1
|
Abrhámová K, Groušlová M, Valentová A, Hao X, Liu B, Převorovský M, Gahura O, Půta F, Sunnerhagen P, Folk P. Truncating the spliceosomal 'rope protein' Prp45 results in Htz1 dependent phenotypes. RNA Biol 2024; 21:1-17. [PMID: 38711165 PMCID: PMC11085953 DOI: 10.1080/15476286.2024.2348896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/13/2023] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.
Collapse
Affiliation(s)
- Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Martina Groušlová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Anna Valentová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| |
Collapse
|
2
|
Luo J, Cao J, Chen C, Xie H. Emerging role of RNA acetylation modification ac4C in diseases: Current advances and future challenges. Biochem Pharmacol 2023; 213:115628. [PMID: 37247745 DOI: 10.1016/j.bcp.2023.115628] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The oldest known highly conserved modification of RNA, N4-acetylcytidine, is widely distributed from archaea to eukaryotes and acts as a posttranscriptional chemical modification of RNA, contributing to the correct reading of specific nucleotide sequences during translation, stabilising mRNA and improving transcription efficiency. Yeast Kre33 and human NAT10, the only known authors of ac4C, modify tRNA with the help of the Tan1/THUMPD1 adapter to stabilise its structure. Currently, the mRNA for N4-acetylcytidine (ac4C), catalysed by NAT10 (N-acetyltransferase 10), has been implicated in a variety of human diseases, particularly cancer. This article reviews advances in the study of ac4C modification of RNA and the ac4C-related gene NAT10 in normal physiological cell development, cancer, premature disease and viral infection and discusses its therapeutic promise and future research challenges.
Collapse
Affiliation(s)
- Jie Luo
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jingsong Cao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Institute of Clinical Medicine, University of South China, Hengyang 421001, China
| | - Cong Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Haitao Xie
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Hori H. Transfer RNA Modification Enzymes with a Thiouridine Synthetase, Methyltransferase and Pseudouridine Synthase (THUMP) Domain and the Nucleosides They Produce in tRNA. Genes (Basel) 2023; 14:genes14020382. [PMID: 36833309 PMCID: PMC9957541 DOI: 10.3390/genes14020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
The existence of the thiouridine synthetase, methyltransferase and pseudouridine synthase (THUMP) domain was originally predicted by a bioinformatic study. Since the prediction of the THUMP domain more than two decades ago, many tRNA modification enzymes containing the THUMP domain have been identified. According to their enzymatic activity, THUMP-related tRNA modification enzymes can be classified into five types, namely 4-thiouridine synthetase, deaminase, methyltransferase, a partner protein of acetyltransferase and pseudouridine synthase. In this review, I focus on the functions and structures of these tRNA modification enzymes and the modified nucleosides they produce. Biochemical, biophysical and structural studies of tRNA 4-thiouridine synthetase, tRNA methyltransferases and tRNA deaminase have established the concept that the THUMP domain captures the 3'-end of RNA (in the case of tRNA, the CCA-terminus). However, in some cases, this concept is not simply applicable given the modification patterns observed in tRNA. Furthermore, THUMP-related proteins are involved in the maturation of other RNAs as well as tRNA. Moreover, the modified nucleosides, which are produced by the THUMP-related tRNA modification enzymes, are involved in numerous biological phenomena, and the defects of genes for human THUMP-related proteins are implicated in genetic diseases. In this review, these biological phenomena are also introduced.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
4
|
Xiong F, Ren JJ, Wang YY, Zhou Z, Qi HD, Otegui MS, Wang XL. An Arabidopsis Retention and Splicing complex regulates root and embryo development through pre-mRNA splicing. PLANT PHYSIOLOGY 2022; 190:621-639. [PMID: 35640107 PMCID: PMC9434225 DOI: 10.1093/plphys/kiac256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/08/2022] [Indexed: 05/30/2023]
Abstract
Pre-mRNA splicing is an important step in the posttranscriptional processing of transcripts and a key regulator of development. The heterotrimeric retention and splicing (RES) complex plays vital roles in the growth and development of yeast, zebrafish, and humans by mediating pre-mRNA splicing of multiple genes. However, whether the RES complex is conserved in plants and what specific functions it has remain unknown. In this study, we identified Arabidopsis (Arabidopsis thaliana) BUD13 (AtBUD13), GROWTH, DEVELOPMENT AND SPLICING 1 (GDS1), and DAWDLE (DDL) as the counterparts of the yeast RES complex subunits Bud site selection protein 13 (Bud13), U2 snRNP component Snu17 (Snu17), and Pre-mRNA leakage protein 1, respectively. Moreover, we showed that RES is an ancient complex evolutionarily conserved in eukaryotes. GDS1 directly interacts with both AtBUD13 and DDL in nuclear speckles. The BUD13 domain of AtBUD13 and the RNA recognition motif domain of GDS1 are necessary and sufficient for AtBUD13-GDS1 interaction. Mutants of AtBUD13, GDS1, and DDL failed to properly splice multiple genes involved in cell proliferation and showed defects in early embryogenesis and root development. In addition, we found that GDS1 and DDL interact, respectively, with the U2 small nuclear ribonucleoproteins auxiliary factor AtU2AF65B and the NineTeen Complex-related splicing factor SKIP, which are essential for early steps of spliceosome assembly and recognition of splice sites. Altogether, our work reveals that the Arabidopsis RES complex is important for root and early embryo development by modulating pre-mRNA splicing.
Collapse
Affiliation(s)
- Feng Xiong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Jing-Jing Ren
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Zhou Zhou
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Hao-Dong Qi
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
5
|
Mathlin J, Le Pera L, Colombo T. A Census and Categorization Method of Epitranscriptomic Marks. Int J Mol Sci 2020; 21:ijms21134684. [PMID: 32630140 PMCID: PMC7370119 DOI: 10.3390/ijms21134684] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few years, thorough investigation of chemical modifications operated in the cells on ribonucleic acid (RNA) molecules is gaining momentum. This new field of research has been dubbed “epitranscriptomics”, in analogy to best-known epigenomics, to stress the potential of ensembles of RNA modifications to constitute a post-transcriptional regulatory layer of gene expression orchestrated by writer, reader, and eraser RNA-binding proteins (RBPs). In fact, epitranscriptomics aims at identifying and characterizing all functionally relevant changes involving both non-substitutional chemical modifications and editing events made to the transcriptome. Indeed, several types of RNA modifications that impact gene expression have been reported so far in different species of cellular RNAs, including ribosomal RNAs, transfer RNAs, small nuclear RNAs, messenger RNAs, and long non-coding RNAs. Supporting functional relevance of this largely unknown regulatory mechanism, several human diseases have been associated directly to RNA modifications or to RBPs that may play as effectors of epitranscriptomic marks. However, an exhaustive epitranscriptome’s characterization, aimed to systematically classify all RNA modifications and clarify rules, actors, and outcomes of this promising regulatory code, is currently not available, mainly hampered by lack of suitable detecting technologies. This is an unfortunate limitation that, thanks to an unprecedented pace of technological advancements especially in the sequencing technology field, is likely to be overcome soon. Here, we review the current knowledge on epitranscriptomic marks and propose a categorization method based on the reference ribonucleotide and its rounds of modifications (“stages”) until reaching the given modified form. We believe that this classification scheme can be useful to coherently organize the expanding number of discovered RNA modifications.
Collapse
Affiliation(s)
- Julia Mathlin
- Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Correspondence: (J.M.); (L.L.P.); Tel.: +39-06-4991-0556 (L.L.P.)
| | - Loredana Le Pera
- CNR-Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy
- CNR-Institute of Molecular Biology and Pathology (IBPM), 00185 Rome, Italy;
- Correspondence: (J.M.); (L.L.P.); Tel.: +39-06-4991-0556 (L.L.P.)
| | - Teresa Colombo
- CNR-Institute of Molecular Biology and Pathology (IBPM), 00185 Rome, Italy;
| |
Collapse
|
6
|
Jin G, Xu M, Zou M, Duan S. The Processing, Gene Regulation, Biological Functions, and Clinical Relevance of N4-Acetylcytidine on RNA: A Systematic Review. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:13-24. [PMID: 32171170 PMCID: PMC7068197 DOI: 10.1016/j.omtn.2020.01.037] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/24/2022]
Abstract
N4-acetylcytidine (ac4C) is often considered to be a conservative, chemically modified nucleoside present on tRNA and rRNA. Recent studies have shown extensive ac4C modifications in human and yeast mRNAs. ac4C helps to correctly read codons during translation and improves translation efficiency and the stability of mRNA. At present, the research of ac4C involves a variety of detection methods. The formation of ac4C is closely related to N-acetyltransferase 10 (NAT10) and its helpers, such as putative tRNA acetyltransferase (TAN1) for tRNA ac4C and small nucleolar RNA (snoRNA) for rRNA ac4C. Also, ac4C is associated with the development, progression, and prognosis of a variety of human diseases. Here, we summarize the history of ac4C research and the detection technologies of ac4C. We then summarized the role and mechanism of ac4C in gene-expression regulation and demonstrated the relevance of ac4C to a variety of human diseases, especially cancer. Finally, we list the future challenges of the ac4C research and demonstrate a research strategy for the interactions among several abundant modified nucleosides on mRNA.
Collapse
Affiliation(s)
- Gehui Jin
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mengsha Zou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
7
|
Xiong F, Ren JJ, Yu Q, Wang YY, Kong LJ, Otegui MS, Wang XL. AtBUD13 affects pre-mRNA splicing and is essential for embryo development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:714-726. [PMID: 30720904 DOI: 10.1111/tpj.14268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 05/03/2023]
Abstract
Pre-mRNA splicing is an important step for gene expression regulation. Yeast Bud13p (bud-site selection protein 13) regulates the budding pattern and pre-mRNA splicing in yeast cells; however, no Bud13p homologs have been identified in plants. Here, we isolated two mutants that carry T-DNA insertions at the At1g31870 locus and shows early embryo lethality and seed abortion. At1g31870 encodes an Arabidopsis homolog of yeast Bud13p, AtBUD13. Although AtBUD13 homologs are widely distributed in eukaryotic organisms, phylogenetic analysis revealed that their protein domain organization is more complex in multicellular species. AtBUD13 is expressed throughout plant development including embryogenesis and AtBUD13 proteins is localized in the nucleus in Arabidopsis. RNA-seq analysis revealed that AtBUD13 mutation predominantly results in the intron retention, especially for shorter introns (≤100 bases). Within this group of genes, we identified 52 genes involved in embryogenesis, out of which 22 are involved in nucleic acid metabolism. Our results demonstrate that AtBUD13 plays critical roles in early embryo development by effecting pre-mRNA splicing.
Collapse
Affiliation(s)
- Feng Xiong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jing-Jing Ren
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Qin Yu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lan-Jing Kong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Marisa S Otegui
- Departments of Botany and Genetics, University of Wisconsin-Madison, Madison, 53706, USA
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, 53706, USA
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
8
|
Frankiw L, Majumdar D, Burns C, Vlach L, Moradian A, Sweredoski MJ, Baltimore D. BUD13 Promotes a Type I Interferon Response by Countering Intron Retention in Irf7. Mol Cell 2019; 73:803-814.e6. [DOI: 10.1016/j.molcel.2018.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/20/2018] [Accepted: 11/29/2018] [Indexed: 01/12/2023]
|
9
|
Abstract
A wide variety of factors are required for the conversion of pre-tRNA molecules into the mature tRNAs that function in translation. To identify factors influencing tRNA biogenesis, we previously performed a screen for strains carrying mutations that induce lethality when combined with a sup61-T47:2C allele, encoding a mutant form of [Formula: see text]. Analyzes of two complementation groups led to the identification of Tan1 as a protein involved in formation of the modified nucleoside N4-acetylcytidine (ac4C) in tRNA and Bud13 as a factor controlling the levels of ac4C by promoting TAN1 pre-mRNA splicing. Here, we describe the remaining complementation groups and show that they include strains with mutations in genes for known tRNA biogenesis factors that modify (DUS2, MOD5 and TRM1), transport (LOS1), or aminoacylate (SES1) [Formula: see text]. Other strains carried mutations in genes for factors involved in rRNA/mRNA synthesis (RPA49, RRN3 and MOT1) or magnesium uptake (ALR1). We show that mutations in not only DUS2, LOS1 and SES1 but also in RPA49, RRN3 and MOT1 cause a reduction in the levels of the altered [Formula: see text]. These results indicate that Rpa49, Rrn3 and Mot1 directly or indirectly influence [Formula: see text] biogenesis.
Collapse
Affiliation(s)
- Fu Xu
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Yang Zhou
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Anders S Byström
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | | |
Collapse
|
10
|
Fernandez JP, Moreno-Mateos MA, Gohr A, Miao L, Chan SH, Irimia M, Giraldez AJ. RES complex is associated with intron definition and required for zebrafish early embryogenesis. PLoS Genet 2018; 14:e1007473. [PMID: 29969449 PMCID: PMC6047831 DOI: 10.1371/journal.pgen.1007473] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/16/2018] [Accepted: 06/06/2018] [Indexed: 12/16/2022] Open
Abstract
Pre-mRNA splicing is a critical step of gene expression in eukaryotes. Transcriptome-wide splicing patterns are complex and primarily regulated by a diverse set of recognition elements and associated RNA-binding proteins. The retention and splicing (RES) complex is formed by three different proteins (Bud13p, Pml1p and Snu17p) and is involved in splicing in yeast. However, the importance of the RES complex for vertebrate splicing, the intronic features associated with its activity, and its role in development are unknown. In this study, we have generated loss-of-function mutants for the three components of the RES complex in zebrafish and showed that they are required during early development. The mutants showed a marked neural phenotype with increased cell death in the brain and a decrease in differentiated neurons. Transcriptomic analysis of bud13, snip1 (pml1) and rbmx2 (snu17) mutants revealed a global defect in intron splicing, with strong mis-splicing of a subset of introns. We found these RES-dependent introns were short, rich in GC and flanked by GC depleted exons, all of which are features associated with intron definition. Using these features, we developed and validated a predictive model that classifies RES dependent introns. Altogether, our study uncovers the essential role of the RES complex during vertebrate development and provides new insights into its function during splicing.
Collapse
Affiliation(s)
- Juan Pablo Fernandez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | | | - Andre Gohr
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Liyun Miao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Shun Hang Chan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST); Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Antonio J. Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, United States of America
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States of America
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, United States of America
| |
Collapse
|
11
|
Shreadah MA, El Moneam NMA, Al-Assar SA, Nabil-Adam A. Phytochemical and pharmacological screening of Sargassium vulgare from Suez Canal, Egypt. Food Sci Biotechnol 2018; 27:963-979. [PMID: 30263825 DOI: 10.1007/s10068-018-0323-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/03/2018] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Abstract
The current study investigates the phytochemical and pharmaceutical activities of Sargassium vulgare (SVE) collected from the Suez Canal. The prescreening using cytotoxicity was tested against hepatocellular carcinoma cell lines. Furthermore the SVE inhibit cell growth effectively with IC50 = 20.8 µg/ml. The pharmacological studies revealed high antioxidant capacity at all examined concentrations. On the meantime, anticancer assay carried out using tyrosine kinase (PTK) and sphingosine kinase 1 inhibitor screening assays revealed inhibition with 75.73 and 80.01%; respectively. Furthermore, the anti-inflammatory profiling revealed that the activities against COX1, COX2, IL6 and TNF were 77.39, 88.35, 75.38 and 71.24%; respectively. Additionally, the anti-Alzheimer results showed high activity at 1 mg with 76.33%. Finally the antiviral activities using reverse transcriptase inhibition assay give 92.24%. Consequently, it can be easily conclude that the SVE collected from the Suez Canal are excellent source of natural products for nutritional and pharmaceutical applications.
Collapse
Affiliation(s)
- Mohamed A Shreadah
- 1Marine Biotechnology and Natural Products Lab (MBNP), National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Nehad M Abd El Moneam
- 2Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Samy A Al-Assar
- 3Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Asmaa Nabil-Adam
- 1Marine Biotechnology and Natural Products Lab (MBNP), National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
12
|
Wang W, Chen J, Luo L, Li Y, Liu J, Zhang W. Effect of cadmium on kitl pre-mRNA alternative splicing in murine ovarian granulosa cells and its associated regulation by miRNAs. J Appl Toxicol 2017; 38:227-239. [DOI: 10.1002/jat.3516] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/11/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health; Fujian Medical University; Fuzhou Fujian China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health; Fujian Medical University; Fuzhou Fujian China
| | - Jie Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health; Fujian Medical University; Fuzhou Fujian China
| | - Lingfeng Luo
- Fujian Province Key Laboratory of Environment and Health, School of Public Health; Fujian Medical University; Fuzhou Fujian China
| | - Yuchen Li
- Fujian Province Key Laboratory of Environment and Health, School of Public Health; Fujian Medical University; Fuzhou Fujian China
| | - Jin Liu
- Fujian Province Key Laboratory of Environment and Health, School of Public Health; Fujian Medical University; Fuzhou Fujian China
| | - Wenchang Zhang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health; Fujian Medical University; Fuzhou Fujian China
- Fujian Province Key Laboratory of Environment and Cancer, School of Public Health; Fujian Medical University; Fuzhou Fujian China
| |
Collapse
|
13
|
Zhou Y, Johansson MJO. The pre-mRNA retention and splicing complex controls expression of the Mediator subunit Med20. RNA Biol 2017; 14:1411-1417. [PMID: 28277935 PMCID: PMC5711472 DOI: 10.1080/15476286.2017.1294310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The heterotrimeric pre-mRNA retention and splicing (RES) complex, consisting of Bud13p, Snu17p and Pml1p, promotes splicing and nuclear retention of a subset of intron-containing pre-mRNAs. Yeast cells deleted for individual RES genes show growth defects that are exacerbated at elevated temperatures. Although the growth phenotypes correlate to the splicing defects in the individual mutants, the underlying mechanism is unknown. Here, we show that the temperature sensitive (Ts) growth phenotype of bud13Δ and snu17Δ cells is a consequence of inefficient splicing of MED20 pre-mRNA, which codes for a subunit of the Mediator complex; a co-regulator of RNA polymerase II transcription. The MED20 pre-mRNA splicing defect is less pronounced in pml1Δ cells, explaining why they grow better than the other 2 RES mutants at elevated temperatures. Inactivation of the cytoplasmic nonsense-mediated mRNA decay (NMD) pathway in the RES mutants leads to accumulation of MED20 pre-mRNA, indicating that inefficient nuclear retention contributes to the growth defect. Further, the Ts phenotype of bud13Δ and snu17Δ cells is partially suppressed by the inactivation of NMD, showing that the growth defects are augmented by the presence of a functional NMD pathway. Collectively, our results demonstrate an important role of the RES complex in maintaining the Med20p levels.
Collapse
Affiliation(s)
- Yang Zhou
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Marcus J O Johansson
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b BRF Krutet , Norra Majorsgatan, Umeå , Sweden.,c University of Tartu, Institute of Technology , Nooruse, Tartu , Estonia
| |
Collapse
|
14
|
Sundararaman B, Zhan L, Blue SM, Stanton R, Elkins K, Olson S, Wei X, Van Nostrand EL, Pratt GA, Huelga SC, Smalec BM, Wang X, Hong EL, Davidson JM, Lécuyer E, Graveley BR, Yeo GW. Resources for the Comprehensive Discovery of Functional RNA Elements. Mol Cell 2016; 61:903-13. [PMID: 26990993 DOI: 10.1016/j.molcel.2016.02.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/18/2015] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Transcriptome-wide maps of RNA binding protein (RBP)-RNA interactions by immunoprecipitation (IP)-based methods such as RNA IP (RIP) and crosslinking and IP (CLIP) are key starting points for evaluating the molecular roles of the thousands of human RBPs. A significant bottleneck to the application of these methods in diverse cell lines, tissues, and developmental stages is the availability of validated IP-quality antibodies. Using IP followed by immunoblot assays, we have developed a validated repository of 438 commercially available antibodies that interrogate 365 unique RBPs. In parallel, 362 short-hairpin RNA (shRNA) constructs against 276 unique RBPs were also used to confirm specificity of these antibodies. These antibodies can characterize subcellular RBP localization. With the burgeoning interest in the roles of RBPs in cancer, neurobiology, and development, these resources are invaluable to the broad scientific community. Detailed information about these resources is publicly available at the ENCODE portal (https://www.encodeproject.org/).
Collapse
Affiliation(s)
- Balaji Sundararaman
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Stem Cell Program, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Lijun Zhan
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Stem Cell Program, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Rebecca Stanton
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Stem Cell Program, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Keri Elkins
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Stem Cell Program, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Sara Olson
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Xintao Wei
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Stem Cell Program, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Gabriel A Pratt
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Stem Cell Program, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Stephanie C Huelga
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Stem Cell Program, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Brendan M Smalec
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Xiaofeng Wang
- Département de Biochimie, Université de Montréal; Division of Experimental Medicine, McGill University; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Eurie L Hong
- ENCODE Data Coordinating Center (DCC), Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jean M Davidson
- ENCODE Data Coordinating Center (DCC), Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric Lécuyer
- Département de Biochimie, Université de Montréal; Division of Experimental Medicine, McGill University; Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, Stem Cell Program, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Muppavarapu M, Huch S, Nissan T. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing. RNA Biol 2016; 13:455-65. [PMID: 26918764 DOI: 10.1080/15476286.2016.1154253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation.
Collapse
Affiliation(s)
- Mridula Muppavarapu
- a Department of Molecular Biology , Umeå University , SE-901 87 Umeå , Sweden
| | - Susanne Huch
- a Department of Molecular Biology , Umeå University , SE-901 87 Umeå , Sweden
| | - Tracy Nissan
- a Department of Molecular Biology , Umeå University , SE-901 87 Umeå , Sweden
| |
Collapse
|
16
|
Abstract
One of the great challenges to structural biologists lies in explaining the complexities of the spliceosome – a ribosome-sized molecular machine that is assembled in a step-wise manner and is responsible for pre-mRNA splicing. The spliceosome is both fascinating and difficult to work with, because of its dynamic nature. At each discrete step of splicing tens of proteins come and go orchestrating the functional transition through massive structural rearrangements. The retention and splicing complex (RES) is an important splicing factor interacting with pre-mRNA at the onset of the first transesterification reaction. RES is a specific splicing factor for a number of genes and is important for controlling pre-mRNA retention in the nucleus. RES is a 71 kDa heterotrimer composed of the 3 proteins Pml1p, Bud13p and Snu17p. We solved the 3-dimensional structure of the core of the RES complex as well as the 2 dimers, Snu17p-Bud13p and Snu17p-Pml1p. Further biophysical analysis revealed an astounding cooperativity that governs the assembly of this trimeric complex as well as its interaction with pre-mRNA. The more than 100-fold cooperativity originates from the progressive rigidification of Snu17p upon coupled binding-and-folding of protein regions, which are disordered in the unbound state. Our work highlights the role of cooperativity in the spliceosome and poses new questions about the structure and assembly of the spliceosome.
Collapse
Affiliation(s)
- Piotr Wysoczanski
- a Department for NMR-based Structural Biology ; Max Planck Institute for Biophysical Chemistry ; Am Fassberg 11, Göttingen , Germany
| | - Markus Zweckstetter
- a Department for NMR-based Structural Biology ; Max Planck Institute for Biophysical Chemistry ; Am Fassberg 11, Göttingen , Germany.,b German Center for Neurodegenerative Diseases (DZNE) ; Göttingen , Germany.,c Center for Nanoscale Microscopy and Molecular Physiology of the Brain; University Medical Center ; Göttingen , Germany
| |
Collapse
|
17
|
Schneider C, Agafonov DE, Schmitzová J, Hartmuth K, Fabrizio P, Lührmann R. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes. PLoS Genet 2015; 11:e1005539. [PMID: 26393790 PMCID: PMC4579134 DOI: 10.1371/journal.pgen.1005539] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/27/2015] [Indexed: 01/10/2023] Open
Abstract
Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast B(act) spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the B(act) crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25's step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing.
Collapse
Affiliation(s)
- Cornelius Schneider
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Dmitry E. Agafonov
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Klaus Hartmuth
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Patrizia Fabrizio
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | - Reinhard Lührmann
- Max Planck Institute for Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| |
Collapse
|
18
|
Abstract
The action of the spliceosome depends on the stepwise cooperative assembly and disassembly of its components. Very strong cooperativity was observed for the RES (Retention and Splicing) hetero-trimeric complex where the affinity from binary to tertiary interactions changes more than 100-fold and affects RNA binding. The RES complex is involved in splicing regulation and retention of not properly spliced pre-mRNA with its three components—Snu17p, Pml1p and Bud13p—giving rise to the two possible intermediate dimeric complexes Pml1p-Snu17p and Bud13p-Snu17p. Here we determined the three-dimensional structure and dynamics of the Pml1p-Snu17p and Bud13p-Snu17p dimers using liquid state NMR. We demonstrate that localized as well as global changes occur along the RES trimer assembly pathway. The stepwise rigidification of the Snu17p structure following the binding of Pml1p and Bud13p provides a basis for the strong cooperative nature of RES complex assembly.
Collapse
Affiliation(s)
- Piotr Wysoczanski
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Zweckstetter
- 1] Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany [2] German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany [3] Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center, 37073 Göttingen, Germany
| |
Collapse
|
19
|
Wysoczański P, Schneider C, Xiang S, Munari F, Trowitzsch S, Wahl MC, Lührmann R, Becker S, Zweckstetter M. Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex. Nat Struct Mol Biol 2014; 21:911-8. [PMID: 25218446 DOI: 10.1038/nsmb.2889] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/15/2014] [Indexed: 02/08/2023]
Abstract
The precursor mRNA (pre-mRNA) retention and splicing (RES) complex is a spliceosomal complex that is present in yeast and humans and is important for RNA splicing and retention of unspliced pre-mRNA. Here, we present the solution NMR structure of the RES core complex from Saccharomyces cerevisiae. Complex formation leads to an intricate folding of three components-Snu17p, Bud13p and Pml1p-that stabilizes the RNA-recognition motif (RRM) fold of Snu17p and increases binding affinity in tertiary interactions between the components by more than 100-fold compared to that in binary interactions. RES interacts with pre-mRNA within the spliceosome, and through the assembly of the RES core complex RNA binding efficiency is increased. The three-dimensional structure of the RES core complex highlights the importance of cooperative folding and binding in the functional organization of the spliceosome.
Collapse
Affiliation(s)
- Piotr Wysoczański
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Cornelius Schneider
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - ShengQi Xiang
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Francesca Munari
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Simon Trowitzsch
- 1] Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2]
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus Zweckstetter
- 1] Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2] German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany. [3] Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center, Göttingen, Germany
| |
Collapse
|
20
|
Tripsianes K, Friberg A, Barrandon C, Brooks M, van Tilbeurgh H, Seraphin B, Sattler M. A novel protein-protein interaction in the RES (REtention and Splicing) complex. J Biol Chem 2014; 289:28640-50. [PMID: 25160624 PMCID: PMC4192513 DOI: 10.1074/jbc.m114.592311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The retention and splicing (RES) complex is a conserved spliceosome-associated module that was shown to enhance splicing of a subset of transcripts and promote the nuclear retention of unspliced pre-mRNAs in yeast. The heterotrimeric RES complex is organized around the Snu17p protein that binds to both the Bud13p and Pml1p subunits. Snu17p exhibits an RRM domain that resembles a U2AF homology motif (UHM) and Bud13p harbors a Trp residue reminiscent of an UHM-ligand motif (ULM). It has therefore been proposed that the interaction between Snu17p and Bud13p resembles canonical UHM-ULM complexes. Here, we have used biochemical and NMR structural analysis to characterize the structure of the yeast Snu17p-Bud13p complex. Unlike known UHMs that sequester the Trp residue of the ULM ligand in a hydrophobic pocket, Snu17p and Bud13p utilize a large interaction surface formed around the two helices of the Snu17p domain. In total 18 residues of the Bud13p ligand wrap around the Snu17p helical surface in an U-turn-like arrangement. The invariant Trp232 in Bud13p is located in the center of the turn, and contacts surface residues of Snu17p. The structural data are supported by mutational analysis and indicate that Snu17p provides an extended binding surface with Bud13p that is notably distinct from canonical UHM-ULM interactions. Our data highlight structural diversity in RRM-protein interactions, analogous to the one seen for nucleic acid interactions.
Collapse
Affiliation(s)
- Konstantinos Tripsianes
- From the Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic,
| | - Anders Friberg
- the Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, the Center for Integrated Protein Science Munich and Chair of Biomolecular NMR, TU München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Charlotte Barrandon
- the Centre de Génétique Moléculaire, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Mark Brooks
- the University Paris-Sud, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR8619, F-91405 Orsay, France, and
| | - Herman van Tilbeurgh
- the University Paris-Sud, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR8619, F-91405 Orsay, France, and
| | - Bertrand Seraphin
- the Centre de Génétique Moléculaire, CNRS, Avenue de la Terrasse, 91198 Gif sur Yvette, France, the Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de Recherche Scientifique (CNRS) UMR 7104, Institut National de Santé et de Recherche Médicale (INSERM) U964, Université de Strasbourg, 67404 Illkirch, France
| | - Michael Sattler
- the Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, the Center for Integrated Protein Science Munich and Chair of Biomolecular NMR, TU München, Lichtenbergstr. 4, 85747 Garching, Germany,
| |
Collapse
|
21
|
Kawashima T, Douglass S, Gabunilas J, Pellegrini M, Chanfreau GF. Widespread use of non-productive alternative splice sites in Saccharomyces cerevisiae. PLoS Genet 2014; 10:e1004249. [PMID: 24722551 PMCID: PMC3983031 DOI: 10.1371/journal.pgen.1004249] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/04/2014] [Indexed: 01/22/2023] Open
Abstract
Saccharomyces cerevisiae has been used as a model system to investigate the mechanisms of pre-mRNA splicing but only a few examples of alternative splice site usage have been described in this organism. Using RNA-Seq analysis of nonsense-mediated mRNA decay (NMD) mutant strains, we show that many S. cerevisiae intron-containing genes exhibit usage of alternative splice sites, but many transcripts generated by splicing at these sites are non-functional because they introduce premature termination codons, leading to degradation by NMD. Analysis of splicing mutants combined with NMD inactivation revealed the role of specific splicing factors in governing the use of these alternative splice sites and identified novel functions for Prp17p in enhancing the use of branchpoint-proximal upstream 3′ splice sites and for Prp18p in suppressing the usage of a non-canonical AUG 3′-splice site in GCR1. The use of non-productive alternative splice sites can be increased in stress conditions in a promoter-dependent manner, contributing to the down-regulation of genes during stress. These results show that alternative splicing is frequent in S. cerevisiae but masked by RNA degradation and that the use of alternative splice sites in this organism is mostly aimed at controlling transcript levels rather than increasing proteome diversity. Accurate gene expression requires the transfer of gene information from DNA to RNA. When DNA is transcribed into RNA, part of the RNA needs to be removed (spliced) to generate a proper copy of the genetic information. This process needs to be very accurate to preserve the genetic information that will be transferred into proteins. Our study shows that in baker's yeast, the splicing process does not always produce the correctly spliced products, as RNA splicing events frequently utilize incorrect splice sites. However, these deficient RNA molecules are eliminated from cells by a quality control mechanism to preserve the integrity of the genetic information. However, incorrect splicing is not useless, as it can be used to regulate the quantity of RNA that is generated.
Collapse
Affiliation(s)
- Tadashi Kawashima
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
| | - Stephen Douglass
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, California, United States of America
| | - Jason Gabunilas
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cellular and Developmental Biology, UCLA, Los Angeles, California, United States of America
| | - Guillaume F. Chanfreau
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|