1
|
Babic T, Ugrin M, Jeremic S, Kojic M, Dinic J, Banovic Djeri B, Zoidakis J, Nikolic A. Dysregulation of transcripts SMAD4-209 and SMAD4-213 and their respective promoters in colon cancer cell lines. J Cancer 2024; 15:5118-5131. [PMID: 39132157 PMCID: PMC11310865 DOI: 10.7150/jca.98911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024] Open
Abstract
Background: The pervasive role of alternative promoters in context-specific isoform expression and the importance of promoter choice over its level of transcriptional activity have been recently implied based on pan-cancer in silico studies. We aimed to explore this phenomenon at the cellular level on the example of a major tumor suppressor SMAD4 in search of molecular mechanisms in colorectal cancer that could be exploited for novel biomarkers or therapeutic approaches. Methods: Multi-omics technologies, in silico tools and in vitro functional assays were applied to analyze the transcripts expression and the alternative promoters' function of the SMAD4 gene in colon cell lines HCEC-1CT, HCT116, DLD-1, SW480 and SW620. Results: High expression of the transcript SMAD4-213 emerged as a hallmark of colon cancer cells, while in silico tools point to its possible additional role and potential for sponging miRNAs. Based on the observed dysregulation of SMAD4-209 and SMAD4-213 in malignant vs. non-malignant colon cells, we propose that their expression ratio might be a solid biomarker candidate for colorectal cancer detection. Conclusions: A differential pattern of the respective promoters' activity was observed that corresponds to the expression of transcripts, confirming the role of alternative promoters in context-specific isoform expression. The investigated SMAD4 promoters and transcripts harbor translational potential that should be further investigated.
Collapse
Affiliation(s)
- Tamara Babic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Milena Ugrin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Sanja Jeremic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Milan Kojic
- Institute of Virology, Vaccines and Sera “Torlak”, 11152 Belgrade, Serbia
| | - Jelena Dinic
- Institute for Biological Research “Siniša Stanković” — National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Bojana Banovic Djeri
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Jerome Zoidakis
- Department of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
- Proteomics Laboratory, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| |
Collapse
|
2
|
Wei D, Zhang L, Raza SHA, Zhang J, Juan Z, Al-Amrah H, Al Abdulmonem W, Alharbi YM, Zhang G, Liang X. Interaction of C/EBPβ with SMAD2 and SMAD4 genes induces the formation of lipid droplets in bovine myoblasts. Funct Integr Genomics 2023; 23:191. [PMID: 37249689 DOI: 10.1007/s10142-023-01115-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
As a key component of Transforming growth factor-β (TGF-β) pathway, Smad2 has many crucial roles in a variety of cellular processes, but it cannot bind DNA without complex formation with Smad4. In the present study, the molecular mechanism in the progress of myogenesis underlying transcriptional regulation of SMAD2 and SMAD4 had been clarified. The result showed the inhibition between SMAD2 and SMAD4, which promotes and inhibits bovine myoblast differentiation, respectively. Further, the characterization of promoter region of SMAD2 and SMAD4 was analyzed, and identified C/EBPβ directly bound to the core region of both SMAD2 and SMAD4 genes promoter and stimulated the transcriptional activity. However, C/EBPβ has lower expression in myoblasts which plays vital function in the transcriptional networks controlling adipogenesis, while the overexpression of C/EBPβ gene in myoblasts significantly increased SMAD2 and SMAD4 gene expression, induced the formation of lipid droplet in bovine myoblasts, and promoted the expression of adipogenesis-specific genes. Collectively, our results showed that C/EBPβ may play an important role in the trans-differentiation and dynamic equilibrium of myoblasts into adipocyte cells via promoting an increase in SMAD2 and SMAD4 gene levels. These results will provide an important basis for further understanding of the TGFβ pathway and C/EBPβ gene during myogenic differentiation.
Collapse
Affiliation(s)
- Dawei Wei
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
| | - Le Zhang
- Institute of Physical Education, Yan'an University, Yan'an, 716000, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiupan Zhang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750021, China
| | - Zhao Juan
- College of Animal Science and Technology, South China Agricultural University, Guangzhou, 510642, China
| | - Hadba Al-Amrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Yousef Mesfer Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Guijie Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| | - Xiaojun Liang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750021, China.
| |
Collapse
|
3
|
SMAD4-201 transcript as a putative biomarker in colorectal cancer. BMC Cancer 2022; 22:72. [PMID: 35034624 PMCID: PMC8762975 DOI: 10.1186/s12885-022-09186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022] Open
Abstract
Background Transcripts with alternative 5′-untranslated regions (UTRs) result from the activity of alternative promoters and they can determine gene expression by influencing its stability and translational efficiency, thus executing complex regulation of developmental, physiological and pathological processes. Transcriptional regulation of human SMAD4, a key tumor suppressor deregulated in most gastrointestinal cancers, entails four alternative promoters. These promoters and alternative transcripts they generate remain unexplored as contributors to the SMAD4 deregulation in cancer. The aim of this study was to investigate the relative abundance of the transcript SMAD4–201 in colorectal cell lines and tissues in order to establish if its fluctuations may be associated with colorectal cancer (CRC). Methods Relative abundance of SMAD4–201 in total SMAD4 mRNA was analyzed using quantitative PCR in a set of permanent human colon cell lines and tumor and corresponding healthy tissue samples from patients with CRC. Results The relative abundance of SMAD4–201 in analyzed cell lines varied between 16 and 47%. A similar relative abundance of SMAD4–201 transcript was found in the majority of analyzed human tumor tissue samples, and it was averagely 20% lower in non-malignant in comparison to malignant tissue samples (p = 0.001). Transcript SMAD4–202 was not detectable in any of the analyzed samples, so the observed fluctuations in the composition of SMAD4 transcripts can be attributed to transcripts other than SMAD4–201 and SMAD4–202. Conclusion The expression profile of SMAD4–201 in human tumor and non-tumor tissue samples may indicate the translational potential of this molecule in CRC, but further research is needed to clarify its usability as a potential biomarker for early diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09186-z.
Collapse
|
4
|
Molecular Characterization and Functional Analysis of Two Steroidogenic Genes TSPO and SMAD4 in Yellow Catfish. Int J Mol Sci 2021; 22:ijms22094505. [PMID: 33925909 PMCID: PMC8123483 DOI: 10.3390/ijms22094505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
The steroid hormones are required for gonadal development in fish. The present study was undertaken to characterize the cDNA and promoter sequences of TSPO and SMAD4 genes in yellow catfish Pelteobagrus fulvidraco, explored the mRNA tissue expression and deciphered their promoter regions. Yellow catfish TSPO and SMAD4 shared the similar domains to the corresponding genes from other vertebrates. The TSPO and SMAD4 mRNAs were widely expressed in the detected tissues, but at different levels. Several transcription factors were predicted, such as Sp, GATA, AP1, SOX1, SRY, STAT, HNF4α, PPARγ, Pu.1 and FOXL2. PPARγ overexpression increased but STAT3 overexpression reduced TSPO promoter activity, and FOXL2 overexpression inhibited the promoter activity of TSPO and SMAD4. The site mutation and EMSA analysis indicated that TSPO promoter possessed STAT3 and FOXL2 sites. Overall, our provided the novel understanding into the transcriptionally regulatory mechanisms of TSPO and SMAD4 in fish.
Collapse
|
5
|
Ullah I, Sun W, Tang L, Feng J. Roles of Smads Family and Alternative Splicing Variants of Smad4 in Different Cancers. J Cancer 2018; 9:4018-4028. [PMID: 30410607 PMCID: PMC6218760 DOI: 10.7150/jca.20906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Transforming Growth Factor β (TGF-β) is one of the most common secretory proteins which are recognized by membrane receptors joined to transcription regulatory factor. TGF-β signals are transduced by the Smads family that regulate differentiation, proliferation, early growth, apoptosis, homeostasis, and tumor development. Functional study of TGF-β signaling pathway and Smads role is vital for certain diseases such as cancer. Alternative splicing produces a diverse range of protein isoforms with unique function and the ability to react differently with various pharmaceutical products. This review organizes to describe the general study of Smads family, the process of alternative splicing, the general aspect of alternative splicing of Smad4 in cancer and the possible use of spliceoforms for the diagnosis and therapeutic purpose. The main aim and objective of this article are to highlight some particular mechanisms involving in alternatives splicing of cancer and also to demonstrate new evidence about alternative splicing in different steps given cancer initiation and progression.
Collapse
Affiliation(s)
- Irfan Ullah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
6
|
Co-Expression Network Analysis Identifies miRNA⁻mRNA Networks Potentially Regulating Milk Traits and Blood Metabolites. Int J Mol Sci 2018; 19:ijms19092500. [PMID: 30149509 PMCID: PMC6164576 DOI: 10.3390/ijms19092500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/05/2018] [Accepted: 08/16/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNA) regulate mRNA networks to coordinate cellular functions. In this study, we constructed gene co-expression networks to detect miRNA modules (clusters of miRNAs with similar expression patterns) and miRNA–mRNA pairs associated with blood (triacylglyceride and nonesterified fatty acids) and milk (milk yield, fat, protein, and lactose) components and milk fatty acid traits following dietary supplementation of cows’ diets with 5% linseed oil (LSO) (n = 6 cows) or 5% safflower oil (SFO) (n = 6 cows) for 28 days. Using miRNA transcriptome data from mammary tissues of cows for co-expression network analysis, we identified three consensus modules: blue, brown, and turquoise, composed of 70, 34, and 86 miRNA members, respectively. The hub miRNAs (miRNAs with the most connections with other miRNAs) were miR-30d, miR-484 and miR-16b for blue, brown, and turquoise modules, respectively. Cell cycle arrest, and p53 signaling and transforming growth factor–beta (TGF-β) signaling pathways were the common gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched for target genes of the three modules. Protein percent (p = 0.03) correlated with the turquoise module in LSO treatment while protein yield (p = 0.003) and milk yield (p = 7 × 10−04) correlated with the turquoise model, protein and milk yields and lactose percent (p < 0.05) correlated with the blue module and fat percent (p = 0.04) correlated with the brown module in SFO treatment. Several fatty acids correlated (p < 0.05) with the blue (CLA:9,11) and brown (C4:0, C12:0, C22:0, C18:1n9c and CLA:10,12) modules in LSO treatment and with the turquoise (C14:0, C18:3n3 and CLA:9,11), blue (C14:0 and C23:0) and brown (C6:0, C16:0, C22:0, C22:6n3 and CLA:10,12) modules in SFO treatment. Correlation of miRNA and mRNA data from the same animals identified the following miRNA–mRNA pairs: miR-183/RHBDD2 (p = 0.003), miR-484/EIF1AD (p = 0.011) and miR-130a/SBSPON (p = 0.004) with lowest p-values for the blue, brown, and turquoise modules, respectively. Milk yield, protein yield, and protein percentage correlated (p < 0.05) with 28, 31 and 5 miRNA–mRNA pairs, respectively. Our results suggest that, the blue, brown, and turquoise modules miRNAs, hub miRNAs, miRNA–mRNA networks, cell cycle arrest GO term, p53 signaling and TGF-β signaling pathways have considerable influence on milk and blood phenotypes following dietary supplementation of dairy cows’ diets with 5% LSO or 5% SFO.
Collapse
|
7
|
Gonzalez RS, Adsay V, Graham RP, Shroff SG, Feely MM, Drage MG, Lewin DN, Swanson EA, Yantiss RK, Bağci P, Krasinskas AM. Massive gastric juvenile-type polyposis: a clinicopathological analysis of 22 cases. Histopathology 2017; 70:918-928. [DOI: 10.1111/his.13149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Raul S Gonzalez
- Department of Pathology and Laboratory Medicine; University of Rochester Medical Center; Rochester NY USA
| | - Volkan Adsay
- Department of Pathology and Laboratory Medicine; Emory University; Atlanta GA USA
| | - Rondell P Graham
- Division of Anatomic Pathology; Department of Pathology; Mayo Clinic; Rochester MN USA
| | - Stuti G Shroff
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia PA USA
| | - Michael M Feely
- Department of Pathology, Immunology, and Laboratory Medicine; University of Florida; Gainesville FL USA
| | - Michael G Drage
- Department of Pathology; Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| | - David N Lewin
- Department of Pathology and Laboratory Medicine; Medical University of South Carolina; Charleston SC USA
| | - Eric A Swanson
- Department of Pathology; University of Utah; Salt Lake City UT USA
| | - Rhonda K Yantiss
- Department of Pathology and Laboratory Medicine; Weill Cornell Medicine; New York NY USA
| | - Pelin Bağci
- Department of Pathology and Laboratory Medicine; Emory University; Atlanta GA USA
| | - Alyssa M Krasinskas
- Department of Pathology and Laboratory Medicine; Emory University; Atlanta GA USA
| |
Collapse
|
8
|
Lee JH, Kim SS, Lee HS, Hong S, Rajasekaran N, Wang LH, Choi JS, Shin YK. Upregulation of SMAD4 by MZF1 inhibits migration of human gastric cancer cells. Int J Oncol 2016; 50:272-282. [PMID: 27922669 DOI: 10.3892/ijo.2016.3793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/24/2016] [Indexed: 11/06/2022] Open
Abstract
SMAD4 is a tumor suppressor that is frequently inactivated in many types of cancer. The role of abnormal expression of SMAD4 has been reported in developmental processes and the progression of various human cancers. The expression level of SMAD4 has been related to the survival rate in gastric cancer patients. However, the molecular mechanism underlying transcriptional regulation of SMAD4 remains largely unknown. In the present study, we characterized the promoter region of SMAD4 and identified myeloid zinc finger 1 (MZF1), as a putative transcription factor. MZF1 directly bound to a core region of the SMAD4 promoter and stimulated transcriptional activity. We also found that the expression of MZF1 influences the migration ability of gastric adenocarcinoma cells. Collectively, our results showed that MZF1 has a role in cellular migration of gastric cancer cells via promoting an increase in intracellular SMAD4 levels. This study might provide new evidence for the molecular basis of the tumor suppressive effect of the MZF1-SMAD4 axis, a new therapeutic target in advanced human gastric cancer.
Collapse
Affiliation(s)
- Jin-Hee Lee
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sung-Su Kim
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hun Seok Lee
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sungyoul Hong
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Nirmal Rajasekaran
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Li-Hui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China
| | - Joon-Seok Choi
- Department of Pharmaceutical Microbiology, College of Pharmacy, Catholic University, Daegu, Republic of Korea
| | - Young Kee Shin
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Lelieveld SH, Schütte J, Dijkstra MJJ, Bawono P, Kinston SJ, Göttgens B, Heringa J, Bonzanni N. ConBind: motif-aware cross-species alignment for the identification of functional transcription factor binding sites. Nucleic Acids Res 2016; 44:e72. [PMID: 26721389 PMCID: PMC4856970 DOI: 10.1093/nar/gkv1518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic gene expression is regulated by transcription factors (TFs) binding to promoter as well as distal enhancers. TFs recognize short, but specific binding sites (TFBSs) that are located within the promoter and enhancer regions. Functionally relevant TFBSs are often highly conserved during evolution leaving a strong phylogenetic signal. While multiple sequence alignment (MSA) is a potent tool to detect the phylogenetic signal, the current MSA implementations are optimized to align the maximum number of identical nucleotides. This approach might result in the omission of conserved motifs that contain interchangeable nucleotides such as the ETS motif (IUPAC code: GGAW). Here, we introduce ConBind, a novel method to enhance alignment of short motifs, even if their mutual sequence similarity is only partial. ConBind improves the identification of conserved TFBSs by improving the alignment accuracy of TFBS families within orthologous DNA sequences. Functional validation of the Gfi1b + 13 enhancer reveals that ConBind identifies additional functionally important ETS binding sites that were missed by all other tested alignment tools. In addition to the analysis of known regulatory regions, our web tool is useful for the analysis of TFBSs on so far unknown DNA regions identified through ChIP-sequencing.
Collapse
Affiliation(s)
- Stefan H Lelieveld
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Judith Schütte
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK Klinik für Hämatologie, Universitätsklinik Essen 45147, Germany
| | - Maurits J J Dijkstra
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Punto Bawono
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Sarah J Kinston
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Jaap Heringa
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Nicola Bonzanni
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands Computational Cancer Biology Group, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands ENPICOM, Eindhoven 5632 CW, The Netherlands
| |
Collapse
|
10
|
Blatter RHE, Plasilova M, Wenzel F, Gokaslan ST, Terracciano L, Ashfaq R, Heinimann K. Somatic alterations in juvenile polyps from BMPR1A and SMAD4 mutation carriers. Genes Chromosomes Cancer 2015; 54:575-82. [PMID: 26171675 DOI: 10.1002/gcc.22270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 11/05/2022] Open
Abstract
Juvenile polyposis syndrome (JPS) is a rare autosomal dominant disorder predisposing to gastrointestinal hamartomatous polyps and cancer with a pathogenic SMAD4 or BMPR1A germline mutation (1st-hit) being identified in about 40-50% of patients. Little is known, however, about the occurrence and nature of somatic alterations (2nd-hit) in SMAD4-/BMPR1A-related juvenile polyps. In this study, we screened 25 polyps from three patients carrying either a pathogenic SMAD4 (c.1244-1247delACAG) or BMPR1A (c.583C>T; p.Gln195*) germline mutation for somatic alterations. The SMAD4-related polyps were also analyzed for SMAD4 protein expression by immunohistochemistry. Despite comprehensive screening for loss of heterozygosity (LOH), mutations in the coding sequence, chromosomal rearrangements, and promoter methylation, no somatic alterations could be identified in 14 SMAD4-related polyps. SMAD4 protein expression, however, was lost in 8 (57%) of 14 juvenile polyps with 6 showing concomitant loss in both, the epithelial and stromal, compartments. In the BMPR1A-related polyps, five out of nine (56%) displayed LOH. Further analysis of selected polyps revealed that LOH was gene copy number neutral and had occurred in the epithelial compartment. The heterogeneity of genetic mutations and protein expression levels indicates that different modes of gene inactivation can be operational in SMAD4- and BMPR1A-related polyp formation. Our observation, that about half of BMPR1A-related polyps displayed LOH, predominantly in the epithelial compartment, is compatible with BMPR1A acting as a tumour suppressor gene. Still, it remains to be determined whether juvenile polyp development generally requires loss of BMPR1A expression or, as observed in some SMAD4-related polyps, can occur despite normal protein expression.
Collapse
Affiliation(s)
- Robert H E Blatter
- Research Group Human Genomics, Department of Biomedicine, University of Basel, Basel, 4031, Switzerland
| | - Martina Plasilova
- Research Group Human Genomics, Department of Biomedicine, University of Basel, Basel, 4031, Switzerland.,Institut Für Klinische Genetik, Klinikum Stuttgart-Olgahospital, Stuttgart, 70174, Deutschland
| | - Friedel Wenzel
- Medical Genetics, University Hospital Basel, Basel, 4055, Switzerland
| | - Sefik T Gokaslan
- Department of Pathology, UT Southwestern Medical School, Dallas, TX
| | - Luigi Terracciano
- Department of Pathology, University Hospital Basel, Basel, 4003, Switzerland
| | | | - Karl Heinimann
- Research Group Human Genomics, Department of Biomedicine, University of Basel, Basel, 4031, Switzerland.,Medical Genetics, University Hospital Basel, Basel, 4055, Switzerland
| |
Collapse
|
11
|
SMAD4 gene promoter mutations in patients with thyroid tumors. Exp Mol Pathol 2015; 99:100-3. [PMID: 26079547 DOI: 10.1016/j.yexmp.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/12/2015] [Indexed: 01/11/2023]
Abstract
As a key component of the transforming growth factor beta (TGFB) pathway, which regulates the expression of thyroid-specific genes, tumor suppressor SMAD4 is crucial for thyroid development and function. Aberrant expression of SMAD4 in thyroid tumor tissue was reported and mutations affecting the coding region have been detected, but a potential role of mutations in SMAD4 gene regulatory regions remains unexplored. The aim of this study was to analyze SMAD4 gene promoters in thyroid tumors. A total of 76 thyroidectomy specimens were studied, including 42 malignant and 34 benign tumors. The presence of mutations in four SMAD4 gene promoters was analyzed in thyroid tumor tissue and peripheral blood by PCR and DNA sequencing. The expression and intracellular localization of endogenous SMAD4 protein in selected tumor samples was studied by immunostaining and confocal microscopy. Of three novel variants detected, two were within promoter A (-204T/C and -5C/T) and one in promoter D (-180delA). Unlike somatic mutations previously detected in the nearby region, germline mutation -180delA in promoter D doesn't appear to affect SMAD4 expression in the thyroid tumor tissue. However, all newly detected SMAD4 promoter variants affect predicted binding sites of transcription factors involved in cell cycle regulation and should be further characterized functionally. Although not directly involved in carcinogenesis, detected variants may alter SMAD4 transcriptional regulation to some extent. Considering that dosage dependence is of great importance for the role of SMAD4 protein as a tumor suppressor, potential clinical significance of SMAD4 gene promoter mutations is worth further investigation.
Collapse
|
12
|
Nikolic A, Cacev T, Aralica G, Hadzija MP, Kapitanovic S, Radojkovic D. Mononucleotide repeats in the SMAD4 gene promoter in colon carcinoma tissue of Croatian patients. Exp Mol Pathol 2015; 98:133-5. [DOI: 10.1016/j.yexmp.2015.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/27/2015] [Indexed: 01/18/2023]
|
13
|
Liu J, Du X, Zhou J, Pan Z, Liu H, Li Q. MicroRNA-26b functions as a proapoptotic factor in porcine follicular Granulosa cells by targeting Sma-and Mad-related protein 4. Biol Reprod 2014; 91:146. [PMID: 25395673 DOI: 10.1095/biolreprod.114.122788] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sma- and Mad-related protein 4 (SMAD4) is the central mediator of the transforming growth factor beta signaling pathway and is closely related to mammalian reproductive ability and the development of ovarian follicles. However, little is currently known about the role of SMAD4 in mammalian follicular granulosa cell (GC) apoptosis or its regulation by miRNAs. Here, we found that the porcine SMAD4 protein was expressed at high levels in GCs and oocytes from primary, preantral, and antral follicles, and only slightly expressed in theca cells; its expression level was down-regulated in apoptotic ovarian GCs, suggesting that SMAD4 may be involved in ovary development and selection. Overexpression and knockdown of SMAD4 increased the proliferation and apoptosis of cultured porcine GCs, respectively. In addition, the use of miRNA mimics and luciferase reporter assays revealed that miRNA-26b (miR-26b) functions as a proapoptotic factor in porcine follicular GCs by targeting the 3'-untranslated region of the SMAD4 gene. Overexpression of miR-26b in follicular GCs suppressed SMAD4 mRNA and protein levels, resulting in down-regulation of the antiapoptotic BCL-2 gene and the promotion of GC apoptosis. Furthermore, transforming growth factor beta 1 (TGF-beta1) down-regulates miR-26b expression in porcine GCs. Taken together, these data suggest that SMAD4 plays a critical role in porcine follicular GC apoptosis and follicular atresia and that miR-26b may have a proapoptotic role in GCs by regulating the expression of SMAD4 in the transforming growth factor beta signaling pathway.
Collapse
Affiliation(s)
- Jiying Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Jilong Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
14
|
Chen H, VanBuren V. A review of integration strategies to support gene regulatory network construction. ScientificWorldJournal 2013; 2012:435257. [PMID: 23365519 PMCID: PMC3543788 DOI: 10.1100/2012/435257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/25/2012] [Indexed: 12/23/2022] Open
Abstract
Gene regulatory network (GRN) construction is a central task of systems biology. Integration of different data sources to infer and construct GRNs is an important consideration for the success of this effort. In this paper, we will discuss distinctive strategies of data integration for GRN construction. Basically, the process of integration of different data sources is divided into two phases: the first phase is collection of the required data and the second phase is data processing with advanced algorithms to infer the GRNs. In this paper these two phases are called "structural integration" and "analytic integration," respectively. Compared with the nonintegration strategies, the integration strategies perform quite well and have better agreement with the experimental evidence.
Collapse
Affiliation(s)
- Hailin Chen
- Department of Medical Physiology, Texas A&M HSC College of Medicine, Temple, TX 76504, USA
| | | |
Collapse
|
15
|
Sun H, Guns T, Fierro AC, Thorrez L, Nijssen S, Marchal K. Unveiling combinatorial regulation through the combination of ChIP information and in silico cis-regulatory module detection. Nucleic Acids Res 2012; 40:e90. [PMID: 22422841 PMCID: PMC3384348 DOI: 10.1093/nar/gks237] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Computationally retrieving biologically relevant cis-regulatory modules (CRMs) is not straightforward. Because of the large number of candidates and the imperfection of the screening methods, many spurious CRMs are detected that are as high scoring as the biologically true ones. Using ChIP-information allows not only to reduce the regions in which the binding sites of the assayed transcription factor (TF) should be located, but also allows restricting the valid CRMs to those that contain the assayed TF (here referred to as applying CRM detection in a query-based mode). In this study, we show that exploiting ChIP-information in a query-based way makes in silico CRM detection a much more feasible endeavor. To be able to handle the large datasets, the query-based setting and other specificities proper to CRM detection on ChIP-Seq based data, we developed a novel powerful CRM detection method 'CPModule'. By applying it on a well-studied ChIP-Seq data set involved in self-renewal of mouse embryonic stem cells, we demonstrate how our tool can recover combinatorial regulation of five known TFs that are key in the self-renewal of mouse embryonic stem cells. Additionally, we make a number of new predictions on combinatorial regulation of these five key TFs with other TFs documented in TRANSFAC.
Collapse
Affiliation(s)
- Hong Sun
- Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|