1
|
Castaño BA, Schorer S, Guo Y, Calzetta NL, Gottifredi V, Wiesmüller L, Biber S. The levels of p53 govern the hierarchy of DNA damage tolerance pathway usage. Nucleic Acids Res 2024; 52:3740-3760. [PMID: 38321962 PMCID: PMC11039994 DOI: 10.1093/nar/gkae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
It is well-established that, through canonical functions in transcription and DNA repair, the tumor suppressor p53 plays a central role in safeguarding cells from the consequences of DNA damage. Recent data retrieved in tumor and stem cells demonstrated that p53 also carries out non-canonical functions when interacting with the translesion synthesis (TLS) polymerase iota (POLι) at DNA replication forks. This protein complex triggers a DNA damage tolerance (DDT) mechanism controlling the DNA replication rate. Given that the levels of p53 trigger non-binary rheostat-like functions in response to stress or during differentiation, we explore the relevance of the p53 levels for its DDT functions at the fork. We show that subtle changes in p53 levels modulate the contribution of some DDT factors including POLι, POLη, POLζ, REV1, PCNA, PRIMPOL, HLTF and ZRANB3 to the DNA replication rate. Our results suggest that the levels of p53 are central to coordinate the balance between DDT pathways including (i) fork-deceleration by the ZRANB3-mediated fork reversal factor, (ii) POLι-p53-mediated fork-slowing, (iii) POLι- and POLη-mediated TLS and (iv) PRIMPOL-mediated fork-acceleration. Collectively, our study reveals the relevance of p53 protein levels for the DDT pathway choice in replicating cells.
Collapse
Affiliation(s)
- Bryan A Castaño
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Sabrina Schorer
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Yitian Guo
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | | | | | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Stephanie Biber
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| |
Collapse
|
2
|
Abstract
DNA damage by chemicals, radiation, or oxidative stress leads to a mutational spectrum, which is complex because it is determined in part by lesion structure, the DNA sequence context of the lesion, lesion repair kinetics, and the type of cells in which the lesion is replicated. Accumulation of mutations may give rise to genetic diseases such as cancer and therefore understanding the process underlying mutagenesis is of immense importance to preserve human health. Chemical or physical agents that cause cancer often leave their mutational fingerprints, which can be used to back-calculate the molecular events that led to disease. To make a clear link between DNA lesion structure and the mutations a given lesion induces, the field of single-lesion mutagenesis was developed. In the last three decades this area of research has seen much growth in several directions, which we attempt to describe in this Perspective.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, The University of Connecticut Storrs, Storrs, Connecticut 06269, United States
| | - John M Essigmann
- Departments of Chemistry, Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Volk LB, Cooper KL, Jiang T, Paffett ML, Hudson LG. Impacts of arsenic on Rad18 and translesion synthesis. Toxicol Appl Pharmacol 2022; 454:116230. [PMID: 36087615 PMCID: PMC10144522 DOI: 10.1016/j.taap.2022.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 10/31/2022]
Abstract
Arsenite interferes with DNA repair protein function resulting in the retention of UV-induced DNA damage. Accumulated DNA damage promotes replication stress which is bypassed by DNA damage tolerance pathways such as translesion synthesis (TLS). Rad18 is an essential factor in initiating TLS through PCNA monoubiquitination and contains two functionally and structurally distinct zinc fingers that are potential targets for arsenite binding. Arsenite treatment displaced zinc from endogenous Rad18 protein and mass spectrometry analysis revealed arsenite binding to both the Rad18 RING finger and UBZ domains. Consequently, arsenite inhibited Rad18 RING finger dependent PCNA monoubiquitination and polymerase eta recruitment to DNA damage in UV exposed keratinocytes, both of which enhance the bypass of cyclobutane pyrimidine dimers during replication. Further analysis demonstrated multiple effects of arsenite, including the reduction in nuclear localization and UV-induced chromatin recruitment of Rad18 and its binding partner Rad6, which may also negatively impact TLS initiation. Arsenite and Rad18 knockdown in UV exposed keratinocytes significantly increased markers of replication stress and DNA strand breaks to a similar degree, suggesting arsenite mediates its effects through Rad18. Comet assay analysis confirmed an increase in both UV-induced single-stranded DNA and DNA double-strand breaks in arsenite treated keratinocytes compared to UV alone. Altogether, this study supports a mechanism by which arsenite inhibits TLS through the altered activity and regulation of Rad18. Arsenite elevated the levels of UV-induced replication stress and consequently, single-stranded DNA gaps and DNA double-strand breaks. These potentially mutagenic outcomes support a role for TLS in the cocarcinogenicity of arsenite.
Collapse
Affiliation(s)
- L B Volk
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - K L Cooper
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - T Jiang
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - M L Paffett
- Fluorescence Microscopy and Cell Imaging Shared Resource, University of New Mexico Comprehensive Cancer Center, 2325 Camino de Salud, Albuquerque, NM 87131, USA.
| | - L G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
4
|
TENT4A Non-Canonical Poly(A) Polymerase Regulates DNA-Damage Tolerance via Multiple Pathways That Are Mutated in Endometrial Cancer. Int J Mol Sci 2021; 22:ijms22136957. [PMID: 34203408 PMCID: PMC8267958 DOI: 10.3390/ijms22136957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
TENT4A (PAPD7) is a non-canonical poly(A) polymerase, of which little is known. Here, we show that TENT4A regulates multiple biological pathways and focuses on its multilayer regulation of translesion DNA synthesis (TLS), in which error-prone DNA polymerases bypass unrepaired DNA lesions. We show that TENT4A regulates mRNA stability and/or translation of DNA polymerase η and RAD18 E3 ligase, which guides the polymerase to replication stalling sites and monoubiquitinates PCNA, thereby enabling recruitment of error-prone DNA polymerases to damaged DNA sites. Remarkably, in addition to the effect on RAD18 mRNA stability via controlling its poly(A) tail, TENT4A indirectly regulates RAD18 via the tumor suppressor CYLD and via the long non-coding antisense RNA PAXIP1-AS2, which had no known function. Knocking down the expression of TENT4A or CYLD, or overexpression of PAXIP1-AS2 led each to reduced amounts of the RAD18 protein and DNA polymerase η, leading to reduced TLS, highlighting PAXIP1-AS2 as a new TLS regulator. Bioinformatics analysis revealed that TLS error-prone DNA polymerase genes and their TENT4A-related regulators are frequently mutated in endometrial cancer genomes, suggesting that TLS is dysregulated in this cancer.
Collapse
|
5
|
Turan V, Lambertini M, Lee DY, Wang E, Clatot F, Karlan BY, Demeestere I, Bang H, Oktay K. Association of Germline BRCA Pathogenic Variants With Diminished Ovarian Reserve: A Meta-Analysis of Individual Patient-Level Data. J Clin Oncol 2021; 39:2016-2024. [PMID: 33891474 PMCID: PMC8260903 DOI: 10.1200/jco.20.02880] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/27/2021] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To determine whether germline BRCA (gBRCA) pathogenic variants are associated with decreased ovarian reserve. MATERIALS AND METHODS An individual patient-level data meta-analysis was performed using five data sets on 828 evaluable women who were tested for gBRCA. Of those, 250 carried gBRCA, whereas 578 had tested negative and served as controls. Of the women with gBRCA, four centers studied those affected with breast cancer (n = 161) and one studied unaffected individuals (n = 89). The data were adjusted for the center, age, body mass index, smoking, and oral contraceptive pill use before the final analysis. Anti-Müllerian hormone (AMH) levels in affected women were drawn before presystemic therapy. RESULTS The mean age of women with versus without gBRCA1/2 (34.1 ± 4.9 v 34.3 ± 4.8 years; P = .48) and with gBRCA1 versus gBRCA2 (33.7 ± 4.9 v 34.6 ± 4.8 years; P = .16) was similar. After the adjustments, women with gBRCA1/2 had significantly lower AMH levels compared with controls (23% lower; 95% CI, 4 to 38; P = .02). When the adjusted analysis was limited to affected women (157 with gBRCA v 524 without, after exclusions), the difference persisted (25% lower; 95% CI, 9 to 38; P = .003). The serum AMH levels were lower in women with gBRCA1 (33% lower; 95% CI, 12 to 49; P = .004) but not gBRCA2 compared with controls (7% lower; 95% CI, 31% lower to 26% higher; P = .64). CONCLUSION Young women with gBRCA pathogenic variants, particularly those affected and with gBRCA1, have lower serum AMH levels compared with controls. They may need to be preferentially counseled about the possibility of shortened reproductive lifespan because of diminished ovarian reserve.
Collapse
Affiliation(s)
- Volkan Turan
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT
- Department of Obstetrics and Gynecology, Health and Technology University School of Medicine, Istanbul, Turkey
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
- Department of Medical Oncology, UOC Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dong-Yun Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Erica Wang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Florian Clatot
- Department of Medical Oncology, Henri Becquerel Centre, Rouen, France
| | - Beth Y. Karlan
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | - Isabelle Demeestere
- Fertility Clinic, Research Laboratory on Human Reproduction, CUB-Erasme, and Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Heejung Bang
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA
| | - Kutluk Oktay
- Department of Obstetrics and Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
6
|
Shariati M. The cancer therapy materialization by theranostic nanoparticles based on gold doped iron oxide under electromagnetic field amplification. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 35:102406. [PMID: 33932592 DOI: 10.1016/j.nano.2021.102406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/14/2021] [Accepted: 03/31/2021] [Indexed: 01/17/2023]
Abstract
The harnessing of the cancer X-ray radiation therapy by gold-decorated Fe3O4 theranostic nanoparticles (Au-Fe3O4 NPs) under electromagnetic field was articulated. The applied electromagnetic field could assemble the NPs inside cell in oriented field direction and enhance the local irradiation dose inside cell. By materializing NPs, the absorption of the energy exposed by X-ray radiation under electromagnetic field was restricted. The cytotoxic properties of the Au-Fe3O4 NPs were assessed using MTT assay in L929, HeLa and PC3 cell lines under radiation and dark conditions. The efficiency of the Au-Fe3O4 NPs under 2 Gy dose radiations was higher than 6 Gy radiations in untreated cells. The in vitro measurements showed that under electromagnetic field and X-ray radiation therapy with Au-Fe3O4 NPs, around 90% of the cancer cells population was annihilated. The in vivo measurements indicated that the tumor shape and size under X-ray with Au-Fe3O4 NPs after 3 weeks were efficiently deteriorated.
Collapse
Affiliation(s)
- Mohsen Shariati
- Department of Physics, Faculty of Science, Pardis Branch, Islamic Azad University, Pardis, Iran.
| |
Collapse
|
7
|
Szeltner Z, Póti Á, Harami GM, Kovács M, Szüts D. Evaluation and modulation of DNA lesion bypass in an SV40 large T antigen-based in vitro replication system. FEBS Open Bio 2021; 11:1054-1075. [PMID: 33512058 PMCID: PMC8016126 DOI: 10.1002/2211-5463.13099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 11/09/2022] Open
Abstract
DNA damage removal by nucleotide excision repair (NER) and replicative bypass via translesion synthesis (TLS) and template switch (TSw) are important in ensuring genome stability. In this study, we tested the applicability of an SV40 large T antigen‐based replication system for the simultaneous examination of these damage tolerance processes. Using both Sanger and next‐generation sequencing combined with lesion‐specific qPCR and replication efficiency studies, we demonstrate that this system works well for studying NER and TLS, especially its one‐polymerase branch, while it is less suited to investigations of homology‐related repair processes, such as TSw. Cis‐syn cyclobutane pyrimidine dimer photoproducts were replicated with equal efficiency to lesion‐free plasmids in vitro, and the majority of TLS on this lesion could be inhibited by a peptide (PIR) specific for the polη‐PCNA interaction interface. TLS on 6–4 pyrimidine–pyrimidone photoproduct proved to be inefficient and was slightly facilitated by PIR as well as by a recombinant ubiquitin‐binding zinc finger domain of polη in HeLa extract, possibly by promoting polymerase exchange. Supplementation of the extract with recombinant PCNA variants indicated the dependence of TLS on PCNA ubiquitylation. In contrast to active TLS and NER, we found no evidence of successful TSw in cellular extracts. The established methods can promote in vitro investigations of replicative DNA damage bypass.
Collapse
Affiliation(s)
- Zoltán Szeltner
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor M Harami
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Mihály Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
8
|
Piberger AL, Bowry A, Kelly RDW, Walker AK, González-Acosta D, Bailey LJ, Doherty AJ, Méndez J, Morris JR, Bryant HE, Petermann E. PrimPol-dependent single-stranded gap formation mediates homologous recombination at bulky DNA adducts. Nat Commun 2020; 11:5863. [PMID: 33203852 PMCID: PMC7673990 DOI: 10.1038/s41467-020-19570-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 10/15/2020] [Indexed: 11/09/2022] Open
Abstract
Stalled replication forks can be restarted and repaired by RAD51-mediated homologous recombination (HR), but HR can also perform post-replicative repair after bypass of the obstacle. Bulky DNA adducts are important replication-blocking lesions, but it is unknown whether they activate HR at stalled forks or behind ongoing forks. Using mainly BPDE-DNA adducts as model lesions, we show that HR induced by bulky adducts in mammalian cells predominantly occurs at post-replicative gaps formed by the DNA/RNA primase PrimPol. RAD51 recruitment under these conditions does not result from fork stalling, but rather occurs at gaps formed by PrimPol re-priming and resection by MRE11 and EXO1. In contrast, RAD51 loading at double-strand breaks does not require PrimPol. At bulky adducts, PrimPol promotes sister chromatid exchange and genetic recombination. Our data support that HR at bulky adducts in mammalian cells involves post-replicative gap repair and define a role for PrimPol in HR-mediated DNA damage tolerance.
Collapse
Affiliation(s)
- Ann Liza Piberger
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Akhil Bowry
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard D W Kelly
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alexandra K Walker
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Laura J Bailey
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Aidan J Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Juan Méndez
- Molecular Oncology Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Joanna R Morris
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen E Bryant
- Department of Oncology & Metabolism, The Medical School, University of Sheffield, Sheffield, S10 2RX, UK
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Turan V, Oktay K. BRCA-related ATM-mediated DNA double-strand break repair and ovarian aging. Hum Reprod Update 2020; 26:43-57. [PMID: 31822904 DOI: 10.1093/humupd/dmz043] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Oocyte aging has significant clinical consequences, and yet no treatment exists to address the age-related decline in oocyte quality. The lack of progress in the treatment of oocyte aging is due to the fact that the underlying molecular mechanisms are not sufficiently understood. BRCA1 and 2 are involved in homologous DNA recombination and play essential roles in ataxia telangiectasia mutated (ATM)-mediated DNA double-strand break (DSB) repair. A growing body of laboratory, translational and clinical evidence has emerged within the past decade indicating a role for BRCA function and ATM-mediated DNA DSB repair in ovarian aging. OBJECTIVE AND RATIONALE Although there are several competing or complementary theories, given the growing evidence tying BRCA function and ATM-mediated DNA DSB repair mechanisms in general to ovarian aging, we performed this review encompassing basic, translational and clinical work to assess the current state of knowledge on the topic. A clear understanding of the mechanisms underlying oocyte aging may result in targeted treatments to preserve ovarian reserve and improve oocyte quality. SEARCH METHODS We searched for published articles in the PubMed database containing key words, BRCA, BRCA1, BRCA2, Mutations, Fertility, Ovarian Reserve, Infertility, Mechanisms of Ovarian Aging, Oocyte or Oocyte DNA Repair, in the English-language literature until May 2019. We did not include abstracts or conference proceedings, with the exception of our own. OUTCOMES Laboratory studies provided robust and reproducible evidence that BRCA1 function and ATM-mediated DNA DSB repair, in general, weakens with age in oocytes of multiple species including human. In both women with BRCA mutations and BRCA-mutant mice, primordial follicle numbers are reduced and there is accelerated accumulation of DNA DSBs in oocytes. In general, women with BRCA1 mutations have lower ovarian reserves and experience earlier menopause. Laboratory evidence also supports critical role for BRCA1 and other ATM-mediated DNA DSB repair pathway members in meiotic function. When laboratory, translational and clinical evidence is considered together, BRCA-related ATM-mediated DNA DSB repair function emerges as a likely regulator of ovarian aging. Moreover, DNA damage and repair appear to be key features in chemotherapy-induced ovarian aging. WIDER IMPLICATIONS The existing data suggest that the BRCA-related ATM-mediated DNA repair pathway is a strong candidate to be a regulator of oocyte aging, and the age-related decline of this pathway likely impairs oocyte health. This knowledge may create an opportunity to develop targeted treatments to reverse or prevent physiological or chemotherapy-induced oocyte aging. On the immediate practical side, women with BRCA or similar mutations may need to be specially counselled for fertility preservation.
Collapse
Affiliation(s)
- Volkan Turan
- Department of Obstetrics and Gynecology, Uskudar University School of Medicine, Istanbul, Turkey.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Kutluk Oktay
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
10
|
Masuda Y, Masutani C. Spatiotemporal regulation of PCNA ubiquitination in damage tolerance pathways. Crit Rev Biochem Mol Biol 2019; 54:418-442. [PMID: 31736364 DOI: 10.1080/10409238.2019.1687420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA is constantly exposed to a wide variety of exogenous and endogenous agents, and most DNA lesions inhibit DNA synthesis. To cope with such problems during replication, cells have molecular mechanisms to resume DNA synthesis in the presence of DNA lesions, which are known as DNA damage tolerance (DDT) pathways. The concept of ubiquitination-mediated regulation of DDT pathways in eukaryotes was established via genetic studies in the yeast Saccharomyces cerevisiae, in which two branches of the DDT pathway are regulated via ubiquitination of proliferating cell nuclear antigen (PCNA): translesion DNA synthesis (TLS) and homology-dependent repair (HDR), which are stimulated by mono- and polyubiquitination of PCNA, respectively. Over the subsequent nearly two decades, significant progress has been made in understanding the mechanisms that regulate DDT pathways in other eukaryotes. Importantly, TLS is intrinsically error-prone because of the miscoding nature of most damaged nucleotides and inaccurate replication of undamaged templates by TLS polymerases (pols), whereas HDR is theoretically error-free because the DNA synthesis is thought to be predominantly performed by pol δ, an accurate replicative DNA pol, using the undamaged sister chromatid as its template. Thus, the regulation of the choice between the TLS and HDR pathways is critical to determine the appropriate biological outcomes caused by DNA damage. In this review, we summarize our current understanding of the species-specific regulatory mechanisms of PCNA ubiquitination and how cells choose between TLS and HDR. We then provide a hypothetical model for the spatiotemporal regulation of DDT pathways in human cells.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Masuda Y, Mitsuyuki S, Kanao R, Hishiki A, Hashimoto H, Masutani C. Regulation of HLTF-mediated PCNA polyubiquitination by RFC and PCNA monoubiquitination levels determines choice of damage tolerance pathway. Nucleic Acids Res 2019; 46:11340-11356. [PMID: 30335157 PMCID: PMC6265450 DOI: 10.1093/nar/gky943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
DNA-damage tolerance protects cells via at least two sub-pathways regulated by proliferating cell nuclear antigen (PCNA) ubiquitination in eukaryotes: translesion DNA synthesis (TLS) and template switching (TS), which are stimulated by mono- and polyubiquitination, respectively. However, how cells choose between the two pathways remains unclear. The regulation of ubiquitin ligases catalyzing polyubiquitination, such as helicase-like transcription factor (HLTF), could play a role in the choice of pathway. Here, we demonstrate that the ligase activity of HLTF is stimulated by double-stranded DNA via HIRAN domain-dependent recruitment to stalled primer ends. Replication factor C (RFC) and PCNA located at primer ends, however, suppress en bloc polyubiquitination in the complex, redirecting toward sequential chain elongation. When PCNA in the complex is monoubiquitinated by RAD6-RAD18, the resulting ubiquitin moiety is immediately polyubiquitinated by coexisting HLTF, indicating a coupling reaction between mono- and polyubiquitination. By contrast, when PCNA was monoubiquitinated in the absence of HLTF, it was not polyubiquitinated by subsequently recruited HLTF unless all three-subunits of PCNA were monoubiquitinated, indicating that the uncoupling reaction specifically occurs on three-subunit-monoubiquitinated PCNA. We discuss the physiological relevance of the different modes of the polyubiquitination to the choice of cells between TLS and TS under different conditions.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Satoshi Mitsuyuki
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Asami Hishiki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8002, Japan
| | - Hiroshi Hashimoto
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8002, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
12
|
Tsuda M, Ogawa S, Ooka M, Kobayashi K, Hirota K, Wakasugi M, Matsunaga T, Sakuma T, Yamamoto T, Chikuma S, Sasanuma H, Debatisse M, Doherty AJ, Fuchs RP, Takeda S. PDIP38/PolDIP2 controls the DNA damage tolerance pathways by increasing the relative usage of translesion DNA synthesis over template switching. PLoS One 2019; 14:e0213383. [PMID: 30840704 PMCID: PMC6402704 DOI: 10.1371/journal.pone.0213383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/19/2019] [Indexed: 12/05/2022] Open
Abstract
Replicative DNA polymerases are frequently stalled at damaged template strands. Stalled replication forks are restored by the DNA damage tolerance (DDT) pathways, error-prone translesion DNA synthesis (TLS) to cope with excessive DNA damage, and error-free template switching (TS) by homologous DNA recombination. PDIP38 (Pol-delta interacting protein of 38 kDa), also called Pol δ-interacting protein 2 (PolDIP2), physically associates with TLS DNA polymerases, polymerase η (Polη), Polλ, and PrimPol, and activates them in vitro. It remains unclear whether PDIP38 promotes TLS in vivo, since no method allows for measuring individual TLS events in mammalian cells. We disrupted the PDIP38 gene, generating PDIP38-/- cells from the chicken DT40 and human TK6 B cell lines. These PDIP38-/- cells did not show a significant sensitivity to either UV or H2O2, a phenotype not seen in any TLS-polymerase-deficient DT40 or TK6 mutants. DT40 provides a unique opportunity of examining individual TLS and TS events by the nucleotide sequence analysis of the immunoglobulin variable (Ig V) gene as the cells continuously diversify Ig V by TLS (non-templated Ig V hypermutation) and TS (Ig gene conversion) during in vitro culture. PDIP38-/- cells showed a shift in Ig V diversification from TLS to TS. We measured the relative usage of TLS and TS in TK6 cells at a chemically synthesized UV damage (CPD) integrated into genomic DNA. The loss of PDIP38 also caused an increase in the relative usage of TS. The number of UV-induced sister chromatid exchanges, TS events associated with crossover, was increased a few times in PDIP38-/- human and chicken cells. Collectively, the loss of PDIP38 consistently causes a shift in DDT from TLS to TS without enhancing cellular sensitivity to DNA damage. We propose that PDIP38 controls the relative usage of TLS and TS increasing usage of TLS without changing the overall capability of DDT.
Collapse
Affiliation(s)
- Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Saki Ogawa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masato Ooka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Kaori Kobayashi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Mitsuo Wakasugi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsukasa Matsunaga
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michelle Debatisse
- Institut Curie UMR 3244, Universite Pierre et Marie Curie (Paris 06), CNRS Paris, France
| | - Aidan J. Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Robert P. Fuchs
- DNA Damage Tolerance CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille University, UM 105, Marseille, France
- Inserm, U1068, CRCM, Marseille, France
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
13
|
Seplyarskiy VB, Akkuratov EE, Akkuratova N, Andrianova MA, Nikolaev SI, Bazykin GA, Adameyko I, Sunyaev SR. Error-prone bypass of DNA lesions during lagging-strand replication is a common source of germline and cancer mutations. Nat Genet 2019; 51:36-41. [PMID: 30510240 PMCID: PMC6317876 DOI: 10.1038/s41588-018-0285-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
Studies in experimental systems have identified a multitude of mutational mechanisms including DNA replication infidelity and DNA damage followed by inefficient repair or replicative bypass. However, the relative contributions of these mechanisms to human germline mutation remain unknown. Here, we show that error-prone damage bypass on the lagging strand plays a major role in human mutagenesis. Transcription-coupled DNA repair removes lesions on the transcribed strand; lesions on the non-transcribed strand are preferentially converted into mutations. In human polymorphism we detect a striking similarity between mutation types predominant on the non-transcribed strand and on the strand lagging during replication. Moreover, damage-induced mutations in cancers accumulate asymmetrically with respect to the direction of replication, suggesting that DNA lesions are resolved asymmetrically. We experimentally demonstrate that replication delay greatly attenuates the mutagenic effect of ultraviolet irradiation, confirming that replication converts DNA damage into mutations. We estimate that at least 10% of human mutations arise due to DNA damage.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Evgeny E Akkuratov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Natalia Akkuratova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Sergey I Nikolaev
- Inserm U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Department of Dermatology and Venereology, Université Paris 7, St. Louis Hospital, Paris, France
| | - Georgii A Bazykin
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Shamil R Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
SUMOylation of PCNA by PIAS1 and PIAS4 promotes template switch in the chicken and human B cell lines. Proc Natl Acad Sci U S A 2018; 115:12793-12798. [PMID: 30487218 DOI: 10.1073/pnas.1716349115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage tolerance (DDT) releases replication blockage caused by damaged nucleotides on template strands employing two alternative pathways, error-prone translesion DNA synthesis (TLS) and error-free template switch (TS). Lys164 of proliferating cell nuclear antigen (PCNA) is SUMOylated during the physiological cell cycle. To explore the role for SUMOylation of PCNA in DDT, we characterized chicken DT40 and human TK6 B cells deficient in the PIAS1 and PIAS4 small ubiquitin-like modifier (SUMO) E3 ligases. DT40 cells have a unique advantage in the phenotypic analysis of DDT as they continuously diversify their immunoglobulin (Ig) variable genes by TLS and TS [Ig gene conversion (GC)], both relieving replication blocks at abasic sites without accompanying by DNA breakage. Remarkably, PIAS1 -/- /PIAS4 -/- cells displayed a multifold decrease in SUMOylation of PCNA at Lys164 and over a 90% decrease in the rate of TS. Likewise, PIAS1 -/- /PIAS4 -/- TK6 cells showed a shift of DDT from TS to TLS at a chemosynthetic UV lesion inserted into the genomic DNA. The PCNA K164R/K164R mutation caused a ∼90% decrease in the rate of Ig GC and no additional impact on PIAS1 -/- /PIAS4 -/- cells. This epistatic relationship between the PCNA K164R/K164R and the PIAS1 -/- /PIAS4 -/- mutations suggests that PIAS1 and PIAS4 promote TS mainly through SUMOylation of PCNA at Lys164. This idea is further supported by the data that overexpression of a PCNA-SUMO1 chimeric protein restores defects in TS in PIAS1 -/- /PIAS4 -/- cells. In conclusion, SUMOylation of PCNA at Lys164 promoted by PIAS1 and PIAS4 ensures the error-free release of replication blockage during physiological DNA replication in metazoan cells.
Collapse
|
15
|
Quinet A, Lerner LK, Martins DJ, Menck CFM. Filling gaps in translesion DNA synthesis in human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:127-142. [PMID: 30442338 DOI: 10.1016/j.mrgentox.2018.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/21/2018] [Indexed: 01/06/2023]
Abstract
During DNA replication, forks may encounter unrepaired lesions that hamper DNA synthesis. Cells have universal strategies to promote damage bypass allowing cells to survive. DNA damage tolerance can be performed upon template switch or by specialized DNA polymerases, known as translesion (TLS) polymerases. Human cells count on more than eleven TLS polymerases and this work reviews the functions of some of these enzymes: Rev1, Pol η, Pol ι, Pol κ, Pol θ and Pol ζ. The mechanisms of damage bypass vary according to the lesion, as well as to the TLS polymerases available, and may occur directly at the fork during replication. Alternatively, the lesion may be skipped, leaving a single-stranded DNA gap that will be replicated later. Details of the participation of these enzymes are revised for the replication of damaged template. TLS polymerases also have functions in other cellular processes. These include involvement in somatic hypermutation in immunoglobulin genes, direct participation in recombination and repair processes, and contributing to replicating noncanonical DNA structures. The importance of DNA damage replication to cell survival is supported by recent discoveries that certain genes encoding TLS polymerases are induced in response to DNA damaging agents, protecting cells from a subsequent challenge to DNA replication. We retrace the findings on these genotoxic (adaptive) responses of human cells and show the common aspects with the SOS responses in bacteria. Paradoxically, although TLS of DNA damage is normally an error prone mechanism, in general it protects from carcinogenesis, as evidenced by increased tumorigenesis in xeroderma pigmentosum variant patients, who are deficient in Pol η. As these TLS polymerases also promote cell survival, they constitute an important mechanism by which cancer cells acquire resistance to genotoxic chemotherapy. Therefore, the TLS polymerases are new potential targets for improving therapy against tumors.
Collapse
Affiliation(s)
- Annabel Quinet
- Saint Louis University School of Medicine, St. Louis, MO, United States.
| | - Leticia K Lerner
- MRC Laboratory of Molecular Biology,Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Davi J Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos F M Menck
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Mórocz M, Zsigmond E, Tóth R, Enyedi MZ, Pintér L, Haracska L. DNA-dependent protease activity of human Spartan facilitates replication of DNA-protein crosslink-containing DNA. Nucleic Acids Res 2017; 45:3172-3188. [PMID: 28053116 PMCID: PMC5389635 DOI: 10.1093/nar/gkw1315] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/22/2016] [Indexed: 01/24/2023] Open
Abstract
Mutations in SPARTAN are associated with early onset hepatocellular carcinoma and progeroid features. A regulatory function of Spartan has been implicated in DNA damage tolerance pathways such as translesion synthesis, but the exact function of the protein remained unclear. Here, we reveal the role of human Spartan in facilitating replication of DNA–protein crosslink-containing DNA. We found that purified Spartan has a DNA-dependent protease activity degrading certain proteins bound to DNA. In concert, Spartan is required for direct DPC removal in vivo; we also show that the protease Spartan facilitates repair of formaldehyde-induced DNA–protein crosslinks in later phases of replication using the bromodeoxyuridin (BrdU) comet assay. Moreover, DNA fibre assay indicates that formaldehyde-induced replication stress dramatically decreases the speed of replication fork movement in Spartan-deficient cells, which accumulate in the G2/M cell cycle phase. Finally, epistasis analysis mapped these Spartan functions to the RAD6-RAD18 DNA damage tolerance pathway. Our results reveal that Spartan facilitates replication of DNA–protein crosslink-containing DNA enzymatically, as a protease, which may explain its role in preventing carcinogenesis and aging.
Collapse
Affiliation(s)
- Mónika Mórocz
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Eszter Zsigmond
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Róbert Tóth
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Márton Zs Enyedi
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Lajos Pintér
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Lajos Haracska
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| |
Collapse
|
17
|
Abstract
The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance.
Collapse
Affiliation(s)
- Nicholas E. Geacintov
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| | - Suse Broyde
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| |
Collapse
|
18
|
Piberger AL, Krüger CT, Strauch BM, Schneider B, Hartwig A. BPDE-induced genotoxicity: relationship between DNA adducts, mutagenicity in the in vitro PIG-A assay, and the transcriptional response to DNA damage in TK6 cells. Arch Toxicol 2017; 92:541-551. [PMID: 28593498 PMCID: PMC5773665 DOI: 10.1007/s00204-017-2003-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
Abstract
Benzo[a]pyrene is a known human carcinogen. As underlying mechanism, the induction of stable DNA adducts and mutations have been repeatedly demonstrated. Also, the activation of cellular stress response on the transcriptional level has been described. Nevertheless, the interrelationship between these different events is less well understood, especially at low, for human exposure relevant concentrations. Within the present study, we applied the reactive metabolite benzo[a]pyrene diolepoxide (BPDE) in the nanomolar, non-cytotoxic concentration range in human TK6 cells and quantified the induction and repair of stable DNA adducts at the N2-position of guanine by HPLC with fluorescence detection. Significant levels of DNA lesions were detected even at the lowest concentration of 10 nM BPDE, with a linear increase up to 50 nM. Relative repair was similar at all damage levels, reaching about 30% after 8 h and 60% after 24 h. Mutation frequencies were quantified as GPI-deficient cells by the recently established in vitro PIG-A mutagenicity assay. Again, a linear dose–response-relationship in the before-mentioned concentration range was observed, also when plotting the number of GPI-deficient cells against the number of DNA adducts. Furthermore, we explored the time- and concentration-dependent DNA damage response on the transcriptional level via a high-throughput RT-qPCR technique by quantifying the impact of BPDE on the transcription of 95 genes comprising DNA damage response, DNA repair factors, oxidative stress response, cell cycle arrest, cell proliferation, and apoptosis. As expected, BPDE activated DNA damage signaling, p53 and AP-1 dependent signaling, oxidative stress response, and apoptosis. However, in contrast to DNA adducts and mutations, the onset of the transcriptional DNA damage response was restricted to higher concentrations, indicating that its respective activations require a certain level of DNA lesions. Altogether, the results indicate that in case of BPDE, DNA lesions and mutations were correlated at all concentrations, suggesting that repair is not complete even at low levels of DNA damage. Considering the ongoing discussion on potential thresholds also for genotoxic carcinogens, the results are of major relevance, both with respect to basic research as well as to risk assessment of chemical carcinogens.
Collapse
Affiliation(s)
- Ann Liza Piberger
- Food Chemistry and Toxicology, Institute of Applied Bioscience, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Christopher T Krüger
- Food Chemistry and Toxicology, Institute of Applied Bioscience, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Bettina M Strauch
- Food Chemistry and Toxicology, Institute of Applied Bioscience, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Beatrice Schneider
- Food Chemistry and Toxicology, Institute of Applied Bioscience, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Andrea Hartwig
- Food Chemistry and Toxicology, Institute of Applied Bioscience, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| |
Collapse
|
19
|
Livneh Z, Cohen IS, Paz-Elizur T, Davidovsky D, Carmi D, Swain U, Mirlas-Neisberg N. High-resolution genomic assays provide insight into the division of labor between TLS and HDR in mammalian replication of damaged DNA. DNA Repair (Amst) 2016; 44:59-67. [PMID: 27262613 DOI: 10.1016/j.dnarep.2016.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The multitude of DNA lesions that continuously form in DNA cannot all be detected and removed prior to replication. Thus, encounters of the replication fork with DNA damage become inevitable. Such encounters inhibit fork progression, leading to replication fork arrest or to replication re-priming downstream of the damage site. Either of these events will result in the formation of gap-lesion structures, in which a damaged base is located in a single stranded stretch of DNA, that is vulnerable to subsequent nicking. The double strand break that would ensue if ssDNA becomes nicked constitutes escalation of the damage from nucleotide(s)-specific to chromosomal scale. Cells employ two universal DNA damage tolerance (DDT) strategies to resolve these situations, by converting the gap-lesion structures into dsDNA without repairing the damage. The first is translesion DNA synthesis (TLS), in which a specialized low-fidelity DNA polymerase inserts a nucleotide opposite the damaged one. TLS is inherently mutagenic, due to the miscoding nature of most damaged nucleotides. The second strategy is homology-dependent repair (HDR), which relies on the presence of an identical intact sister chromatid. The molecular mechanisms that regulate the division of labor between these pathways are poorly understood. This review focuses on the balance between TLS and HDR in mammalian cells, discussing recent findings that were made possible thanks to newly developed high resolution genomic assays, and highlighting the role of the DNA lesion's properties in DDT pathway choice.
Collapse
Affiliation(s)
- Zvi Livneh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Isadora S Cohen
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Paz-Elizur
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dana Davidovsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dalit Carmi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Umakanta Swain
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nataly Mirlas-Neisberg
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
20
|
Hirota K, Tsuda M, Mohiuddin, Tsurimoto T, Cohen IS, Livneh Z, Kobayashi K, Narita T, Nishihara K, Murai J, Iwai S, Guilbaud G, Sale JE, Takeda S. In vivo evidence for translesion synthesis by the replicative DNA polymerase δ. Nucleic Acids Res 2016; 44:7242-50. [PMID: 27185888 PMCID: PMC5009730 DOI: 10.1093/nar/gkw439] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/06/2016] [Indexed: 12/17/2022] Open
Abstract
The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro. These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass.
Collapse
Affiliation(s)
- Kouji Hirota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji- shi, Tokyo 192-0397, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mohiuddin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiki Tsurimoto
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Isadora S Cohen
- Weizmann Institute of Science, Department of Biological Chemistry, Rehovot 76100, Israel
| | - Zvi Livneh
- Weizmann Institute of Science, Department of Biological Chemistry, Rehovot 76100, Israel
| | - Kaori Kobayashi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji- shi, Tokyo 192-0397, Japan
| | - Takeo Narita
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kana Nishihara
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junko Murai
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Guillaume Guilbaud
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
21
|
Ghaemi B, Mashinchian O, Mousavi T, Karimi R, Kharrazi S, Amani A. Harnessing the Cancer Radiation Therapy by Lanthanide-Doped Zinc Oxide Based Theranostic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3123-3134. [PMID: 26771200 DOI: 10.1021/acsami.5b10056] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this paper, doping of europium (Eu) and gadolinium (Gd) as high-Z elements into zinc oxide (ZnO) nanoparticles (NPs) was designed to optimize restricted energy absorption from a conventional radiation therapy by X-ray. Gd/Eu-doped ZnO NPs with a size of 9 nm were synthesized by a chemical precipitation method. The cytotoxic effects of Eu/Gd-doped ZnO NPs were determined using MTT assay in L929, HeLa, and PC3 cell lines under dark conditions as well as exposure to ultraviolet, X-ray, and γ radiation. Doped NPs at 20 μg/mL concentration under an X-ray dose of 2 Gy were as efficient as 6 Gy X-ray radiation on untreated cells. It is thus suggested that the doped NPs may be used as photoinducers to increase the efficacy of X-rays within the cells, consequently, cancer cell death. The doped NPs also could reduce the received dose by normal cells around the tumor. Additionally, we evaluated the diagnostic efficacy of doped NPs as CT/MRI nanoprobes. Results showed an efficient theranostic nanoparticulate system for simultaneous CT/MR imaging and cancer treatment.
Collapse
Affiliation(s)
| | - Omid Mashinchian
- Institute of Bioengineering, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL) , Lausanne, Switzerland
| | - Tayebeh Mousavi
- Department of Materials, University of Oxford , Oxford OX1 3PH, U.K
| | | | | | | |
Collapse
|
22
|
Shriber P, Leitner-Dagan Y, Geacintov N, Paz-Elizur T, Livneh Z. DNA sequence context greatly affects the accuracy of bypass across an ultraviolet light 6-4 photoproduct in mammalian cells. Mutat Res 2015; 780:71-6. [PMID: 26302378 DOI: 10.1016/j.mrfmmm.2015.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/25/2015] [Accepted: 08/10/2015] [Indexed: 12/18/2022]
Abstract
Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism carried out by low-fidelity DNA polymerases that bypass DNA lesions, which overcomes replication stalling. Despite the miscoding nature of most common DNA lesions, several of them are bypassed in mammalian cells in a relatively accurate manner, which plays a key role maintaining a low mutation load. Whereas it is generally agreed that TLS across the major UV and sunlight induced DNA lesion, the cyclobutane pyrimidine dimer (CPD), is accurate, there were conflicting reports on whether the same is true for the thymine-thymine pyrimidine-pyrimidone(6-4) ultraviolet light photoproduct (TT6-4PP), which represents the second most common class of UV lesions. Using a TLS assay system based on gapped plasmids carrying site-specific TT6-4PP lesions in defined sequence contexts we show that the DNA sequence context markedly affected both the extent and accuracy of TLS. The sequence exhibiting higher TLS exhibited also higher error-frequency, caused primarily by semi-targeted mutations, at the nearest nucleotides flanking the lesion. Our results resolve the discrepancy reported on TLS across TT6-4PP, and suggest that TLS is more accurate in human cells than in mouse cells.
Collapse
Affiliation(s)
- Pola Shriber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Leitner-Dagan
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | - Tamar Paz-Elizur
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Zvi Livneh
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|