1
|
Rossi R, Torelli S, Moore M, Ala P, Morgan J, Malhotra J, Muntoni F. Golodirsen restores DMD transcript imbalance in Duchenne Muscular Dystrophy patient muscle cells. Skelet Muscle 2024; 14:28. [PMID: 39614336 DOI: 10.1186/s13395-024-00360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Antisense oligonucleotides (AON) represent a promising treatment for Duchenne muscular dystrophy (DMD) carrying out-of-frame deletions, but also show limitations. In a completed clinical trial golodirsen, approved by FDA to induce skipping of DMD gene exon 53 in eligible patients, we demonstrated increase in DMD expression and protein production, albeit with inter-patient variability. METHODS Here, we investigate further the golodirsen mechanism of action using myotubes derived from MyoD transfected fibroblasts isolated from DMD patients at the baseline of the clinical trial SRP-4053. RESULTS We confirm golodirsen's selectivity and efficiency in removing only exon 53. For the first time in human cells, we revealed a significant reduction in the so called DMD "transcript imbalance", in golodirsen-treated DMD muscle cultures. The transcript imbalance is a unique DMD phenomenon characterized by non-homogeneous transcript expression along its entire length and responsible for the reduced stability of the transcript. Our in-vivo study also showed that the efficiency of exon skipping did not always correspond to a proportional restoration of the dystrophin protein. Predominant nuclear localization of the DMD transcript, observed in patients and animal models, persists even after exon skipping. CONCLUSION All these findings suggest challenges other than AON delivery for high level of protein restoration in DMD, highlighting the importance of investigating the biological mechanisms upstream of protein production to further enhance the efficiency of any AON treatment in this condition.
Collapse
Affiliation(s)
- Rachele Rossi
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
| | - Silvia Torelli
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
| | - Marc Moore
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | - Pierpaolo Ala
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
| | - Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
| | | | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK.
| |
Collapse
|
2
|
Abrhámová K, Groušlová M, Valentová A, Hao X, Liu B, Převorovský M, Gahura O, Půta F, Sunnerhagen P, Folk P. Truncating the spliceosomal 'rope protein' Prp45 results in Htz1 dependent phenotypes. RNA Biol 2024; 21:1-17. [PMID: 38711165 PMCID: PMC11085953 DOI: 10.1080/15476286.2024.2348896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/13/2023] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.
Collapse
Affiliation(s)
- Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Martina Groušlová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Anna Valentová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| |
Collapse
|
3
|
Jaquet V, Wallerich S, Voegeli S, Túrós D, Viloria EC, Becskei A. Determinants of the temperature adaptation of mRNA degradation. Nucleic Acids Res 2022; 50:1092-1110. [PMID: 35018460 PMCID: PMC8789057 DOI: 10.1093/nar/gkab1261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
The rate of chemical reactions increases proportionally with temperature, but the interplay of biochemical reactions permits deviations from this relation and adaptation. The degradation of individual mRNAs in yeast increased to varying degrees with temperature. We examined how these variations are influenced by the translation and codon composition of mRNAs. We developed a method that revealed the existence of a neutral half-life above which mRNAs are stabilized by translation but below which they are destabilized. The proportion of these two mRNA subpopulations remained relatively constant under different conditions, even with slow cell growth due to nutrient limitation, but heat shock reduced the proportion of translationally stabilized mRNAs. At the same time, the degradation of these mRNAs was partially temperature-compensated through Upf1, the mediator of nonsense-mediated decay. Compensation was also promoted by some asparagine and serine codons, whereas tyrosine codons promote temperature sensitization. These codons play an important role in the degradation of mRNAs encoding key cell membrane and cell wall proteins, which promote cell integrity.
Collapse
Affiliation(s)
- Vincent Jaquet
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sandrine Wallerich
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sylvia Voegeli
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Demeter Túrós
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Eduardo C Viloria
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Giaretta A. Stochasticity in transcriptional, splicing and translational regulations in time and frequency domains. Biosystems 2022; 212:104595. [DOI: 10.1016/j.biosystems.2021.104595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 11/02/2022]
|
5
|
Miedziak B, Dobieżyńska A, Darżynkiewicz ZM, Bartkowska J, Miszkiewicz J, Kowalska J, Warminski M, Tyras M, Trylska J, Jemielity J, Darzynkiewicz E, Grzela R. Kinetic analysis of IFIT1 and IFIT5 interactions with different native and engineered RNAs and its consequences for designing mRNA-based therapeutics. RNA (NEW YORK, N.Y.) 2020; 26:58-68. [PMID: 31658992 PMCID: PMC6913129 DOI: 10.1261/rna.073304.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
In response to foreign RNA, cellular antiviral mechanisms stimulate high expression of interferon-induced proteins with tetratricopeptide repeats (IFITs). Two members of the IFIT protein family, IFIT1 and IFIT5, are capable of binding the very terminal 5' end of mRNA. In eukaryotes, these mRNA termini contain a cap structure (m7GpppN, cap 0) that is often subjected to further modifications. Here, we performed a thorough examination of IFIT1 and IFIT5 binding to a wide spectrum of differently capped as well as fully uncapped mRNAs. The kinetic analysis of IFIT1 and IFIT5 interactions with mRNA ligands indicates that the cap structure modifications considerably influence the stability of IFIT1/RNA complexes. The most stable complexes were formed between IFIT1 and GpppG/A- and m7GpppG/A-RNAs. Unexpectedly, we found that NAD+- and NADH-capped RNAs associate with IFIT5 with kinetic parameters comparable to pppG-RNA. Finally, we measured interactions of IFIT1 with mRNAs bearing modified synthetic cap analogs that start to become the important tools in biotechnological and medicinal research. We found that incorporation of modified cap analogs to the RNA protects the latter, to a certain degree, from the translational inhibition caused by IFIT1 protein.
Collapse
Affiliation(s)
- Beata Miedziak
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Dobieżyńska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Zbigniew M Darżynkiewicz
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Julia Bartkowska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Miszkiewicz
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Michal Tyras
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Edward Darzynkiewicz
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-097 Warsaw, Poland
| | - Renata Grzela
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
6
|
Contribution of RNA Degradation to Intrinsic and Extrinsic Noise in Gene Expression. Cell Rep 2019; 26:3752-3761.e5. [DOI: 10.1016/j.celrep.2019.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/26/2018] [Accepted: 02/27/2019] [Indexed: 12/29/2022] Open
|
7
|
Herzel L, Straube K, Neugebauer KM. Long-read sequencing of nascent RNA reveals coupling among RNA processing events. Genome Res 2018; 28:1008-1019. [PMID: 29903723 PMCID: PMC6028129 DOI: 10.1101/gr.232025.117] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Pre-mRNA splicing is accomplished by the spliceosome, a megadalton complex that assembles de novo on each intron. Because spliceosome assembly and catalysis occur cotranscriptionally, we hypothesized that introns are removed in the order of their transcription in genomes dominated by constitutive splicing. Remarkably little is known about splicing order and the regulatory potential of nascent transcript remodeling by splicing, due to the limitations of existing methods that focus on analysis of mature splicing products (mRNAs) rather than substrates and intermediates. Here, we overcome this obstacle through long-read RNA sequencing of nascent, multi-intron transcripts in the fission yeast Schizosaccharomyces pombe. Most multi-intron transcripts were fully spliced, consistent with rapid cotranscriptional splicing. However, an unexpectedly high proportion of transcripts were either fully spliced or fully unspliced, suggesting that splicing of any given intron is dependent on the splicing status of other introns in the transcript. Supporting this, mild inhibition of splicing by a temperature-sensitive mutation in prp2, the homolog of vertebrate U2AF65, increased the frequency of fully unspliced transcripts. Importantly, fully unspliced transcripts displayed transcriptional read-through at the polyA site and were degraded cotranscriptionally by the nuclear exosome. Finally, we show that cellular mRNA levels were reduced in genes with a high number of unspliced nascent transcripts during caffeine treatment, showing regulatory significance of cotranscriptional splicing. Therefore, overall splicing of individual nascent transcripts, 3′ end formation, and mRNA half-life depend on the splicing status of neighboring introns, suggesting crosstalk among spliceosomes and the polyA cleavage machinery during transcription elongation.
Collapse
Affiliation(s)
- Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Korinna Straube
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
8
|
Impact of Methods on the Measurement of mRNA Turnover. Int J Mol Sci 2017; 18:ijms18122723. [PMID: 29244760 PMCID: PMC5751324 DOI: 10.3390/ijms18122723] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022] Open
Abstract
The turnover of the RNA molecules is determined by the rates of transcription and RNA degradation. Several methods have been developed to study RNA turnover since the beginnings of molecular biology. Here we summarize the main methods to measure RNA half-life: transcription inhibition, gene control, and metabolic labelling. These methods were used to detect the cellular activity of the mRNAs degradation machinery, including the exo-ribonuclease Xrn1 and the exosome. On the other hand, the study of the differential stability of mature RNAs has been hampered by the fact that different methods have often yielded inconsistent results. Recent advances in the systematic comparison of different method variants in yeast have permitted the identification of the least invasive methodologies that reflect half-lives the most faithfully, which is expected to open the way for a consistent quantitative analysis of the determinants of mRNA stability.
Collapse
|
9
|
Baudrimont A, Voegeli S, Viloria EC, Stritt F, Lenon M, Wada T, Jaquet V, Becskei A. Multiplexed gene control reveals rapid mRNA turnover. SCIENCE ADVANCES 2017; 3:e1700006. [PMID: 28706991 PMCID: PMC5507631 DOI: 10.1126/sciadv.1700006] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/13/2017] [Indexed: 05/29/2023]
Abstract
The rates of mRNA synthesis and decay determine the mRNA expression level. The two processes are under coordinated control, which makes the measurements of these rates challenging, as evidenced by the low correlation among the methods of measurement of RNA half-lives. We developed a minimally invasive method, multiplexed gene control, to shut off expression of genes with controllable synthetic promoters. The method was validated by measuring the ratios of the nascent to mature mRNA molecules and by measuring the half-life with endogenous promoters that can be controlled naturally or through inserting short sequences that impart repressibility. The measured mRNA half-lives correlated highly with those obtained with the metabolic pulse-labeling method in yeast. However, mRNA degradation was considerably faster in comparison to previous estimates, with a median half-life of around 2 min. The half-life permits the estimation of promoter-dependent and promoter-independent transcription rates. The dynamical range of the promoter-independent transcription rates was larger than that of the mRNA half-lives. The rapid mRNA turnover and the broad adjustability of promoter-independent transcription rates are expected to have a major impact on stochastic gene expression and gene network behavior.
Collapse
|
10
|
Maleki F, Becskei A. An open-loop approach to calculate noise-induced transitions. J Theor Biol 2017; 415:145-157. [PMID: 27993627 DOI: 10.1016/j.jtbi.2016.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/03/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
Bistability permits the co-existence of two distinct cell fates in a population of genetically identical cells. Noise induced transitions between two fates of a bistable system are difficult to calculate due to the intricate interplay between nonlinear dynamics and noise in bistable positive feedback loops. Here we opened multivariable feedback loops at the slowest variable to obtain the open-loop function and the fluctuations in the open-loop output. By the subsequent reclosing of the loop, we calculated the mean first passage time (MFPT) using the Fokker-Planck equation in good agreement with the exact stochastic simulation. When an external component interacts with a feedback component, it amplifies the extrinsic noise in the loop. Consequently, the open-loop function is shifted and the transition rates between the two states in the closed loop are increased. Despite this shift, the open-loop output reflects the system faithfully to predict the MFPT in the feedback loop. Therefore, the open-loop approach can help theoretical analysis. Furthermore, the measurement of the mean value, variance, and the reaction time-scale of the open-loop output permits the prediction of MFPT simply from experimental data, which underscores the practical value of the stochastic open-loop approach.
Collapse
Affiliation(s)
- Farzaneh Maleki
- Biozentrum, Computational and systems biology, University of Basel, 4056 Basel, Switzerland
| | - Attila Becskei
- Biozentrum, Computational and systems biology, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
11
|
Hsu C, Jaquet V, Maleki F, Becskei A. Contribution of Bistability and Noise to Cell Fate Transitions Determined by Feedback Opening. J Mol Biol 2016; 428:4115-4128. [PMID: 27498164 DOI: 10.1016/j.jmb.2016.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/26/2016] [Accepted: 07/29/2016] [Indexed: 01/06/2023]
Abstract
Alternative cell fates represent a form of non-genetic diversity, which can promote adaptation and functional specialization. It is difficult to predict the rate of the transition between two cell fates due to the strong effect of noise on feedback loops and missing parameters. We opened synthetic positive feedback loops experimentally to obtain open-loop functions. These functions allowed us to identify a deterministic model of bistability by bypassing noise and the requirement to resolve individual processes in the loop. Combining the open-loop function with kinetic measurements and reintroducing the measured noise, we were able to predict the transition rates for the feedback systems without parameter tuning. Noise in gene expression was the key determinant of the transition rates inside the bistable range. Transitions between two cell fates were also observed outside of the bistable range, evidenced by bimodality and hysteresis. In this case, a slow transient process was the rate-limiting step in the transitions. Thus, feedback opening is an effective approach to identify the determinants of cell fate transitions and to predict their rates.
Collapse
Affiliation(s)
- Chieh Hsu
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland; School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Vincent Jaquet
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Farzaneh Maleki
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| |
Collapse
|
12
|
Hsu C, Jaquet V, Gencoglu M, Becskei A. Protein Dimerization Generates Bistability in Positive Feedback Loops. Cell Rep 2016; 16:1204-1210. [DOI: 10.1016/j.celrep.2016.06.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/22/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
|
13
|
Májer I, Hajihosseini A, Becskei A. Identification of optimal parameter combinations for the emergence of bistability. Phys Biol 2015; 12:066011. [DOI: 10.1088/1478-3975/12/6/066011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Pan K, Lee JTH, Huang Z, Wong CM. Coupling and coordination in gene expression processes with pre-mRNA splicing. Int J Mol Sci 2015; 16:5682-96. [PMID: 25768347 PMCID: PMC4394499 DOI: 10.3390/ijms16035682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/28/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022] Open
Abstract
RNA processing is a tightly regulated and highly complex pathway which includes transcription, splicing, editing, transportation, translation and degradation. It has been well-documented that splicing of RNA polymerase II medicated nascent transcripts occurs co-transcriptionally and is functionally coupled to other RNA processing. Recently, increasing experimental evidence indicated that pre-mRNA splicing influences RNA degradation and vice versa. In this review, we summarized the recent findings demonstrating the coupling of these two processes. In addition, we highlighted the importance of splicing in the production of intronic miRNA and circular RNAs, and hence the discovery of the novel mechanisms in the regulation of gene expression.
Collapse
|