1
|
Duan B, Qiu C, Sze SH, Kaplan C. Widespread epistasis shapes RNA Polymerase II active site function and evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.02.27.530048. [PMID: 36909581 PMCID: PMC10002619 DOI: 10.1101/2023.02.27.530048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Multi-subunit RNA Polymerases (msRNAPs) are responsible for transcription in all kingdoms of life. These enzymes rely on dynamic, highly conserved active site domains such as the so-called "trigger loop" (TL) to accomplish steps in the transcription cycle. Mutations in the RNA polymerase II (Pol II) TL confer a spectrum of biochemical and genetic phenotypes that suggest two main classes, which decrease or increase catalysis or other nucleotide addition cycle (NAC) events. The Pol II active site relies on networks of residue interactions to function and mutations likely perturb these networks in ways that may alter mechanisms. We have undertaken a structural genetics approach to reveal residue interactions within and surrounding the Pol II TL - determining its "interaction landscape" - by deep mutational scanning in Saccharomyces cerevisiae Pol II. This analysis reveals connections between TL residues and surrounding domains, demonstrating that TL function is tightly coupled to its specific enzyme context.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2025; 437:168770. [PMID: 39214283 PMCID: PMC11781076 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
3
|
Duan B, Qiu C, Lockless SW, Sze SH, Kaplan CD. Higher-order epistasis within Pol II trigger loop haplotypes. Genetics 2024; 228:iyae172. [PMID: 39446980 PMCID: PMC11631520 DOI: 10.1093/genetics/iyae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024] Open
Abstract
RNA polymerase II (Pol II) has a highly conserved domain, the trigger loop (TL), that controls transcription fidelity and speed. We previously probed pairwise genetic interactions between residues within and surrounding the TL for the purpose of understand functional interactions between residues and to understand how individual mutants might alter TL function. We identified widespread incompatibility between TLs of different species when placed in the Saccharomyces cerevisiae Pol II context, indicating species-specific interactions between otherwise highly conserved TLs and its surroundings. These interactions represent epistasis between TL residues and the rest of Pol II. We sought to understand why certain TL sequences are incompatible with S. cerevisiae Pol II and to dissect the nature of genetic interactions within multiply substituted TLs as a window on higher order epistasis in this system. We identified both positive and negative higher-order residue interactions within example TL haplotypes. Intricate higher-order epistasis formed by TL residues was sometimes only apparent from analysis of intermediate genotypes, emphasizing complexity of epistatic interactions. Furthermore, we distinguished TL substitutions with distinct classes of epistatic patterns, suggesting specific TL residues that potentially influence TL evolution. Our examples of complex residue interactions suggest possible pathways for epistasis to facilitate Pol II evolution.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - Steve W Lockless
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Duan B, Qiu C, Lockless SW, Sze SH, Kaplan CD. Higher-order epistasis within Pol II trigger loop haplotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576280. [PMID: 38293233 PMCID: PMC10827151 DOI: 10.1101/2024.01.20.576280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
RNA polymerase II (Pol II) has a highly conserved domain, the trigger loop (TL), that controls transcription fidelity and speed. We previously probed pairwise genetic interactions between residues within and surrounding the TL for the purpose of understand functional interactions between residues and to understand how individual mutants might alter TL function. We identified widespread incompatibility between TLs of different species when placed in the Saccharomyces cerevisiae Pol II context, indicating species-specific interactions between otherwise highly conserved TLs and its surroundings. These interactions represent epistasis between TL residues and the rest of Pol II. We sought to understand why certain TL sequences are incompatible with S. cerevisiae Pol II and to dissect the nature of genetic interactions within multiply substituted TLs as a window on higher order epistasis in this system. We identified both positive and negative higher-order residue interactions within example TL haplotypes. Intricate higher-order epistasis formed by TL residues was sometimes only apparent from analysis of intermediate genotypes, emphasizing complexity of epistatic interactions. Furthermore, we distinguished TL substitutions with distinct classes of epistatic patterns, suggesting specific TL residues that potentially influence TL evolution. Our examples of complex residue interactions suggest possible pathways for epistasis to facilitate Pol II evolution.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Steve W Lockless
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Texas A&M University, College Station, TX 77843
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
5
|
Ye J, Kan CH, Yang X, Ma C. Inhibition of bacterial RNA polymerase function and protein-protein interactions: a promising approach for next-generation antibacterial therapeutics. RSC Med Chem 2024; 15:1471-1487. [PMID: 38784472 PMCID: PMC11110800 DOI: 10.1039/d3md00690e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
The increasing prevalence of multidrug-resistant pathogens necessitates the urgent development of new antimicrobial agents with innovative modes of action for the next generation of antimicrobial therapy. Bacterial transcription has been identified and widely studied as a viable target for antimicrobial development. The main focus of these studies has been the discovery of inhibitors that bind directly to the core enzyme of RNA polymerase (RNAP). Over the past two decades, substantial advancements have been made in understanding the properties of protein-protein interactions (PPIs) and gaining structural insights into bacterial RNAP and its associated factors. This has led to the crucial role of computational methods in aiding the identification of new PPI inhibitors to affect the RNAP function. In this context, bacterial transcriptional PPIs present promising, albeit challenging, targets for the creation of new antimicrobials. This review will succinctly outline the structural foundation of bacterial transcription networks and provide a summary of the known small molecules that target transcription PPIs.
Collapse
Affiliation(s)
- Jiqing Ye
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei 230032 China
| | - Cheuk Hei Kan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital Shatin Hong Kong SAR China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| |
Collapse
|
6
|
Unarta IC, Goonetilleke EC, Wang D, Huang X. Nucleotide addition and cleavage by RNA polymerase II: Coordination of two catalytic reactions using a single active site. J Biol Chem 2022; 299:102844. [PMID: 36581202 PMCID: PMC9860460 DOI: 10.1016/j.jbc.2022.102844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
RNA polymerase II (Pol II) incorporates complementary ribonucleotides into the growing RNA chain one at a time via the nucleotide addition cycle. The nucleotide addition cycle, however, is prone to misincorporation of noncomplementary nucleotides. Thus, to ensure transcriptional fidelity, Pol II backtracks and then cleaves the misincorporated nucleotides. These two reverse reactions, nucleotide addition and cleavage, are catalyzed in the same active site of Pol II, which is different from DNA polymerases or other endonucleases. Recently, substantial progress has been made to understand how Pol II effectively performs its dual role in the same active site. Our review highlights these recent studies and provides an overall model of the catalytic mechanisms of Pol II. In particular, RNA extension follows the two-metal-ion mechanism, and several Pol II residues play important roles to facilitate the catalysis. In sharp contrast, the cleavage reaction is independent of any Pol II residues. Interestingly, Pol II relies on its residues to recognize the misincorporated nucleotides during the backtracking process, prior to cleavage. In this way, Pol II efficiently compartmentalizes its two distinct catalytic functions using the same active site. Lastly, we also discuss a new perspective on the potential third Mg2+ in the nucleotide addition and intrinsic cleavage reactions.
Collapse
Affiliation(s)
- Ilona Christy Unarta
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eshani C Goonetilleke
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| | - Xuhui Huang
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
7
|
Pilotto S, Fouqueau T, Lukoyanova N, Sheppard C, Lucas-Staat S, Díaz-Santín LM, Matelska D, Prangishvili D, Cheung ACM, Werner F. Structural basis of RNA polymerase inhibition by viral and host factors. Nat Commun 2021; 12:5523. [PMID: 34535646 PMCID: PMC8448823 DOI: 10.1038/s41467-021-25666-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
RNA polymerase inhibition plays an important role in the regulation of transcription in response to environmental changes and in the virus-host relationship. Here we present the high-resolution structures of two such RNAP-inhibitor complexes that provide the structural bases underlying RNAP inhibition in archaea. The Acidianus two-tailed virus encodes the RIP factor that binds inside the DNA-binding channel of RNAP, inhibiting transcription by occlusion of binding sites for nucleic acid and the transcription initiation factor TFB. Infection with the Sulfolobus Turreted Icosahedral Virus induces the expression of the host factor TFS4, which binds in the RNAP funnel similarly to eukaryotic transcript cleavage factors. However, TFS4 allosterically induces a widening of the DNA-binding channel which disrupts trigger loop and bridge helix motifs. Importantly, the conformational changes induced by TFS4 are closely related to inactivated states of RNAP in other domains of life indicating a deep evolutionary conservation of allosteric RNAP inhibition.
Collapse
Affiliation(s)
- Simona Pilotto
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London, UK
| | - Thomas Fouqueau
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London, UK
| | - Natalya Lukoyanova
- Institute for Structural and Molecular Biology, Birkbeck College, London, UK
| | - Carol Sheppard
- Section of Virology, Department of Infectious disease, Imperial College London, London, UK
| | | | | | - Dorota Matelska
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London, UK
| | | | | | - Finn Werner
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
8
|
Wenck BR, Santangelo TJ. Archaeal transcription. Transcription 2020; 11:199-210. [PMID: 33112729 PMCID: PMC7714419 DOI: 10.1080/21541264.2020.1838865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Increasingly sophisticated biochemical and genetic techniques are unraveling the regulatory factors and mechanisms that control gene expression in the Archaea. While some similarities in regulatory strategies are universal, archaeal-specific regulatory strategies are emerging to complement a complex patchwork of shared archaeal-bacterial and archaeal-eukaryotic regulatory mechanisms employed in the archaeal domain. The prokaryotic archaea encode core transcription components with homology to the eukaryotic transcription apparatus and also share a simplified eukaryotic-like initiation mechanism, but also deploy tactics common to bacterial systems to regulate promoter usage and influence elongation-termination decisions. We review the recently established complete archaeal transcription cycle, highlight recent findings of the archaeal transcription community and detail the expanding post-initiation regulation imposed on archaeal transcription.
Collapse
Affiliation(s)
- Breanna R. Wenck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
9
|
Abstract
During transcription elongation at saturating nucleotide concentrations, RNA polymerase (RNAP) performs ∼50 nucleotide-addition cycles every second. The RNAP active center contains a structural element, termed the trigger loop (TL), that has been suggested, but not previously shown, to open to allow a nucleotide to enter and then to close to hold the nucleotide in each nucleotide-addition cycle. Here, using single-molecule fluorescence spectroscopy to monitor distances between a probe incorporated into the TL and a probe incorporated elsewhere in the transcription elongation complex, we show that TL closing and opening occur in solution, define time scales and functional roles of TL closing and opening, and, most crucially, demonstrate that one cycle of TL closing and opening occurs in each nucleotide-addition cycle. The RNA polymerase (RNAP) trigger loop (TL) is a mobile structural element of the RNAP active center that, based on crystal structures, has been proposed to cycle between an “unfolded”/“open” state that allows an NTP substrate to enter the active center and a “folded”/“closed” state that holds the NTP substrate in the active center. Here, by quantifying single-molecule fluorescence resonance energy transfer between a first fluorescent probe in the TL and a second fluorescent probe elsewhere in RNAP or in DNA, we detect and characterize TL closing and opening in solution. We show that the TL closes and opens on the millisecond timescale; we show that TL closing and opening provides a checkpoint for NTP complementarity, NTP ribo/deoxyribo identity, and NTP tri/di/monophosphate identity, and serves as a target for inhibitors; and we show that one cycle of TL closing and opening typically occurs in each nucleotide addition cycle in transcription elongation.
Collapse
|
10
|
Blombach F, Matelska D, Fouqueau T, Cackett G, Werner F. Key Concepts and Challenges in Archaeal Transcription. J Mol Biol 2019; 431:4184-4201. [PMID: 31260691 DOI: 10.1016/j.jmb.2019.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022]
Abstract
Transcription is enabled by RNA polymerase and general factors that allow its progress through the transcription cycle by facilitating initiation, elongation and termination. The transitions between specific stages of the transcription cycle provide opportunities for the global and gene-specific regulation of gene expression. The exact mechanisms and the extent to which the different steps of transcription are exploited for regulation vary between the domains of life, individual species and transcription units. However, a surprising degree of conservation is apparent. Similar key steps in the transcription cycle can be targeted by homologous or unrelated factors providing insights into the mechanisms of RNAP and the evolution of the transcription machinery. Archaea are bona fide prokaryotes but employ a eukaryote-like transcription system to express the information of bacteria-like genomes. Thus, archaea provide the means not only to study transcription mechanisms of interesting model systems but also to test key concepts of regulation in this arena. In this review, we discuss key principles of archaeal transcription, new questions that still await experimental investigation, and how novel integrative approaches hold great promise to fill this gap in our knowledge.
Collapse
Affiliation(s)
- Fabian Blombach
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
| | - Dorota Matelska
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Thomas Fouqueau
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Gwenny Cackett
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Finn Werner
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
11
|
Sauguet L. The Extended "Two-Barrel" Polymerases Superfamily: Structure, Function and Evolution. J Mol Biol 2019; 431:4167-4183. [PMID: 31103775 DOI: 10.1016/j.jmb.2019.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023]
Abstract
DNA and RNA polymerases (DNAP and RNAP) play central roles in genome replication, maintenance and repair, as well as in the expression of genes through their transcription. Multisubunit RNAPs carry out transcription and are represented, without exception, in all cellular life forms as well as in nucleo-cytoplasmic DNA viruses. Since their discovery, multisubunit RNAPs have been the focus of intense structural and functional studies revealing that they all share a well-conserved active-site region called the two-barrel catalytic core. The two-barrel core hosts the polymerase active site, which is located at the interface between two double-psi β-barrel domains that contribute distinct amino acid residues to the active site in an asymmetrical fashion. Recently, sequencing and structural studies have added a surprising variety of DNA and RNA to the two-barrel superfamily, including the archaeal replicative DNAP (PolD), which extends the family to DNA-dependent DNAPs involved in replication. While all these polymerases share a minimal core that must have been present in their common ancestor, the two-barrel polymerase superfamily now encompasses a remarkable diversity of enzymes, including DNA-dependent RNAPs, RNA-dependent RNAPs, and DNA-dependent DNAPs, which participate in critical biological processes such as DNA transcription, DNA replication, and gene silencing. The present review will discuss both common features and differences among the extended two-barrel polymerase superfamily, focusing on the newly discovered members. Comparing their structures provides insights into the molecular mechanisms evolved by the contemporary two-barrel polymerases to accomplish their different biological functions.
Collapse
Affiliation(s)
- Ludovic Sauguet
- Institut Pasteur, Unité de Dynamique Structurale des Macromolécules, 75015 Paris, France.
| |
Collapse
|
12
|
Scull CE, Ingram ZM, Lucius AL, Schneider DA. A Novel Assay for RNA Polymerase I Transcription Elongation Sheds Light on the Evolutionary Divergence of Eukaryotic RNA Polymerases. Biochemistry 2019; 58:2116-2124. [PMID: 30912638 PMCID: PMC6600827 DOI: 10.1021/acs.biochem.8b01256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic cells express at least three nuclear RNA polymerases (Pols), each with a unique set of gene targets. Though these enzymes are homologous, there are many differences among the Pols. In this study, a novel assay for Pol I transcription elongation was developed to probe enzymatic differences among the Pols. In Saccharomyces cerevisiae, a mutation in the universally conserved hinge region of the trigger loop, E1103G, induces a gain of function in the Pol II elongation rate, whereas the corresponding mutation in Pol I, E1224G, results in a loss of function. The E1103G Pol II mutation stabilizes the closed conformation of the trigger loop, promoting the catalytic step, the putative rate-limiting step for Pol II. In single-nucleotide and multinucleotide addition assays, we observe a decrease in the rate of nucleotide addition and dinucleotide cleavage activity by E1224G Pol I and an increase in the rate of misincorporation. Collectively, these data suggest that Pol I is at least in part rate-limited by the same step as Pol II, the catalytic step.
Collapse
Affiliation(s)
- Catherine E. Scull
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Zachariah M. Ingram
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
13
|
Fouqueau T, Blombach F, Cackett G, Carty AE, Matelska DM, Ofer S, Pilotto S, Phung DK, Werner F. The cutting edge of archaeal transcription. Emerg Top Life Sci 2018; 2:517-533. [PMID: 33525828 PMCID: PMC7289017 DOI: 10.1042/etls20180014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/26/2022]
Abstract
The archaeal RNA polymerase (RNAP) is a double-psi β-barrel enzyme closely related to eukaryotic RNAPII in terms of subunit composition and architecture, promoter elements and basal transcription factors required for the initiation and elongation phase of transcription. Understanding archaeal transcription is, therefore, key to delineate the universally conserved fundamental mechanisms of transcription as well as the evolution of the archaeo-eukaryotic transcription machineries. The dynamic interplay between RNAP subunits, transcription factors and nucleic acids dictates the activity of RNAP and ultimately gene expression. This review focusses on recent progress in our understanding of (i) the structure, function and molecular mechanisms of known and less characterized factors including Elf1 (Elongation factor 1), NusA (N-utilization substance A), TFS4, RIP and Eta, and (ii) their evolution and phylogenetic distribution across the expanding tree of Archaea.
Collapse
Affiliation(s)
- Thomas Fouqueau
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Fabian Blombach
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Gwenny Cackett
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Alice E Carty
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Dorota M Matelska
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Sapir Ofer
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Simona Pilotto
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Duy Khanh Phung
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Finn Werner
- RNAP laboratory, Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
14
|
Dexl S, Reichelt R, Kraatz K, Schulz S, Grohmann D, Bartlett M, Thomm M. Displacement of the transcription factor B reader domain during transcription initiation. Nucleic Acids Res 2018; 46:10066-10081. [PMID: 30102372 PMCID: PMC6212726 DOI: 10.1093/nar/gky699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 01/15/2023] Open
Abstract
Transcription initiation by archaeal RNA polymerase (RNAP) and eukaryotic RNAP II requires the general transcription factor (TF) B/ IIB. Structural analyses of eukaryotic transcription initiation complexes locate the B-reader domain of TFIIB in close proximity to the active site of RNAP II. Here, we present the first crosslinking mapping data that describe the dynamic transitions of an archaeal TFB to provide evidence for structural rearrangements within the transcription complex during transition from initiation to early elongation phase of transcription. Using a highly specific UV-inducible crosslinking system based on the unnatural amino acid para-benzoyl-phenylalanine allowed us to analyze contacts of the Pyrococcus furiosus TFB B-reader domain with site-specific radiolabeled DNA templates in preinitiation and initially transcribing complexes. Crosslink reactions at different initiation steps demonstrate interactions of TFB with DNA at registers +6 to +14, and reduced contacts at +15, with structural transitions of the B-reader domain detected at register +10. Our data suggest that the B-reader domain of TFB interacts with nascent RNA at register +6 and +8 and it is displaced from the transcribed-strand during the transition from +9 to +10, followed by the collapse of the transcription bubble and release of TFB from register +15 onwards.
Collapse
Affiliation(s)
- Stefan Dexl
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Robert Reichelt
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Katharina Kraatz
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Sarah Schulz
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Dina Grohmann
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Michael Bartlett
- Department of Biology, Portland State University, Portland, OR 972707-0751, USA
| | - Michael Thomm
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
15
|
Fouqueau T, Blombach F, Hartman R, Cheung ACM, Young MJ, Werner F. The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor. Nat Commun 2017; 8:1914. [PMID: 29203770 PMCID: PMC5715097 DOI: 10.1038/s41467-017-02081-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 11/05/2017] [Indexed: 12/03/2022] Open
Abstract
TFIIS-like transcript cleavage factors enhance the processivity and fidelity of archaeal and eukaryotic RNA polymerases. Sulfolobus solfataricus TFS1 functions as a bona fide cleavage factor, while the paralogous TFS4 evolved into a potent RNA polymerase inhibitor. TFS4 destabilises the TBP–TFB–RNAP pre-initiation complex and inhibits transcription initiation and elongation. All inhibitory activities are dependent on three lysine residues at the tip of the C-terminal zinc ribbon of TFS4; the inhibition likely involves an allosteric component and is mitigated by the basal transcription factor TFEα/β. A chimeric variant of yeast TFIIS and TFS4 inhibits RNAPII transcription, suggesting that the molecular basis of inhibition is conserved between archaea and eukaryotes. TFS4 expression in S. solfataricus is induced in response to infection with the Sulfolobus turreted icosahedral virus. Our results reveal a compelling functional diversification of cleavage factors in archaea, and provide novel insights into transcription inhibition in the context of the host–virus relationship. Transcript cleavage factors such as eukaryotic TFIIS assist the resumption of transcription following RNA pol II backtracking. Here the authors find that one of the Sulfolobus solfataricus TFIIS homolog—TFS4—has evolved into a potent RNA polymerase inhibitor potentially involved in antiviral defense.
Collapse
Affiliation(s)
- Thomas Fouqueau
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Fabian Blombach
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Ross Hartman
- Department of Microbiology, Montana State University, 173520, Bozeman, MT, MT 59717, USA
| | - Alan C M Cheung
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Mark J Young
- Department of Microbiology, Montana State University, 173520, Bozeman, MT, MT 59717, USA.,Department of Plant Sciences, Montana State University, 173150, Bozeman, MT, MT 59717, USA
| | - Finn Werner
- Institute of Structural & Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
16
|
Abstract
RNA polymerase II (Pol II) catalyzes the transcription of DNA to RNA in the nucleus. DNA alkylating cancer drugs can stall transcription; however, the basis for Pol II stalling when encountering a DNA template with minor-groove alkylation adducts has remained elusive due to its inherent chemical instability. We characterized the behavior of Pol II in transcription over minor-groove alkylation adducts and uncovered a previously unobserved mode of Pol II stalling wherein clashes between DNA adducts and the mobile trigger loop of RNA Pol II prevent translocation of the enzyme after nucleotide insertion. These results provide a molecular basis for how DNA damage in transcribed portions of the genome initiates DNA repair contributing to drug resistance. Several anticancer agents that form DNA adducts in the minor groove interfere with DNA replication and transcription to induce apoptosis. Therapeutic resistance can occur, however, when cells are proficient in the removal of drug-induced damage. Acylfulvenes are a class of experimental anticancer agents with a unique repair profile suggesting their capacity to stall RNA polymerase (Pol) II and trigger transcription-coupled nucleotide excision repair. Here we show how different forms of DNA alkylation impair transcription by RNA Pol II in cells and with the isolated enzyme and unravel a mode of RNA Pol II stalling that is due to alkylation of DNA in the minor groove. We incorporated a model for acylfulvene adducts, the stable 3-deaza-3-methoxynaphtylethyl-adenosine analog (3d-Napht-A), and smaller 3-deaza-adenosine analogs, into DNA oligonucleotides to assess RNA Pol II transcription elongation in vitro. RNA Pol II was strongly blocked by a 3d-Napht-A analog but bypassed smaller analogs. Crystal structure analysis revealed that a DNA base containing 3d-Napht-A can occupy the +1 templating position and impair closing of the trigger loop in the Pol II active center and polymerase translocation into the next template position. These results show how RNA Pol II copes with minor-groove DNA alkylation and establishes a mechanism for drug resistance.
Collapse
|
17
|
Trigger loop dynamics can explain stimulation of intrinsic termination by bacterial RNA polymerase without terminator hairpin contact. Proc Natl Acad Sci U S A 2017; 114:E9233-E9242. [PMID: 29078293 DOI: 10.1073/pnas.1706247114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In bacteria, intrinsic termination signals cause disassembly of the highly stable elongating transcription complex (EC) over windows of two to three nucleotides after kilobases of RNA synthesis. Intrinsic termination is caused by the formation of a nascent RNA hairpin adjacent to a weak RNA-DNA hybrid within RNA polymerase (RNAP). Although the contributions of RNA and DNA sequences to termination are largely understood, the roles of conformational changes in RNAP are less well described. The polymorphous trigger loop (TL), which folds into the trigger helices to promote nucleotide addition, also is proposed to drive termination by folding into the trigger helices and contacting the terminator hairpin after invasion of the hairpin in the RNAP main cleft [Epshtein V, Cardinale CJ, Ruckenstein AE, Borukhov S, Nudler E (2007) Mol Cell 28:991-1001]. To investigate the contribution of the TL to intrinsic termination, we developed a kinetic assay that distinguishes effects of TL alterations on the rate at which ECs terminate from effects of the TL on the nucleotide addition rate that indirectly affect termination efficiency by altering the time window in which termination can occur. We confirmed that the TL stimulates termination rate, but found that stabilizing either the folded or unfolded TL conformation decreased termination rate. We propose that conformational fluctuations of the TL (TL dynamics), not TL-hairpin contact, aid termination by increasing EC conformational diversity and thus access to favorable termination pathways. We also report that the TL and the TL sequence insertion (SI3) increase overall termination efficiency by stimulating pausing, which increases the flux of ECs into the termination pathway.
Collapse
|
18
|
Fouqueau T, Blombach F, Werner F. Evolutionary Origins of Two-Barrel RNA Polymerases and Site-Specific Transcription Initiation. Annu Rev Microbiol 2017; 71:331-348. [PMID: 28657884 DOI: 10.1146/annurev-micro-091014-104145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolution-related multisubunit RNA polymerases (RNAPs) carry out RNA synthesis in all domains life. Although their catalytic cores and fundamental mechanisms of transcription elongation are conserved, the initiation stage of the transcription cycle differs substantially in bacteria, archaea, and eukaryotes in terms of the requirements for accessory factors and details of the molecular mechanisms. This review focuses on recent insights into the evolution of the transcription apparatus with regard to (a) the surprisingly pervasive double-Ψ β-barrel active-site configuration among different nucleic acid polymerase families, (b) the origin and phylogenetic distribution of TBP, TFB, and TFE transcription factors, and
Collapse
Affiliation(s)
- Thomas Fouqueau
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; ,
| | - Fabian Blombach
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; ,
| | - Finn Werner
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; ,
| |
Collapse
|
19
|
Trigger loop of RNA polymerase is a positional, not acid-base, catalyst for both transcription and proofreading. Proc Natl Acad Sci U S A 2017; 114:E5103-E5112. [PMID: 28607053 DOI: 10.1073/pnas.1702383114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The active site of multisubunit RNA polymerases (RNAPs) is highly conserved from humans to bacteria. This single site catalyzes both nucleotide addition required for RNA transcript synthesis and excision of incorrect nucleotides after misincorporation as a proofreading mechanism. Phosphoryl transfer and proofreading hydrolysis are controlled in part by a dynamic RNAP component called the trigger loop (TL), which cycles between an unfolded loop and an α-helical hairpin [trigger helices (TH)] required for rapid nucleotide addition. The precise roles of the TL/TH in RNA synthesis and hydrolysis remain unclear. An invariant histidine residue has been proposed to function in the TH form as a general acid in RNA synthesis and as a general base in RNA hydrolysis. The effects of conservative, nonionizable substitutions of the TL histidine (or a neighboring TL arginine conserved in bacteria) have not yet been rigorously tested. Here, we report that glutamine substitutions of these residues, which preserve polar interactions but are incapable of acid-base chemistry, had little effect on either phosphoryl transfer or proofreading hydrolysis by Escherichia coli RNAP. The TL substitutions did, however, affect the backtracking of RNAP necessary for proofreading and potentially the reactivity of the backtracked nucleotide. We describe a unifying model for the function of the RNAP TL, which reconciles available data and our results for representative RNAPs. This model explains diverse effects of the TL basic residues on catalysis through their effects on positioning reactants for phosphoryl transfer and easing barriers to transcript backtracking, rather than as acid-base catalysts.
Collapse
|
20
|
Wang B, Sexton RE, Feig M. Kinetics of nucleotide entry into RNA polymerase active site provides mechanism for efficiency and fidelity. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:482-490. [PMID: 28242207 PMCID: PMC5393355 DOI: 10.1016/j.bbagrm.2017.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/29/2017] [Accepted: 02/15/2017] [Indexed: 10/20/2022]
Abstract
During transcription, RNA polymerase II elongates RNA by adding nucleotide triphosphates (NTPs) complementary to a DNA template. Structural studies have suggested that NTPs enter and exit the active site via the narrow secondary pore but details have remained unclear. A kinetic model is presented that integrates molecular dynamics simulations with experimental data. Previous simulations of trigger loop dynamics and the dynamics of matched and mismatched NTPs in and near the active site were combined with new simulations describing NTP exit from the active site via the secondary pore. Markov state analysis was applied to identify major states and estimate kinetic rates for transitions between those states. The kinetic model predicts elongation and misincorporation rates in close agreement with experiment and provides mechanistic hypotheses for how NTP entry and exit via the secondary pore is feasible and a key feature for achieving high elongation and low misincorporation rates during RNA elongation.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Biochemistry & Molecular Biology, 603 Wilson Rd., Room 218 BCH, Michigan State University, East Lansing, MI 48824, USA.
| | - Rachel E Sexton
- Department of Biochemistry & Molecular Biology, 603 Wilson Rd., Room 218 BCH, Michigan State University, East Lansing, MI 48824, USA.
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, 603 Wilson Rd., Room 218 BCH, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
21
|
Miropolskaya N, Esyunina D, Kulbachinskiy A. Conserved functions of the trigger loop and Gre factors in RNA cleavage by bacterial RNA polymerases. J Biol Chem 2017; 292:6744-6752. [PMID: 28242762 DOI: 10.1074/jbc.m116.766592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/16/2017] [Indexed: 11/06/2022] Open
Abstract
RNA cleavage by RNA polymerase (RNAP) is the central step in co-transcriptional RNA proofreading. Bacterial RNAPs were proposed to rely on the same mobile element of the active site, the trigger loop (TL), for both nucleotide addition and RNA cleavage. RNA cleavage can also be stimulated by universal Gre factors, which should replace the TL to get access to the RNAP active site. The contributions of the TL and Gre factors to RNA cleavage reportedly vary between RNAPs from different bacterial species and, probably, different types of transcription complexes. Here, by comparing RNAPs from Escherichia coli, Deinococcus radiodurans, and Thermus aquaticus, we show that the functions of the TL and Gre factors in RNA cleavage are conserved in various species, with important variations that may be related to extremophilic adaptation. Deletions of the TL strongly impair intrinsic RNA cleavage by all three RNAPs and eliminate the interspecies differences in the reaction rates. GreA factors activate RNA cleavage by wild-type RNAPs to similar levels. The rates of GreA-dependent cleavage are lower for ΔTL RNAP variants, suggesting that the TL contributes to the Gre function. Finally, neither the TL nor GreA can efficiently activate RNA cleavage in certain types of backtracked transcription complexes, suggesting that these complexes adopt a catalytically inactive conformation probably important for transcription regulation.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- From the Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | - Daria Esyunina
- From the Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- From the Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square 2, Moscow 123182, Russia
| |
Collapse
|
22
|
High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop. PLoS Genet 2016; 12:e1006321. [PMID: 27898685 PMCID: PMC5127505 DOI: 10.1371/journal.pgen.1006321] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/24/2016] [Indexed: 11/30/2022] Open
Abstract
The active sites of multisubunit RNA polymerases have a “trigger loop” (TL) that multitasks in substrate selection, catalysis, and translocation. To dissect the Saccharomyces cerevisiae RNA polymerase II TL at individual-residue resolution, we quantitatively phenotyped nearly all TL single variants en masse. Three mutant classes, revealed by phenotypes linked to transcription defects or various stresses, have distinct distributions among TL residues. We find that mutations disrupting an intra-TL hydrophobic pocket, proposed to provide a mechanism for substrate-triggered TL folding through destabilization of a catalytically inactive TL state, confer phenotypes consistent with pocket disruption and increased catalysis. Furthermore, allele-specific genetic interactions among TL and TL-proximal domain residues support the contribution of the funnel and bridge helices (BH) to TL dynamics. Our structural genetics approach incorporates structural and phenotypic data for high-resolution dissection of transcription mechanisms and their evolution, and is readily applicable to other essential yeast proteins. Proper regulation of Pol II transcription, the first step of gene expression, is essential for life. Extensive evidence has revealed a widely conserved and dynamic polymerase active site component, termed the Trigger Loop (TL), in balancing transcription rate and fidelity while possibly allowing control of transcription elongation. Coupling high-throughput sequencing with our previously established genetic system, we are able to assess the in vivo phenotypes for almost all possible single substitution Pol II TL mutants in the budding yeast Saccharomyces cerevisiae. We show that mutants in the TL nucleotide interacting and linker regions widely confer dominant and severe growth defects. Clustering of TL mutants’ transcription-related and general stress phenotypes reveals three main classes of TL mutants, including previously identified fast and slow elongating mutants. Comprehensive analyses of the distribution of fast and slow elongation mutants in light of existing Pol II crystal structures reveal critical regions contributing to proper TL dynamics and function. Evidence is presented linking a previously observed hydrophobic pocket to NTP substrate-induced TL closing, the mechanism critical for correct substrates selection and transcription fidelity. Finally, we assess the functional interplay between TL and its proximal domains, and their presumptive roles in the function and evolution of the TL. Utilizing the Pol II TL as a case study, we present a structural genetics approach that reveals insights into a complex, multi-functional, and essential domain in yeast.
Collapse
|
23
|
Rijal K, Maraia RJ. Active Center Control of Termination by RNA Polymerase III and tRNA Gene Transcription Levels In Vivo. PLoS Genet 2016; 12:e1006253. [PMID: 27518095 PMCID: PMC4982682 DOI: 10.1371/journal.pgen.1006253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023] Open
Abstract
The ability of RNA polymerase (RNAP) III to efficiently recycle from termination to reinitiation is critical for abundant tRNA production during cellular proliferation, development and cancer. Yet understanding of the unique termination mechanisms used by RNAP III is incomplete, as is its link to high transcription output. We used two tRNA-mediated suppression systems to screen for Rpc1 mutants with gain- and loss- of termination phenotypes in S. pombe. 122 point mutation mutants were mapped to a recently solved 3.9 Å structure of yeast RNAP III elongation complex (EC); they cluster in the active center bridge helix and trigger loop, as well as the pore and funnel, the latter of which indicate involvement of the RNA cleavage domain of the C11 subunit in termination. Purified RNAP III from a readthrough (RT) mutant exhibits increased elongation rate. The data strongly support a kinetic coupling model in which elongation rate is inversely related to termination efficiency. The mutants exhibit good correlations of terminator RT in vitro and in vivo, and surprisingly, amounts of transcription in vivo. Because assessing in vivo transcription can be confounded by various parameters, we used a tRNA reporter with a processing defect and a strong terminator. By ruling out differences in RNA decay rates, the data indicate that mutants with the RT phenotype synthesize more RNA than wild type cells, and than can be accounted for by their increased elongation rate. Finally, increased activity by the mutants appears unrelated to the RNAP III repressor, Maf1. The results show that the mobile elements of the RNAP III active center, including C11, are key determinants of termination, and that some of the mutations activate RNAP III for overall transcription. Similar mutations in spontaneous cancer suggest this as an unforeseen mechanism of RNAP III activation in disease.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
24
|
Abstract
The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription.
Collapse
|
25
|
Esyunina D, Turtola M, Pupov D, Bass I, Klimašauskas S, Belogurov G, Kulbachinskiy A. Lineage-specific variations in the trigger loop modulate RNA proofreading by bacterial RNA polymerases. Nucleic Acids Res 2016; 44:1298-308. [PMID: 26733581 PMCID: PMC4756841 DOI: 10.1093/nar/gkv1521] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/20/2015] [Indexed: 02/01/2023] Open
Abstract
RNA cleavage by bacterial RNA polymerase (RNAP) has been implicated in transcriptional proofreading and reactivation of arrested transcription elongation complexes but its molecular mechanism is less understood than the mechanism of nucleotide addition, despite both reactions taking place in the same active site. RNAP from the radioresistant bacterium Deinococcus radiodurans is characterized by highly efficient intrinsic RNA cleavage in comparison with Escherichia coli RNAP. We find that the enhanced RNA cleavage activity largely derives from amino acid substitutions in the trigger loop (TL), a mobile element of the active site involved in various RNAP activities. The differences in RNA cleavage between these RNAPs disappear when the TL is deleted, or in the presence of GreA cleavage factors, which replace the TL in the active site. We propose that the TL substitutions modulate the RNA cleavage activity by altering the TL folding and its contacts with substrate RNA and that the resulting differences in transcriptional proofreading may play a role in bacterial stress adaptation.
Collapse
Affiliation(s)
- Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| | - Matti Turtola
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Danil Pupov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| | - Irina Bass
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| | | | - Georgiy Belogurov
- Department of Biochemistry, University of Turku, Turku 20014, Finland
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov square 2, Moscow 123182, Russia
| |
Collapse
|
26
|
Da LT, E C, Duan B, Zhang C, Zhou X, Yu J. A Jump-from-Cavity Pyrophosphate Ion Release Assisted by a Key Lysine Residue in T7 RNA Polymerase Transcription Elongation. PLoS Comput Biol 2015; 11:e1004624. [PMID: 26599007 PMCID: PMC4658072 DOI: 10.1371/journal.pcbi.1004624] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/26/2015] [Indexed: 11/18/2022] Open
Abstract
Pyrophosphate ion (PPi) release during transcription elongation is a signature step in each nucleotide addition cycle. The kinetics and energetics of the process as well as how it proceeds with substantial conformational changes of the polymerase complex determine the mechano-chemical coupling mechanism of the transcription elongation. Here we investigated detailed dynamics of the PPi release process in a single-subunit RNA polymerase (RNAP) from bacteriophage T7, implementing all-atom molecular dynamics (MD) simulations. We obtained a jump-from-cavity kinetic model of the PPi release utilizing extensive nanosecond MD simulations. We found that the PPi release in T7 RNAP is initiated by the PPi dissociation from two catalytic aspartic acids, followed by a comparatively slow jump-from-cavity activation process. Combining with a number of microsecond long MD simulations, we also found that the activation process is hindered by charged residue associations as well as by local steric and hydrogen bond interactions. On the other hand, the activation is greatly assisted by a highly flexible lysine residue Lys472 that swings its side chain to pull PPi out. The mechanism can apply in general to single subunit RNA and DNA polymerases with similar molecular structures and conserved key residues. Remarkably, the flexible lysine or arginine residue appears to be a universal module that assists the PPi release even in multi-subunit RNAPs with charge facilitated hopping mechanisms. We also noticed that the PPi release is not tightly coupled to opening motions of an O-helix on the fingers domain of T7 RNAP according to the microsecond MD simulations. Our study thus supports the Brownian ratchet scenario of the mechano-chemical coupling in the transcription elongation of the single-subunit polymerase.
Collapse
Affiliation(s)
- Lin-Tai Da
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Chao E
- Beijing Computational Science Research Center, Beijing, China
| | - Baogen Duan
- Beijing Computational Science Research Center, Beijing, China
| | - Chuanbiao Zhang
- School of Physics, University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- School of Physics, University of the Chinese Academy of Sciences, Beijing, China
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing, China
- * E-mail:
| |
Collapse
|
27
|
Čabart P, Jin H, Li L, Kaplan CD. Activation and reactivation of the RNA polymerase II trigger loop for intrinsic RNA cleavage and catalysis. Transcription 2015; 5:e28869. [PMID: 25764335 PMCID: PMC4574878 DOI: 10.4161/trns.28869] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In addition to RNA synthesis, multisubunit RNA polymerases (msRNAPs) support enzymatic reactions such as intrinsic transcript cleavage. msRNAP active sites from different species appear to exhibit differential intrinsic transcript cleavage efficiency and have likely evolved to allow fine-tuning of the transcription process. Here we show that a single amino-acid substitution in the trigger loop (TL) of Saccharomyces RNAP II, Rpb1 H1085Y, engenders a gain of intrinsic cleavage activity where the substituted tyrosine appears to participate in acid-base chemistry at alkaline pH for both intrinsic cleavage and nucleotidyl transfer. We extensively characterize this TL substitution for each of these reactions by examining the responses RNAP II enzymes to catalytic metals, altered pH, and factor inputs. We demonstrate that TFIIF stimulation of the first phosphodiester bond formation by RNAP II requires wild type TL function and that H1085Y substitution within the TL compromises or alters RNAP II responsiveness to both TFIIB and TFIIF. Finally, Mn(2+) stimulation of H1085Y RNAP II reveals possible allosteric effects of TFIIB on the active center and cooperation between TFIIB and TFIIF.
Collapse
Affiliation(s)
- Pavel Čabart
- a Department of Biochemistry and Biophysics; Texas A&M University; College Station, TX
| | | | | | | |
Collapse
|
28
|
Crystal Structure of a Transcribing RNA Polymerase II Complex Reveals a Complete Transcription Bubble. Mol Cell 2015; 59:258-69. [PMID: 26186291 DOI: 10.1016/j.molcel.2015.06.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/13/2015] [Accepted: 06/25/2015] [Indexed: 11/24/2022]
Abstract
Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF-stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop 1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the trigger loop (TL), allowing visualization of its open state. Overall, our observations suggest that "open/closed" conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation.
Collapse
|
29
|
Mejia YX, Nudler E, Bustamante C. Trigger loop folding determines transcription rate of Escherichia coli's RNA polymerase. Proc Natl Acad Sci U S A 2015; 112:743-8. [PMID: 25552559 PMCID: PMC4311812 DOI: 10.1073/pnas.1421067112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two components of the RNA polymerase (RNAP) catalytic center, the bridge helix and the trigger loop (TL), have been linked with changes in elongation rate and pausing. Here, single molecule experiments with the WT and two TL-tip mutants of the Escherichia coli enzyme reveal that tip mutations modulate RNAP's pause-free velocity, identifying TL conformational changes as one of two rate-determining steps in elongation. Consistent with this observation, we find a direct correlation between helix propensity of the modified amino acid and pause-free velocity. Moreover, nucleotide analogs affect transcription rate, suggesting that their binding energy also influences TL folding. A kinetic model in which elongation occurs in two steps, TL folding on nucleoside triphosphate (NTP) binding followed by NTP incorporation/pyrophosphate release, quantitatively accounts for these results. The TL plays no role in pause recovery remaining unfolded during a pause. This model suggests a finely tuned mechanism that balances transcription speed and fidelity.
Collapse
Affiliation(s)
- Yara X Mejia
- Jason L. Choy Laboratory of Single-Molecule Biophysics, the California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, the California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720; Department of Molecular and Cell Biology, Department of Physics, Department of Chemistry, Biophysics Graduate Group and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720; and Kavli Energy Nanosciences Institute at Berkeley, Berkeley, CA 94720
| |
Collapse
|
30
|
Smollett K, Blombach F, Werner F. Transcription in Archaea: preparation of Methanocaldococcus jannaschii transcription machinery. Methods Mol Biol 2015; 1276:291-303. [PMID: 25665571 DOI: 10.1007/978-1-4939-2392-2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Archaeal RNA polymerase and general transcription factors are more closely related to those of eukaryotes than of bacteria. As such the study of transcription of archaea is important both in terms of examination of the evolution of the transcriptional machinery and as a simplified tool for eukaryotic transcription. In particular, the hyperthermophilic Methanocaldococcus jannaschii provides us with a fully recombinant RNA polymerase system allowing for much more detailed in vitro examination of the roles of different components during the transcription cycle than otherwise possible. The individual subunits of M. jannaschii enzyme are easily expressed and purified from heterologous expression systems. Forming functional RNA polymerase involves simply combining the different subunits under denaturing conditions and slowly removing the denaturant.
Collapse
Affiliation(s)
- Katherine Smollett
- Institute of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London, WC1E 6BT, UK,
| | | | | |
Collapse
|
31
|
Wang B, Opron K, Burton ZF, Cukier RI, Feig M. Five checkpoints maintaining the fidelity of transcription by RNA polymerases in structural and energetic details. Nucleic Acids Res 2014; 43:1133-46. [PMID: 25550432 PMCID: PMC4333413 DOI: 10.1093/nar/gku1370] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcriptional fidelity, which prevents the misincorporation of incorrect nucleoside monophosphates in RNA, is essential for life. Results from molecular dynamics (MD) simulations of eukaryotic RNA polymerase (RNAP) II and bacterial RNAP with experimental data suggest that fidelity may involve as many as five checkpoints. Using MD simulations, the effects of different active site NTPs in both open and closed trigger loop (TL) structures of RNAPs are compared. Unfavorable initial binding of mismatched substrates in the active site with an open TL is proposed to be the first fidelity checkpoint. The leaving of an incorrect substrate is much easier than a correct one energetically from the umbrella sampling simulations. Then, the closing motion of the TL, required for catalysis, is hindered by the presence of mismatched NTPs. Mismatched NTPs also lead to conformational changes in the active site, which perturb the coordination of magnesium ions and likely affect the ability to proceed with catalysis. This step appears to be the most important checkpoint for deoxy-NTP discrimination. Finally, structural perturbations in the template DNA and the nascent RNA in the presence of mismatches likely hinder nucleotide addition and provide the structural foundation for backtracking followed by removing erroneously incorporated nucleotides during proofreading.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Kristopher Opron
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Zachary F Burton
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert I Cukier
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
32
|
Yu J, Da LT, Huang X. Constructing kinetic models to elucidate structural dynamics of a complete RNA polymerase II elongation cycle. Phys Biol 2014; 12:016004. [DOI: 10.1088/1478-3975/12/1/016004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Windgassen TA, Mooney RA, Nayak D, Palangat M, Zhang J, Landick R. Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase. Nucleic Acids Res 2014; 42:12707-21. [PMID: 25336618 PMCID: PMC4227799 DOI: 10.1093/nar/gku997] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The conformational dynamics of the polymorphous trigger loop (TL) in RNA polymerase (RNAP) underlie multiple steps in the nucleotide addition cycle and diverse regulatory mechanisms. These mechanisms include nascent RNA hairpin-stabilized pausing, which inhibits TL folding into the trigger helices (TH) required for rapid nucleotide addition. The nascent RNA pause hairpin forms in the RNA exit channel and promotes opening of the RNAP clamp domain, which in turn stabilizes a partially folded, paused TL conformation that disfavors TH formation. We report that inhibiting TH unfolding with a disulfide crosslink slowed multiround nucleotide addition only modestly but eliminated hairpin-stabilized pausing. Conversely, a substitution that disrupts the TH folding pathway and uncouples establishment of key TH–NTP contacts from complete TH formation and clamp movement allowed rapid catalysis and eliminated hairpin-stabilized pausing. We also report that the active-site distal arm of the TH aids TL folding, but that a 188-aa insertion in the Escherichia coli TL (sequence insertion 3; SI3) disfavors TH formation and stimulates pausing. The effect of SI3 depends on the jaw domain, but not on downstream duplex DNA. Our results support the view that both SI3 and the pause hairpin modulate TL folding in a constrained pathway of intermediate states.
Collapse
Affiliation(s)
- Tricia A Windgassen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dhananjaya Nayak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Murali Palangat
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jinwei Zhang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
34
|
Miropolskaya N, Esyunina D, Klimasauskas S, Nikiforov V, Artsimovitch I, Kulbachinskiy A. Interplay between the trigger loop and the F loop during RNA polymerase catalysis. Nucleic Acids Res 2013; 42:544-52. [PMID: 24089145 PMCID: PMC3874190 DOI: 10.1093/nar/gkt877] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The trigger loop (TL) in the RNA polymerase (RNAP) active center plays key roles in the reactions of nucleotide addition and RNA cleavage catalyzed by RNAP. The adjacent F loop (FL) was proposed to contribute to RNAP catalysis by modulating structural changes in the TL. Here, we investigate the interplay between these two elements during transcription by bacterial RNAP. Thermodynamic analysis of catalysis by RNAP variants with mutations in the TL and FL suggests that the TL is the key element required for temperature activation in RNAP catalysis, and that the FL promotes TL transitions during nucleotide addition. We reveal characteristic differences in the catalytic parameters between thermophilic Thermus aquaticus and mesophilic Deinococcus radiodurans RNAPs and identify the FL as an adaptable element responsible for the observed differеnces. Mutations in the FL also significantly affect the rate of intrinsic RNA cleavage in a TL-dependent manner. In contrast, much weaker effects of the FL and TL mutations on GreA-assisted RNA cleavage suggest that the FL-dependent TL transitions are not required for this reaction. Thus, functional interplay between the FL and TL is essential for various catalytic activities of RNAP and plays an adaptive role in catalysis by thermophilic and mesophilic enzymes.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia, Molecular Biology Department, Biological Faculty, Moscow State University, Moscow 119991 Russia, Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius 02241, Lithuania and Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- Finn Werner
- RNAP Laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London , Darwin Building, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
36
|
Affiliation(s)
- Robert O J Weinzierl
- Department of Life Sciences, Division of Biomolecular Sciences, Imperial College London , Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|