1
|
Gan Y, Hao Q, Han T, Tong J, Yan Q, Zhong H, Gao B, Li Y, Xuan Z, Li P, Yao L, Xu Y, Jiang YZ, Shao ZM, Deng J, Chen J, Zhou X. Targeting BRIX1 via Engineered Exosomes Induces Nucleolar Stress to Suppress Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407370. [PMID: 39475053 DOI: 10.1002/advs.202407370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/16/2024] [Indexed: 12/19/2024]
Abstract
Elevated ribosome biogenesis correlates with the rapid growth and progression of cancer. Targeted blockade of ribosome biogenesis induces nucleolar stress, which preferentially leads to the elimination of malignant cells. In this study, it is reported that the nucleolar protein BRIX1 is a critical regulator for the homeostasis between ribosome biogenesis and p53 activation. BRIX1 facilitated the processing of pre-rRNA by supporting the formation of the PeBoW complex. In addition, BRIX1 prevented p53 activation in response to nucleolar stress by impairing the interactions between MDM2 and the ribosomal proteins, RPL5, and RPL11, thereby triggering the resistance of cancer cells to chemotherapy. Conversely, depletion of BRIX1 induced nucleolar stress, which in turn activated p53 through RPL5 and RPL11, consequently inhibiting the growth of tumors. Moreover, engineered exosomes are developed, which are surface-decorated with iRGD, a tumor-homing peptide, and loaded with siRNAs specific to BRIX1, for the treatment of cancer. iRGD-Exo-siBRIX1 significantly suppressed the growth of colorectal cancer and enhanced the efficacy of 5-FU chemotherapy in vivo. Overall, the study uncovers that BRIX1 functions as an oncoprotein to promote rRNA synthesis and dampen p53 activity, and also implies that targeted inhibition of BRIX1 via engineered exosomes can be a potent approach for cancer therapy.
Collapse
Affiliation(s)
- Yu Gan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Key laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Jing Tong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Qingya Yan
- Institutes of Health Central Plains, Xinxiang Key laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Hongguang Zhong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, 330006, P. R. China
| | - Bo Gao
- Umibio Co. Ltd., Shanghai, 201210, P. R. China
| | - Yanan Li
- Umibio Co. Ltd., Shanghai, 201210, P. R. China
| | | | - Pengfei Li
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Litong Yao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Yingying Xu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Yi-Zhou Jiang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Zhi-Ming Shao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, 330006, P. R. China
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P. R. China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
2
|
Fernández-Fernández J, Martín-Villanueva S, Perez-Fernandez J, de la Cruz J. The Role of Ribosomal Proteins eL15 and eL36 in the Early Steps of Yeast 60S Ribosomal Subunit Assembly. J Mol Biol 2023; 435:168321. [PMID: 37865285 DOI: 10.1016/j.jmb.2023.168321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Ribosomal proteins have important roles in maintaining the structure and function of mature ribosomes, but they also drive crucial rearrangement reactions during ribosome biogenesis. The contribution of most, but not all, ribosomal proteins to ribosome synthesis has been previously analyzed in the yeast Saccharomyces cerevisiae. Herein, we characterize the role of yeast eL15 during 60S ribosomal subunit formation. In vivo depletion of eL15 results in a shortage of 60S subunits and the appearance of half-mer polysomes. This is likely due to defective processing of the 27SA3 to the 27SBS pre-rRNA and impaired subsequent processing of both forms of 27SB pre-rRNAs to mature 25S and 5.8S rRNAs. Indeed, eL15 depletion leads to the efficient turnover of the de novo formed 27S pre-rRNAs. Additionally, depletion of eL15 blocks nucleocytoplasmic export of pre-60S particles. Moreover, we have analyzed the impact of depleting either eL15 or eL36 on the composition of early pre-60S particles, thereby revealing that the depletion of eL15 or eL36 not only affects each other's assembly into pre-60S particles but also that of neighboring ribosomal proteins, including eL8. These intermediates also lack most ribosome assembly factors required for 27SA3 and 27SB pre-rRNA processing, named A3- and B-factors, respectively. Importantly, our results recapitulate previous ones obtained upon eL8 depletion. We conclude that assembly of eL15, together with that of eL8 and eL36, is a prerequisite to shape domain I of 5.8S/25S rRNA within early pre-60S particles, through their binding to this rRNA domain and the recruitment of specific groups of assembly factors.
Collapse
Affiliation(s)
- José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain
| | - Jorge Perez-Fernandez
- Department of Biochemistry III, University of Regensburg, D-93051 Regensburg, Germany.
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain.
| |
Collapse
|
3
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Micic J, Rodríguez-Galán O, Babiano R, Fitzgerald F, Fernández-Fernández J, Zhang Y, Gao N, Woolford JL, de la Cruz J. Ribosomal protein eL39 is important for maturation of the nascent polypeptide exit tunnel and proper protein folding during translation. Nucleic Acids Res 2022; 50:6453-6473. [PMID: 35639884 PMCID: PMC9226512 DOI: 10.1093/nar/gkac366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
During translation, nascent polypeptide chains travel from the peptidyl transferase center through the nascent polypeptide exit tunnel (NPET) to emerge from 60S subunits. The NPET includes portions of five of the six 25S/5.8S rRNA domains and ribosomal proteins uL4, uL22, and eL39. Internal loops of uL4 and uL22 form the constriction sites of the NPET and are important for both assembly and function of ribosomes. Here, we investigated the roles of eL39 in tunnel construction, 60S biogenesis, and protein synthesis. We show that eL39 is important for proper protein folding during translation. Consistent with a delay in processing of 27S and 7S pre-rRNAs, eL39 functions in pre-60S assembly during middle nucleolar stages. Our biochemical assays suggest the presence of eL39 in particles at these stages, although it is not visualized in them by cryo-electron microscopy. This indicates that eL39 takes part in assembly even when it is not fully accommodated into the body of pre-60S particles. eL39 is also important for later steps of assembly, rotation of the 5S ribonucleoprotein complex, likely through long range rRNA interactions. Finally, our data strongly suggest the presence of alternative pathways of ribosome assembly, previously observed in the biogenesis of bacterial ribosomal subunits.
Collapse
Affiliation(s)
- Jelena Micic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Fiona Fitzgerald
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| | - Yunyang Zhang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
5
|
Substrates of the MAPK Slt2: Shaping Yeast Cell Integrity. J Fungi (Basel) 2022; 8:jof8040368. [PMID: 35448599 PMCID: PMC9031059 DOI: 10.3390/jof8040368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
The cell wall integrity (CWI) MAPK pathway of budding yeast Saccharomyces cerevisiae is specialized in responding to cell wall damage, but ongoing research shows that it participates in many other stressful conditions, suggesting that it has functional diversity. The output of this pathway is mainly driven by the activity of the MAPK Slt2, which regulates important processes for yeast physiology such as fine-tuning of signaling through the CWI and other pathways, transcriptional activation in response to cell wall damage, cell cycle, or determination of the fate of some organelles. To this end, Slt2 precisely phosphorylates protein substrates, modulating their activity, stability, protein interaction, and subcellular localization. Here, after recapitulating the methods that have been employed in the discovery of proteins phosphorylated by Slt2, we review the bona fide substrates of this MAPK and the growing set of candidates still to be confirmed. In the context of the complexity of MAPK signaling regulation, we discuss how Slt2 determines yeast cell integrity through phosphorylation of these substrates. Increasing data from large-scale analyses and the available methodological approaches pave the road to early identification of new Slt2 substrates and functions.
Collapse
|
6
|
Okuwaki M, Saito S, Hirawake-Mogi H, Nagata K. The interaction between nucleophosmin/NPM1 and the large ribosomal subunit precursors contribute to maintaining the nucleolar structure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118879. [PMID: 33039556 DOI: 10.1016/j.bbamcr.2020.118879] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/29/2022]
Abstract
Nucleoli are sites where both the large and small ribosomal subunits mature. Biochemical assays have suggested that a multivalent nucleolar protein, NPM1/nucleophosmin contributes to the formation of the outer layer of the nucleolus. Prior works show that NPM1 depletion disorganizes the nucleolar structure. However, the mechanism of how NPM1 regulates the nucleolar structure has been unknown. We demonstrated that NPM1 directly interacts with the large ribosomal subunits and maintains them in the nucleolus. Ectopically localized NPM1 efficiently recruits only the large ribosomal subunit precursors, while ectopically localized large ribosomal subunit by the ribosomal protein RPL4 efficiently recruits NPM1. These results suggest that the nucleolar localization of NPM1 and the large ribosomal subunit precursors are mutually dependent. Furthermore, proteomic and localization analyses suggest that NPM1 plays a crucial role in the accumulation of the late processing machinery of the large ribosomal subunits in the nucleolus. Our results suggest that NPM1 maintains the pre-ribosomes and assembly machinery in the nucleolus, which in turn determines the nucleolar volume.
Collapse
Affiliation(s)
- Mitsuru Okuwaki
- Department of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan.
| | - Shoko Saito
- Department of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Hiroko Hirawake-Mogi
- Department of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| |
Collapse
|
7
|
Sáez-Vásquez J, Delseny M. Ribosome Biogenesis in Plants: From Functional 45S Ribosomal DNA Organization to Ribosome Assembly Factors. THE PLANT CELL 2019; 31:1945-1967. [PMID: 31239391 PMCID: PMC6751116 DOI: 10.1105/tpc.18.00874] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/11/2023]
Abstract
The transcription of 18S, 5.8S, and 18S rRNA genes (45S rDNA), cotranscriptional processing of pre-rRNA, and assembly of mature rRNA with ribosomal proteins are the linchpins of ribosome biogenesis. In yeast (Saccharomyces cerevisiae) and animal cells, hundreds of pre-rRNA processing factors have been identified and their involvement in ribosome assembly determined. These studies, together with structural analyses, have yielded comprehensive models of the pre-40S and pre-60S ribosome subunits as well as the largest cotranscriptionally assembled preribosome particle: the 90S/small subunit processome. Here, we present the current knowledge of the functional organization of 45S rDNA, pre-rRNA transcription, rRNA processing activities, and ribosome assembly factors in plants, focusing on data from Arabidopsis (Arabidopsis thaliana). Based on yeast and mammalian cell studies, we describe the ribonucleoprotein complexes and RNA-associated activities and discuss how they might specifically affect the production of 40S and 60S subunits. Finally, we review recent findings concerning pre-rRNA processing pathways and a novel mechanism involved in a ribosome stress response in plants.
Collapse
Affiliation(s)
- Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Michel Delseny
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| |
Collapse
|
8
|
Espinar-Marchena F, Rodríguez-Galán O, Fernández-Fernández J, Linnemann J, de la Cruz J. Ribosomal protein L14 contributes to the early assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:4715-4732. [PMID: 29788267 PMCID: PMC5961077 DOI: 10.1093/nar/gky123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022] Open
Abstract
The contribution of most ribosomal proteins to ribosome synthesis has been quite well analysed in Saccharomyces cerevisiae. However, few yeast ribosomal proteins still await characterization. Herein, we show that L14, an essential 60S ribosomal protein, assembles in the nucleolus at an early stage into pre-60S particles. Depletion of L14 results in a deficit in 60S subunits and defective processing of 27SA2 and 27SA3 to 27SB pre-rRNAs. As a result, 27S pre-rRNAs are subjected to turnover and export of pre-60S particles is blocked. These phenotypes likely appear as the direct consequence of the reduced pre-60S particle association not only of L14 upon its depletion but also of a set of neighboring ribosomal proteins located at the solvent interface of 60S subunits and the adjacent region surrounding the polypeptide exit tunnel. These pre-60S intermediates also lack some essential trans-acting factors required for 27SB pre-rRNA processing but accumulate practically all factors required for processing of 27SA3 pre-rRNA. We have also analysed the functional interaction between the eukaryote-specific carboxy-terminal extensions of the neighboring L14 and L16 proteins. Our results indicate that removal of the most distal parts of these extensions cause slight translation alterations in mature 60S subunits.
Collapse
Affiliation(s)
- Francisco Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| | - Jan Linnemann
- Institut für Biochemie III, Universität Regensburg, 93053, Regensburg, Germany
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, Seville, Spain. Avda. Manuel Siurot, E-41013 Seville, Spain
| |
Collapse
|
9
|
Abetov DA, Kiyan VS, Zhylkibayev AA, Sarbassova DA, Alybayev SD, Spooner E, Song MS, Bersimbaev RI, Sarbassov DD. Formation of mammalian preribosomes proceeds from intermediate to composed state during ribosome maturation. J Biol Chem 2019; 294:10746-10757. [PMID: 31076509 DOI: 10.1074/jbc.ac119.008378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
In eukaryotes, ribosome assembly is a rate-limiting step in ribosomal biogenesis that takes place in a distinctive subnuclear organelle, the nucleolus. How ribosomes get assembled at the nucleolar site by forming initial preribosomal complexes remains poorly characterized. In this study, using several human and murine cell lines, we developed a method for isolation of native mammalian preribosomal complexes by lysing cell nuclei through mild sonication. A sucrose gradient fractionation of the nuclear lysate resolved several ribonucleoprotein (RNP) complexes containing rRNAs and ribosomal proteins. Characterization of the RNP complexes with MS-based protein identification and Northern blotting-based rRNA detection approaches identified two types of preribosomes we named here as intermediate preribosomes (IPRibs) and composed preribosome (CPRib). IPRib complexes comprised large preribosomes (105S to 125S in size) containing the rRNA modification factors and premature rRNAs. We further observed that a distinctive CPRib complex consists of an 85S preribosome assembled with mature rRNAs and a ribosomal biogenesis factor, Ly1 antibody-reactive (LYAR), that does not associate with premature rRNAs and rRNA modification factors. rRNA-labeling experiments uncovered that IPRib assembly precedes CPRib complex formation. We also found that formation of the preribosomal complexes is nutrient-dependent because the abundances of IPRib and CPRib decreased substantially when cells were either deprived of amino acids or exposed to an mTOR kinase inhibitor. These findings indicate that preribosomes form via dynamic and nutrient-dependent processing events and progress from an intermediate to a composed state during ribosome maturation.
Collapse
Affiliation(s)
- Danysh A Abetov
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Vladimir S Kiyan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Assylbek A Zhylkibayev
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Dilara A Sarbassova
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Sanzhar D Alybayev
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Min Sup Song
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Rakhmetkazhy I Bersimbaev
- Department of Natural Sciences, L. N. Gumilyov Eurasian National University, Nur-Sultan 010000, Kazakhstan, and
| | - Dos D Sarbassov
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030,; Department of Biology, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|
10
|
Zhou D, Zhu X, Zheng S, Tan D, Dong MQ, Ye K. Cryo-EM structure of an early precursor of large ribosomal subunit reveals a half-assembled intermediate. Protein Cell 2018; 10:120-130. [PMID: 29557065 PMCID: PMC6340896 DOI: 10.1007/s13238-018-0526-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/04/2018] [Indexed: 11/25/2022] Open
Abstract
Assembly of eukaryotic ribosome is a complicated and dynamic process that involves a series of intermediates. It is unknown how the highly intertwined structure of 60S large ribosomal subunits is established. Here, we report the structure of an early nucleolar pre-60S ribosome determined by cryo-electron microscopy at 3.7 Å resolution, revealing a half-assembled subunit. Domains I, II and VI of 25S/5.8S rRNA pack tightly into a native-like substructure, but domains III, IV and V are not assembled. The structure contains 12 assembly factors and 19 ribosomal proteins, many of which are required for early processing of large subunit rRNA. The Brx1-Ebp2 complex would interfere with the assembly of domains IV and V. Rpf1, Mak16, Nsa1 and Rrp1 form a cluster that consolidates the joining of domains I and II. Our structure reveals a key intermediate on the path to establishing the global architecture of 60S subunits.
Collapse
Affiliation(s)
- Dejian Zhou
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China.,National Institute of Biological Sciences, Beijing, 102206, China
| | - Xing Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sanduo Zheng
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Dan Tan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Keqiong Ye
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Key Laboratory of RNA Biology, Institute of Biophysics, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Chen W, Xie Z, Yang F, Ye K. Stepwise assembly of the earliest precursors of large ribosomal subunits in yeast. Nucleic Acids Res 2017; 45:6837-6847. [PMID: 28402444 PMCID: PMC5499802 DOI: 10.1093/nar/gkx254] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022] Open
Abstract
Small ribosomal subunits are co-transcriptionally assembled on the nascent precursor rRNA in Saccharomyces cerevisiae. It is unknown how the highly intertwined structure of 60S large ribosomal subunits is initially formed. Here, we affinity purified and analyzed a series of pre-60S particles assembled in vivo on plasmid-encoded pre-rRNA fragments of increasing lengths, revealing a spatiotemporal assembly map for 34 trans-acting assembly factors (AFs), 30 ribosomal proteins and 5S rRNA. The gradual association of AFs and ribosomal proteins with the pre-rRNA fragments strongly supports that the pre-60S is co-transcriptionally, rather than post-transcriptionally, assembled. The internal and external transcribed spacers ITS1, ITS2 and 3΄ ETS in pre-rRNA must be processed in pre-60S. We show that the processing machineries for ITS1 and ITS2 are primarily recruited by the 5΄ and 3΄ halves of pre-27S RNA, respectively. Nevertheless, processing of both ITS1 and ITS2 requires a complete 25S region. The 3΄ ETS plays a minor role in ribosome assembly, but is important for efficient rRNA processing and ribosome maturation. We also identified a distinct pre-60S state occurring before ITS2 processing. Our data reveal the elusive co-transcriptional assembly pathway of large ribosomal subunit.
Collapse
Affiliation(s)
- Wu Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.,National Institute of Biological Sciences, Beijing 102206, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhensheng Xie
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuquan Yang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiong Ye
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Konikkat S, Biedka S, Woolford JL. The assembly factor Erb1 functions in multiple remodeling events during 60S ribosomal subunit assembly in S. cerevisiae. Nucleic Acids Res 2017; 45:4853-4865. [PMID: 28115637 PMCID: PMC5416829 DOI: 10.1093/nar/gkw1361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/19/2017] [Indexed: 11/14/2022] Open
Abstract
A major gap in our understanding of ribosome assembly is knowing the precise function of each of the ∼200 assembly factors. The steps in subunit assembly in which these factors participate have been examined for the most part by depleting each protein from cells. Depletion of the assembly factor Erb1 prevents stable assembly of seven other interdependent assembly factors with pre-60S subunits, resulting in turnover of early preribosomes, before the ITS1 spacer can be removed from 27SA3 pre-rRNA. To investigate more specific functions of Erb1, we constructed eight internal deletions of 40-60 amino acid residues each, spanning the amino-terminal half of Erb1. The erb1Δ161-200 and erb1Δ201-245 deletion mutations block a later step than depletion of Erb1, namely cleavage of the C2 site that initiates removal of the ITS2 spacer. Two other remodeling events fail to occur in these erb1 mutants: association of twelve different assembly factors with domain V of 25S rRNA, including the neighborhood surrounding the peptidyl transferase center, and stable association of ribosomal proteins with rRNA surrounding the polypeptide exit tunnel. This suggests that successful initiation of construction of these functional centers is a checkpoint for committing to spacer removal.
Collapse
Affiliation(s)
- Salini Konikkat
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Stephanie Biedka
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, 616 Mellon Institute, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast. Biochem J 2017; 474:195-214. [PMID: 28062837 DOI: 10.1042/bcj20160516] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022]
Abstract
Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ∼76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly.
Collapse
|
14
|
Ozdian T, Holub D, Maceckova Z, Varanasi L, Rylova G, Rehulka J, Vaclavkova J, Slavik H, Moudry P, Znojek P, Stankova J, de Sanctis JB, Hajduch M, Dzubak P. Proteomic profiling reveals DNA damage, nucleolar and ribosomal stress are the main responses to oxaliplatin treatment in cancer cells. J Proteomics 2017; 162:73-85. [DOI: 10.1016/j.jprot.2017.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022]
|
15
|
Baßler J, Ahmed YL, Kallas M, Kornprobst M, Calviño FR, Gnädig M, Thoms M, Stier G, Ismail S, Kharde S, Castillo N, Griesel S, Bastuck S, Bradatsch B, Thomson E, Flemming D, Sinning I, Hurt E. Interaction network of the ribosome assembly machinery from a eukaryotic thermophile. Protein Sci 2017; 26:327-342. [PMID: 27863450 DOI: 10.1002/pro.3085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/24/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022]
Abstract
Ribosome biogenesis in eukaryotic cells is a highly dynamic and complex process innately linked to cell proliferation. The assembly of ribosomes is driven by a myriad of biogenesis factors that shape pre-ribosomal particles by processing and folding the ribosomal RNA and incorporating ribosomal proteins. Biochemical approaches allowed the isolation and characterization of pre-ribosomal particles from Saccharomyces cerevisiae, which lead to a spatiotemporal map of biogenesis intermediates along the path from the nucleolus to the cytoplasm. Here, we cloned almost the entire set (∼180) of ribosome biogenesis factors from the thermophilic fungus Chaetomium thermophilum in order to perform an in-depth analysis of their protein-protein interaction network as well as exploring the suitability of these thermostable proteins for structural studies. First, we performed a systematic screen, testing about 80 factors for crystallization and structure determination. Next, we performed a yeast 2-hybrid analysis and tested about 32,000 binary combinations, which identified more than 1000 protein-protein contacts between the thermophilic ribosome assembly factors. To exemplary verify several of these interactions, we performed biochemical reconstitution with the focus on the interaction network between 90S pre-ribosome factors forming the ctUTP-A and ctUTP-B modules, and the Brix-domain containing assembly factors of the pre-60S subunit. Our work provides a rich resource for biochemical reconstitution and structural analyses of the conserved ribosome assembly machinery from a eukaryotic thermophile.
Collapse
Affiliation(s)
- Jochen Baßler
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Yasar Luqman Ahmed
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Martina Kallas
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Markus Kornprobst
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Fabiola R Calviño
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Marén Gnädig
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Matthias Thoms
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Gunter Stier
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Sherif Ismail
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Satyavati Kharde
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Nestor Castillo
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Sabine Griesel
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Sonja Bastuck
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Bettina Bradatsch
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Emma Thomson
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Dirk Flemming
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Irmgard Sinning
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| | - Ed Hurt
- Biochemistry Center Heidelberg BZH, University of Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
16
|
Yabuki Y, Katayama M, Kodama Y, Sakamoto A, Yatsuhashi A, Funato K, Mizuta K. Arp2/3 complex and Mps3 are required for regulation of ribosome biosynthesis in the secretory stress response. Yeast 2017; 34:155-163. [PMID: 27862269 DOI: 10.1002/yea.3221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/18/2016] [Accepted: 11/03/2016] [Indexed: 11/11/2022] Open
Abstract
Secretory defects cause transcriptional repression of ribosome biogenesis in Saccharomyces cerevisiae. However, the molecular mechanism underlying secretory defect-induced transcriptional repression of ribosome biogenesis remains to be fully elucidated. In this study, we demonstrated that the Arp2/3 complex was required for reduction of ribosome protein gene expression in response to defective secretion by addition of tunicamycin. Two cmd1 mutants, cmd1-228 and cmd1-239 that cause mislocalization of calmodulin and defective mitotic spindle formation, respectively, failed to interact with Arc35, a component of the Arp2/3 complex. These mutants also caused defects in the reduction of ribosome protein gene expression induced by secretory blockade. A mutation in TUB4 (tub4-1), whose product has an essential function in microtubule organization, showed a similar response. In addition, we showed that the response to a secretory defect required SUN protein Mps3, which was localized at the nuclear envelope and involved in spindle pole body assembly. These results suggest that the Arp2/3 complex is required to transmit signals resulting from secretory blockade, and that the spindle pole body functions as a transit point from cytoplasm to Mps3 at the nuclear envelope. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yukari Yabuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Masako Katayama
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Yushi Kodama
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Akiko Sakamoto
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Ayumi Yatsuhashi
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Kouichi Funato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, 739-8528, Japan
| |
Collapse
|
17
|
Yang YT, Ting YH, Liang KJ, Lo KY. The Roles of Puf6 and Loc1 in 60S Biogenesis Are Interdependent, and Both Are Required for Efficient Accommodation of Rpl43. J Biol Chem 2016; 291:19312-23. [PMID: 27458021 DOI: 10.1074/jbc.m116.732800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 12/22/2022] Open
Abstract
Puf6 and Loc1 have two important functional roles in the cells, asymmetric mRNA distribution and ribosome biogenesis. Puf6 and Loc1 are localized predominantly in the nucleolus. They bind ASH1 mRNA, repress its translation, and facilitate the transport to the daughter cells. Asymmetric mRNA distribution is important for cell differentiation. Besides their roles in mRNA localization, Puf6 and Loc1 have been shown to be involved in 60S biogenesis. In puf6Δ or loc1Δ cells, pre-rRNA processing and 60S export are impaired and 60S subunits are underaccumulated. The functional studies of Puf6 and Loc1 have been focused on ASH1 mRNA pathway, but their roles in 60S biogenesis are still not clear. In this study, we found that Puf6 and Loc1 interact directly with each other and both proteins interact with the ribosomal protein Rpl43 (L43e). Notably, the roles of Puf6 and Loc1 in 60S biogenesis are interdependent, and both are required for efficient accommodation of Rpl43. Loc1 is further required to maintain the protein level of Rpl43. Additionally, the recruitment of Rpl43 is required for the release of Puf6 and Loc1. We propose that Puf6 and Loc1 facilitate Rpl43 loading and are sequentially released from 60S after incorporation of Rpl43 into ribosomes in yeast.
Collapse
Affiliation(s)
- Yi-Ting Yang
- From the Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Han Ting
- From the Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kei-Jen Liang
- From the Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Yin Lo
- From the Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
18
|
Espinar-Marchena FJ, Fernández-Fernández J, Rodríguez-Galán O, Fernández-Pevida A, Babiano R, de la Cruz J. Role of the yeast ribosomal protein L16 in ribosome biogenesis. FEBS J 2016; 283:2968-85. [PMID: 27374275 DOI: 10.1111/febs.13797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/02/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Most ribosomal proteins play essential roles in ribosome synthesis and function. In this study, we have analysed the contribution of yeast ribosomal protein L16 to ribosome biogenesis. We show that in vivo depletion of the essential L16 protein results in a deficit in 60S subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability and rapid turnover of early and intermediate pre-60S particles, as evidenced by the reduced steady-state levels of 27SBS and 7SL /S pre-rRNA, and the low amounts of de novo synthesized 27S pre-rRNA and 25S rRNA. Additionally, depletion of L16 blocks nucleocytoplasmic export of pre-60S particles. Moreover, we show that L16 assembles in the nucleolus and binds to early 90S preribosomal particles. Many evolutionarily conserved ribosomal proteins possess extra eukaryote-specific amino- or carboxy-terminal extensions and/or internal loops. Here, we have also investigated the role of the eukaryote-specific carboxy-terminal extension of L16. Progressive truncation of this extension recapitulates, albeit to a lesser extent, the growth and ribosome biogenesis defects of the L16 depletion. We conclude that L16 assembly is a prerequisite to properly stabilize rRNA structures within early pre-60S particles, thereby favouring efficient 27S pre-rRNA processing within the internal transcribed spacer 1 at sites A3 and B1 . Upon depletion of L16, the lack of this stabilization aborts early pre-60S particle assembly and subjects these intermediates to turnover.
Collapse
Affiliation(s)
- Francisco J Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - José Fernández-Fernández
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Olga Rodríguez-Galán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Antonio Fernández-Pevida
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Genética, Universidad de Sevilla, Spain
| |
Collapse
|
19
|
Talkish J, Biedka S, Jakovljevic J, Zhang J, Tang L, Strahler JR, Andrews PC, Maddock JR, Woolford JL. Disruption of ribosome assembly in yeast blocks cotranscriptional pre-rRNA processing and affects the global hierarchy of ribosome biogenesis. RNA (NEW YORK, N.Y.) 2016; 22:852-66. [PMID: 27036125 PMCID: PMC4878612 DOI: 10.1261/rna.055780.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/18/2016] [Indexed: 05/11/2023]
Abstract
In higher eukaryotes, pre-rRNA processing occurs almost exclusively post-transcriptionally. This is not the case in rapidly dividing yeast, as the majority of nascent pre-rRNAs are processed cotranscriptionally, with cleavage at the A2 site first releasing a pre-40S ribosomal subunit followed by release of a pre-60S ribosomal subunit upon transcription termination. Ribosome assembly is driven in part by hierarchical association of assembly factors and r-proteins. Groups of proteins are thought to associate with pre-ribosomes cotranscriptionally during early assembly steps, whereas others associate later, after transcription is completed. Here we describe a previously uncharacterized phenotype observed upon disruption of ribosome assembly, in which normally late-binding proteins associate earlier, with pre-ribosomes containing 35S pre-rRNA. As previously observed by many other groups, we show that disruption of 60S subunit biogenesis results in increased amounts of 35S pre-rRNA, suggesting that a greater fraction of pre-rRNAs are processed post-transcriptionally. Surprisingly, we found that early pre-ribosomes containing 35S pre-rRNA also contain proteins previously thought to only associate with pre-ribosomes after early pre-rRNA processing steps have separated maturation of the two subunits. We believe the shift to post-transcriptional processing is ultimately due to decreased cellular division upon disruption of ribosome assembly. When cells are grown under stress or to high density, a greater fraction of pre-rRNAs are processed post-transcriptionally and follow an alternative processing pathway. Together, these results affirm the principle that ribosome assembly occurs through different, parallel assembly pathways and suggest that there is a kinetic foot-race between the formation of protein binding sites and pre-rRNA processing events.
Collapse
Affiliation(s)
- Jason Talkish
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Stephanie Biedka
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jelena Jakovljevic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jingyu Zhang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Lan Tang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - John R Strahler
- Department of Biological Chemistry, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Philip C Andrews
- Department of Biological Chemistry, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Janine R Maddock
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John L Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA The Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
20
|
Wan K, Kawara H, Yamamoto T, Kume K, Yabuki Y, Goshima T, Kitamura K, Ueno M, Kanai M, Hirata D, Funato K, Mizuta K. The essential function of Rrs1 in ribosome biogenesis is conserved in budding and fission yeasts. Yeast 2015; 32:607-14. [PMID: 26122634 DOI: 10.1002/yea.3083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/24/2022] Open
Abstract
The Rrs1 protein plays an essential role in the biogenesis of 60S ribosomal subunits in budding yeast (Saccharomyces cerevisiae). Here, we examined whether the fission yeast (Schizosaccharomyces pombe) homologue of Rrs1 also plays a role in ribosome biogenesis. To this end, we constructed two temperature-sensitive fission yeast strains, rrs1-D14/22G and rrs1-L51P, which had amino acid substitutions corresponding to those of the previously characterized budding yeast rrs1-84 (D22/30G) and rrs1-124 (L61P) strains, respectively. The fission yeast mutants exhibited severe defects in growth and 60S ribosomal subunit biogenesis at high temperatures. In addition, expression of the Rrs1 protein of fission yeast suppressed the growth defects of the budding yeast rrs1 mutants at high temperatures. Yeast two-hybrid analyses revealed that the interactions of Rrs1 with the Rfp2 and Ebp2 proteins were conserved in budding and fission yeasts. These results suggest that the essential function of Rrs1 in ribosome biogenesis may be conserved in budding and fission yeasts.
Collapse
Affiliation(s)
- Kun Wan
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Haruka Kawara
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Tomoyuki Yamamoto
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Kazunori Kume
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan
| | - Yukari Yabuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Tetsuya Goshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan.,National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Kenji Kitamura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan
| | - Masaru Ueno
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan
| | - Muneyoshi Kanai
- National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Dai Hirata
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan.,Asahi-shuzo Sake Brewing Co. Ltd, Niigata, Japan
| | - Kouichi Funato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Japan
| |
Collapse
|
21
|
McCann KL, Charette JM, Vincent NG, Baserga SJ. A protein interaction map of the LSU processome. Genes Dev 2015; 29:862-75. [PMID: 25877921 PMCID: PMC4403261 DOI: 10.1101/gad.256370.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/04/2015] [Indexed: 01/12/2023]
Abstract
Maturation of the large ribosomal subunit (LSU) in eukaryotes is a complex and highly coordinated process that requires the concerted action of a large, dynamic, ribonucleoprotein complex, the LSU processome. To interrogate its organization and architecture, McCann et al. assayed 4800 protein–protein interactions and identified 232 high-confidence, binary-interacting protein pairs, representing a fourfold increase from current knowledge. The resulting LSU processome interactome map enhances our understanding of the organization and function of the biogenesis factors within the LSU processome. Maturation of the large ribosomal subunit (LSU) in eukaryotes is a complex and highly coordinated process that requires the concerted action of a large, dynamic, ribonucleoprotein complex, the LSU processome. While we know that >80 ribosome biogenesis factors are required throughout the course of LSU assembly, little is known about how these factors interact with each other within the LSU processome. To interrogate its organization and architecture, we took a systems biology approach and performed a semi-high-throughput, array-based, directed yeast two-hybrid assay. Assaying 4800 protein–protein interactions, we identified 232 high-confidence, binary-interacting protein pairs, representing a fourfold increase from current knowledge. The resulting LSU processome interactome map has enhanced our understanding of the organization and function of the biogenesis factors within the LSU processome, revealing both novel and previously identified subcomplexes and hub proteins, including Nop4.
Collapse
Affiliation(s)
- Kathleen L McCann
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - J Michael Charette
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Nicholas G Vincent
- Department of Microbiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Susan J Baserga
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
22
|
Weis BL, Palm D, Missbach S, Bohnsack MT, Schleiff E. atBRX1-1 and atBRX1-2 are involved in an alternative rRNA processing pathway in Arabidopsis thaliana. RNA (NEW YORK, N.Y.) 2015; 21:415-25. [PMID: 25605960 PMCID: PMC4338337 DOI: 10.1261/rna.047563.114] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/08/2014] [Indexed: 05/19/2023]
Abstract
Ribosome biogenesis is an essential process in all organisms. In eukaryotes, multiple ribosome biogenesis factors (RBFs) act in the processing of ribosomal (r)RNAs, assembly of ribosomal subunits and their export to the cytoplasm. We characterized two genes in Arabidopsis thaliana coding for orthologs of yeast BRX1, a protein involved in maturation of the large ribosomal subunit. Both atBRX1 proteins, encoded by AT3G15460 and AT1G52930, respectively, are mainly localized in the nucleolus and are ubiquitously expressed throughout plant development and in various tissues. Mutant plant lines for both factors show a delay in development and pointed leaves can be observed in the brx1-2 mutant, implying a link between ribosome biogenesis and plant development. In addition, the pre-rRNA processing is affected in both mutants. Analysis of the pre-rRNA intermediates revealed that early processing steps can occur either in the 5' external transcribed spacer (ETS) or internal transcribed spacer 1 (ITS1). Interestingly, we also find that in xrn2 mutants, early processing events can be bypassed and removal of the 5' ETS is initiated by cleavage at the P' processing site. While the pathways of pre-rRNA processing are comparable to those of yeast and mammalian cells, the balance between the two processing pathways is different in plants. Furthermore, plant-specific steps such as an additional processing site in the 5' ETS, likely post-transcriptional processing of the early cleavage sites and accumulation of a 5' extended 5.8S rRNA not observed in other eukaryotes can be detected.
Collapse
Affiliation(s)
- Benjamin L Weis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt/Main, Germany
| | - Denise Palm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt/Main, Germany
| | - Sandra Missbach
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt/Main, Germany
| | - Markus T Bohnsack
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt/Main, Germany Institute for Molecular Biology, Georg-August University, 37073 Göttingen, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438 Frankfurt/Main, Germany Cluster of Excellence Frankfurt, Goethe University, 60438 Frankfurt/Main, Germany Center of Membrane Proteomics, Goethe University, 60438 Frankfurt/Main, Germany
| |
Collapse
|
23
|
Roles of Ebp2 and ribosomal protein L36 in ribosome biogenesis in Saccharomyces cerevisiae. Curr Genet 2014; 61:31-41. [PMID: 25119672 DOI: 10.1007/s00294-014-0442-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/10/2014] [Accepted: 07/29/2014] [Indexed: 01/08/2023]
Abstract
Ebp2 plays an essential role in biogenesis of 60S ribosomal subunits. We determined the genetic interactions between EBP2 and RPL36A/B, which encodes ribosomal protein L36a/b. RPL36A/B was a multicopy suppressor to ebp2 mutants, and the suppression was not common to defects in ribosome biogenesis resulting from other mutations of assembly factors. Disruption of RPL36A or RPL36B caused synthetic enhancement of the growth defect of the ebp2-14 allele at high temperatures. Disruption of RPL36B led to a more severe growth defect than that of RPL36A due to imbalances in the expression levels of the duplicated genes. Primer-extension analysis revealed that L36a/b is required for the processing of 27SA2, 27SA3, and 27SBL pre-rRNAs. Two-hybrid analysis indicated that Ebp2 interacts with ribosomal proteins L36a/b, L34a/b, and L8, which in mature ribosomes are located adjacent to each other in close proximity to the 3' end of 5.8S rRNA. These results suggest that Ebp2 functions cooperatively with ribosomal proteins L36, L34, and L8 in biogenesis of the 60S ribosomal subunit.
Collapse
|
24
|
Nα-Acetyltransferase NatA Is Involved in Ribosome Synthesis inSaccharomyces cerevisiae. Biosci Biotechnol Biochem 2014; 77:631-8. [DOI: 10.1271/bbb.120860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Ribosome assembly factors Pwp1 and Nop12 are important for folding of 5.8S rRNA during ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 2014; 34:1863-77. [PMID: 24636992 DOI: 10.1128/mcb.01322-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous work from our lab suggests that a group of interdependent assembly factors (A(3) factors) is necessary to create early, stable preribosomes. Many of these proteins bind at or near internal transcribed spacer 2 (ITS2), but in their absence, ITS1 is not removed from rRNA, suggesting long-range communication between these two spacers. By comparing the nonessential assembly factors Nop12 and Pwp1, we show that misfolding of rRNA is sufficient to perturb early steps of biogenesis, but it is the lack of A(3) factors that results in turnover of early preribosomes. Deletion of NOP12 significantly inhibits 27SA(3) pre-rRNA processing, even though the A(3) factors are present in preribosomes. Furthermore, pre-rRNAs are stable, indicating that the block in processing is not sufficient to trigger turnover. This is in contrast to the absence of Pwp1, in which the A(3) factors are not present and pre-rRNAs are unstable. In vivo RNA structure probing revealed that the pre-rRNA processing defects are due to misfolding of 5.8S rRNA. In the absence of Nop12 and Pwp1, rRNA helix 5 is not stably formed. Interestingly, the absence of Nop12 results in the formation of an alternative yet unproductive helix 5 when cells are grown at low temperatures.
Collapse
|
26
|
A positive feedback loop between EBP2 and c-Myc regulates rDNA transcription, cell proliferation, and tumorigenesis. Cell Death Dis 2014; 5:e1032. [PMID: 24481446 PMCID: PMC4040698 DOI: 10.1038/cddis.2013.536] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/16/2013] [Accepted: 11/26/2013] [Indexed: 12/30/2022]
Abstract
The oncoprotein c-Myc is a key transcription factor with essential functions in the nucleolus (NO) to regulate ribosomal RNA (rRNA) synthesis, ribosome biogenesis, and cell proliferation. Yet, the mechanism that regulates the distribution and function of nucleolar c-Myc is still not completely understood. In this study, we identified nucleolar protein ENBA1 binding protein 2 (EBP2) as a novel functional binding partner of c-Myc. We found that coexpression of EBP2 markedly relocalized c-Myc from the nucleus to the NO, whereas depletion of EBP2 reduced the nucleolar distribution of c-Myc. Further study indicated that EBP2 is a direct binding partner of c-Myc and can block the degradation of c-Myc in a FBW7 (F-box and WD repeat domain containing 7)-independent manner. Moreover, EBP2 is a transcriptional target of c-Myc. c-Myc can bind to the promoter of EBP2 and positively regulate the EBP2 expression. Both protein and mRNA levels of EBP2 are upregulated in lung cancer samples and positively correlated with c-Myc expression. Functionally, EBP2 promotes c-Myc-mediated rRNA synthesis and cell proliferation. Collectively, our study indicates that EBP2 is a novel binding partner of c-Myc that regulates the function of nucleolar c-Myc, cell proliferation, and tumorigenesis via a positive feedback loop.
Collapse
|
27
|
Pratte D, Singh U, Murat G, Kressler D. Mak5 and Ebp2 act together on early pre-60S particles and their reduced functionality bypasses the requirement for the essential pre-60S factor Nsa1. PLoS One 2013; 8:e82741. [PMID: 24312670 PMCID: PMC3846774 DOI: 10.1371/journal.pone.0082741] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Ribosomes are the molecular machines that translate mRNAs into proteins. The synthesis of ribosomes is therefore a fundamental cellular process and consists in the ordered assembly of 79 ribosomal proteins (r-proteins) and four ribosomal RNAs (rRNAs) into a small 40S and a large 60S ribosomal subunit that form the translating 80S ribosomes. Most of our knowledge concerning this dynamic multi-step process comes from studies with the yeast Saccharomyces cerevisiae, which have shown that assembly and maturation of pre-ribosomal particles, as they travel from the nucleolus to the cytoplasm, relies on a multitude (>200) of biogenesis factors. Amongst these are many energy-consuming enzymes, including 19 ATP-dependent RNA helicases and three AAA-ATPases. We have previously shown that the AAA-ATPase Rix7 promotes the release of the essential biogenesis factor Nsa1 from late nucleolar pre-60S particles. Here we show that mutant alleles of genes encoding the DEAD-box RNA helicase Mak5, the C/D-box snoRNP component Nop1 and the rRNA-binding protein Nop4 bypass the requirement for Nsa1. Interestingly, dominant-negative alleles of RIX7 retain their phenotype in the absence of Nsa1, suggesting that Rix7 may have additional nuclear substrates besides Nsa1. Mak5 is associated with the Nsa1 pre-60S particle and synthetic lethal screens with mak5 alleles identified the r-protein Rpl14 and the 60S biogenesis factors Ebp2, Nop16 and Rpf1, which are genetically linked amongst each other. We propose that these 'Mak5 cluster' factors orchestrate the structural arrangement of a eukaryote-specific 60S subunit surface composed of Rpl6, Rpl14 and Rpl16 and rRNA expansion segments ES7L and ES39L. Finally, over-expression of Rix7 negatively affects growth of mak5 and ebp2 mutant cells both in the absence and presence of Nsa1, suggesting that Rix7, at least when excessively abundant, may act on structurally defective pre-60S subunits and may subject these to degradation.
Collapse
Affiliation(s)
- Dagmar Pratte
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ujjwala Singh
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Guillaume Murat
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dieter Kressler
- Unit of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
28
|
Dembowski JA, Ramesh M, McManus CJ, Woolford JL. Identification of the binding site of Rlp7 on assembling 60S ribosomal subunits in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2013; 19:1639-47. [PMID: 24129494 PMCID: PMC3884665 DOI: 10.1261/rna.041194.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Eukaryotic ribosome assembly requires over 200 assembly factors that facilitate rRNA folding, ribosomal protein binding, and pre-rRNA processing. One such factor is Rlp7, an essential RNA binding protein required for consecutive pre-rRNA processing steps for assembly of yeast 60S ribosomal subunits: exonucleolytic processing of 27SA3 pre-rRNA to generate the 5' end of 5.8S rRNA and endonucleolytic cleavage of the 27SB pre-rRNA to initiate removal of internal transcribed spacer 2 (ITS2). To better understand the functions of Rlp7 in 27S pre-rRNA processing steps, we identified where it crosslinks to pre-rRNA. We found that Rlp7 binds at the junction of ITS2 and the ITS2-proximal stem, between the 3' end of 5.8S rRNA and the 5' end of 25S rRNA. Consistent with Rlp7 binding to this neighborhood during assembly, two-hybrid and affinity copurification assays showed that Rlp7 interacts with other assembly factors that bind to or near ITS2 and the proximal stem. We used in vivo RNA structure probing to demonstrate that the proximal stem forms prior to Rlp7 binding and that Rlp7 binding induces RNA conformational changes in ITS2 that may chaperone rRNA folding and regulate 27S pre-rRNA processing. Our findings contradict the hypothesis that Rlp7 functions as a placeholder for ribosomal protein L7, from which Rlp7 is thought to have evolved in yeast. The binding site of Rlp7 is within eukaryotic-specific RNA elements, which are not found in bacteria. Thus, we propose that Rlp7 coevolved with these RNA elements to facilitate eukaryotic-specific functions in ribosome assembly and pre-rRNA processing.
Collapse
|
29
|
Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195:643-81. [PMID: 24190922 PMCID: PMC3813855 DOI: 10.1534/genetics.113.153197] [Citation(s) in RCA: 588] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
Collapse
Affiliation(s)
- John L. Woolford
- Department of Biological Sciences, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Susan J. Baserga
- Molecular Biophysics and Biochemistry, Genetics and Therapeutic Radiology, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
30
|
Gamalinda M, Jakovljevic J, Babiano R, Talkish J, de la Cruz J, Woolford JL. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing. Nucleic Acids Res 2012; 41:1965-83. [PMID: 23268442 PMCID: PMC3561946 DOI: 10.1093/nar/gks1272] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.
Collapse
Affiliation(s)
- Michael Gamalinda
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
31
|
Talkish J, Zhang J, Jakovljevic J, Horsey EW, Woolford JL. Hierarchical recruitment into nascent ribosomes of assembly factors required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res 2012; 40:8646-61. [PMID: 22735702 PMCID: PMC3458554 DOI: 10.1093/nar/gks609] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To better define the roles of assembly factors required for eukaryotic ribosome biogenesis, we have focused on one specific step in maturation of yeast 60 S ribosomal subunits: processing of 27SB pre-ribosomal RNA. At least 14 assembly factors, the 'B-factor' proteins, are required for this step. These include most of the major functional classes of assembly factors: RNA-binding proteins, scaffolding protein, DEAD-box ATPases and GTPases. We have investigated the mechanisms by which these factors associate with assembling ribosomes. Our data establish a recruitment model in which assembly of the B-factors into nascent ribosomes ultimately leads to the recruitment of the GTPase Nog2. A more detailed analysis suggests that this occurs in a hierarchical manner via two largely independent recruiting pathways that converge on Nog2. Understanding recruitment has allowed us to better determine the order of association of all assembly factors functioning in one step of ribosome assembly. Furthermore, we have identified a novel subcomplex composed of the B-factors Nop2 and Nip7. Finally, we identified a means by which this step in ribosome biogenesis is regulated in concert with cell growth via the TOR protein kinase pathway. Inhibition of TOR kinase decreases association of Rpf2, Spb4, Nog1 and Nog2 with pre-ribosomes.
Collapse
Affiliation(s)
- Jason Talkish
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|