis. Although it is not a source of enhanced mutagenesis in vivo, the TLS DNA polymerase IV was critical for the survival of UPEC during UTI during an active inflammatory assault. Overall, this study provides the first evidence of a TLS DNA polymerase being critical for UPEC survival during urinary tract infection and points to independent mechanisms for genome instability and the maintenance of genome replication of UPEC under host inflammatory stress.
Collapse
Affiliation(s)
- Damian Gawel
- Department of Pediatrics, Center for Microbial Pathogenesis, Duke University, Durham, NC, USA
| | | |
Collapse
|