1
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
2
|
Ahmed A, Kato N, Gautier J. Replication-Independent ICL Repair: From Chemotherapy to Cell Homeostasis. J Mol Biol 2024; 436:168618. [PMID: 38763228 PMCID: PMC11227339 DOI: 10.1016/j.jmb.2024.168618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Interstrand crosslinks (ICLs) are a type of covalent lesion that can prevent transcription and replication by inhibiting DNA strand separation and instead trigger cell death. ICL inducing compounds are commonly used as chemotherapies due to their effectiveness in inhibiting cell proliferation. Naturally occurring crosslinking agents formed from metabolic processes can also pose a challenge to genome stability especially in slowly or non-dividing cells. Cells maintain a variety of ICL repair mechanisms to cope with this stressor within and outside the S phase of the cell cycle. Here, we discuss the mechanisms of various replication-independent ICL repair pathways and how crosslink repair efficiency is tied to aging and disease.
Collapse
Affiliation(s)
- Arooba Ahmed
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Niyo Kato
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA; Department of Genetics and Development, Columbia University Vagelos, College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
3
|
Facile preparation of model DNA interstrand cross-link repair intermediates using ribonucleotide-containing DNA. DNA Repair (Amst) 2022; 111:103286. [PMID: 35124371 PMCID: PMC8939895 DOI: 10.1016/j.dnarep.2022.103286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 01/13/2023]
Abstract
DNA interstrand cross-links (ICLs) are lesions with a covalent bond formed between DNA strands. ICLs are extremely toxic to cells because they prevent the separation of the two strands, which are necessary for the genetic interpretation of DNA. ICLs are repaired via Fanconi anemia and replication-independent pathways. The formation of so-called unhooked repair intermediates via a dual strand incision flanking the ICL site on one strand is an essential step in nearly all ICL repair pathways. Recently, ICLs derived from endogenous sources, such as those from ubiquitous DNA lesions, abasic (AP) sites, have emerged as an important class of ICLs. Despite the earlier efforts in preparing AP-ICLs in high yield using nucleotide analogs, little information is available for preparing AP-ICL unhooked intermediates with varying lengths of overhangs. In this study, we devise a simple approach to prepare model ICL unhooked intermediates derived from AP sites. We exploited the alkaline lability of ribonucleotides (rNMPs) and the high cross-linking efficiency between an AP lesion and a nucleotide analog, 2-aminopurine, via reductive amination. We designed chimeric DNA/RNA substrates with rNMPs flanking the cross-linking residue (2-aminopurine) to facilitate subsequent strand cleavage under our optimized conditions. Mass spectrometric analysis and primer extension assays confirmed the structures of ICL substrates. The method is straightforward, requires no synthetic chemistry expertise, and should be broadly accessible to all researchers in the DNA repair community. For step-by-step descriptions of the method, please refer to the companion manuscript in MethodsX.
Collapse
|
4
|
Housh K, Gates KS. Synthesis of DNA Duplexes Containing Site-Specific Interstrand Cross-Links via Sequential Reductive Amination Reactions Involving Diamine Linkers and Abasic Sites on Complementary Oligodeoxynucleotides. Chem Res Toxicol 2021; 34:2384-2391. [PMID: 34694787 PMCID: PMC8650211 DOI: 10.1021/acs.chemrestox.1c00293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interstrand DNA cross-links are important in biology, medicinal chemistry, and materials science. Accordingly, methods for the targeted installation of interstrand cross-links in DNA duplexes may be useful in diverse fields. Here, a simple procedure is reported for the preparation of DNA duplexes containing site-specific, chemically defined interstrand cross-links. The approach involves sequential reductive amination reactions between diamine linkers and two abasic (apurinic/apyrimidinic, AP) sites on complementary oligodeoxynucleotides. Use of the symmetrical triamine, tris(2-aminoethyl)amine, in this reaction sequence enabled the preparation of a cross-linked DNA duplex bearing a derivatizable aminoethyl group.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
- University of Missouri, Department of Biochemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| |
Collapse
|
5
|
Cheun YK, Groehler AS, Schärer OD. New Synthetic Analogs of Nitrogen Mustard DNA Interstrand Cross-Links and Their Use to Study Lesion Bypass by DNA Polymerases. Chem Res Toxicol 2021; 34:1790-1799. [PMID: 34133118 PMCID: PMC11246215 DOI: 10.1021/acs.chemrestox.1c00123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nitrogen mustards are a widely used class of antitumor agents that exert their cytotoxic effects through the formation of DNA interstrand cross-links (ICLs). Despite being among the first antitumor agents used, the biological responses to NM ICLs remain only partially understood. We have previously reported the generation of NM ICL mimics by incorporation of ICL precursors into DNA using solid-phase synthesis at defined positions, followed by a double reductive amination reaction. However, the structure of these mimics deviated from the native NM ICLs. Using further development of our approach, we report a new class of NM ICL mimics that only differ from their native counterpart by substitution of dG with 7-deaza-dG at the ICL. Importantly, this approach allows for the synthesis of diverse NM ICLs, illustrated here with a mimic of the adduct formed by chlorambucil. We used the newly generated ICLs in reactions with replicative and translesion synthesis DNA polymerase to demonstrate their stability and utility for functional studies. These new NM ICLs will allow for the further characterization of the biological responses to this important class of antitumor agents.
Collapse
Affiliation(s)
- Young K Cheun
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Arnold S Groehler
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Krömer M, Brunderová M, Ivancová I, Poštová Slavětínská L, Hocek M. 2-Formyl-dATP as Substrate for Polymerase Synthesis of Reactive DNA Bearing an Aldehyde Group in the Minor Groove. Chempluschem 2021; 85:1164-1170. [PMID: 32496002 DOI: 10.1002/cplu.202000287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/15/2020] [Indexed: 12/16/2022]
Abstract
2-Formyl-2'-deoxyadenosine triphosphate (dCHO ATP) was synthesized and tested as a substrate in enzymatic synthesis of DNA modified in the minor groove with a reactive aldehyde group. The multistep synthesis of dCHO ATP was based on the preparation of protected 2-dihydroxyethyl-2'-deoxyadenosine intemediate, which was triphosphorylated and converted to aldehyde through oxidative cleavage. The dCHO ATP triphosphate was a moderate substrate for KOD XL DNA polymerase, and was used for enzymatic synthesis of some sequences using primer extension (PEX). On the other hand, longer sequences (31-mer) with higher number of modifications, or sequences with modifications at adjacent positions did not give full extension. Single-nucleotide extension followed by PEX was used for site-specific incorporation of one aldehyde-linked adenosine into a longer 49-mer sequence. The reactive formyl group was used for cross-linking with peptides and proteins using reductive amination and for fluorescent labelling through oxime formation with an AlexaFluor647-linked hydroxylamine.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Mária Brunderová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Ivana Ivancová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| |
Collapse
|
7
|
Kellum AH, Qiu DY, Voehler MW, Martin W, Gates KS, Stone MP. Structure of a Stable Interstrand DNA Cross-Link Involving a β- N-Glycosyl Linkage Between an N6-dA Amino Group and an Abasic Site. Biochemistry 2020; 60:41-52. [PMID: 33382597 DOI: 10.1021/acs.biochem.0c00596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abasic (AP) sites are one of the most common forms of DNA damage. The deoxyribose ring of AP sites undergoes anomerization between α and β configurations, via an electrophilic aldehyde intermediate. In sequences where an adenine residue is located on the opposing strand and offset 1 nt to the 3' side of the AP site, the nucleophilic N6-dA amino group can react with the AP aldehyde residue to form an interstrand cross-link (ICL). Here, we present an experimentally determined structure of the dA-AP ICL by NMR spectroscopy. The ICL was constructed in the oligodeoxynucleotide 5'-d(T1A2T3G4T5C6T7A8A9G10T11T12C13A14T15C16T17A18)-3':5'-d(T19A20G21A22T23G24A25A26C27X28T29A30G31A32C33A34T35A36)-3' (X=AP site), with the dA-AP ICL forming between A8 and X28. The NMR spectra indicated an ordered structure for the cross-linked DNA duplex and afforded detailed spectroscopic resonance assignments. Structural refinement, using molecular dynamics calculations restrained by NOE data (rMD), revealed the structure of the ICL. In the dA-AP ICL, the 2'-deoxyribosyl ring of the AP site was ring-closed and in the β configuration. Juxtapositioning the N6-dA amino group and the aldehydic C1 of the AP site within bonding distance while simultaneously maintaining two flanking unpaired A9 and T29 bases stacked within the DNA is accomplished by the unwinding of the DNA at the ICL. The structural data is discussed in the context of recent studies describing the replication-dependent unhooking of the dA-AP ICL by the base excision repair glycosylase NEIL3.
Collapse
Affiliation(s)
- Andrew H Kellum
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - David Y Qiu
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Markus W Voehler
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - William Martin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kent S Gates
- Departments of Chemistry and Biochemistry, University of Missouri, Columbia, Missouri 65221, United States
| | - Michael P Stone
- Department of Chemistry, Vanderbilt University Center for Structural Biology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
8
|
Bezalel-Buch R, Cheun YK, Roy U, Schärer OD, Burgers PM. Bypass of DNA interstrand crosslinks by a Rev1-DNA polymerase ζ complex. Nucleic Acids Res 2020; 48:8461-8473. [PMID: 32633759 PMCID: PMC7470978 DOI: 10.1093/nar/gkaa580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
DNA polymerase ζ (Pol ζ) and Rev1 are essential for the repair of DNA interstrand crosslink (ICL) damage. We have used yeast DNA polymerases η, ζ and Rev1 to study translesion synthesis (TLS) past a nitrogen mustard-based interstrand crosslink (ICL) with an 8-atom linker between the crosslinked bases. The Rev1-Pol ζ complex was most efficient in complete bypass synthesis, by 2-3 fold, compared to Pol ζ alone or Pol η. Rev1 protein, but not its catalytic activity, was required for efficient TLS. A dCMP residue was faithfully inserted across the ICL-G by Pol η, Pol ζ, and Rev1-Pol ζ. Rev1-Pol ζ, and particularly Pol ζ alone showed a tendency to stall before the ICL, whereas Pol η stalled just after insertion across the ICL. The stalling of Pol η directly past the ICL is attributed to its autoinhibitory activity, caused by elongation of the short ICL-unhooked oligonucleotide (a six-mer in our study) by Pol η providing a barrier to further elongation of the correct primer. No stalling by Rev1-Pol ζ directly past the ICL was observed, suggesting that the proposed function of Pol ζ as an extender DNA polymerase is also required for ICL repair.
Collapse
Affiliation(s)
- Rachel Bezalel-Buch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Young K Cheun
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Upasana Roy
- Department of Chemistry, Stony Brook University, Stony Book, NY 11794, USA.,Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
9
|
Ivancová I, Leone DL, Hocek M. Reactive modifications of DNA nucleobases for labelling, bioconjugations, and cross-linking. Curr Opin Chem Biol 2019; 52:136-144. [DOI: 10.1016/j.cbpa.2019.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
|
10
|
Nejad MI, Price NE, Haldar T, Lewis C, Wang Y, Gates KS. Interstrand DNA Cross-Links Derived from Reaction of a 2-Aminopurine Residue with an Abasic Site. ACS Chem Biol 2019; 14:1481-1489. [PMID: 31259519 DOI: 10.1021/acschembio.9b00208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient methods for the site-specific installation of structurally defined interstrand cross-links in duplex DNA may be useful in a wide variety of fields. The work described here developed a high-yield synthesis of chemically stable interstrand cross-links resulting from a reductive amination reaction between an abasic site and the noncanonical nucleobase 2-aminopurine in duplex DNA. Results from footprinting, liquid chromatography-mass spectrometry, and stability studies support the formation of an N2-alkylamine attachment between the 2-aminopurine residue and the Ap site. The reaction performs best when the 2-aminopurine residue on the opposing strand is offset 1 nt to the 5'-side of the abasic site. The cross-link confers substantial resistance to thermal denaturation (melting). The cross-linking reaction is fast (complete in 4 h), employs only commercially available reagents, and can be used to generate cross-linked duplexes in sufficient quantities for biophysical, structural, and DNA repair studies.
Collapse
Affiliation(s)
- Maryam Imani Nejad
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Nathan E. Price
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Tuhin Haldar
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Calvin Lewis
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Kent S. Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| |
Collapse
|
11
|
Krömer M, Bártová K, Raindlová V, Hocek M. Synthesis of Dihydroxyalkynyl and Dihydroxyalkyl Nucleotides as Building Blocks or Precursors for Introduction of Diol or Aldehyde Groups to DNA for Bioconjugations. Chemistry 2018; 24:11890-11894. [PMID: 29790604 DOI: 10.1002/chem.201802282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Indexed: 01/18/2023]
Abstract
(3,4-Dihydroxybut-1-ynyl)uracil, -cytosine and -7-deazaadenine 2'-deoxyribonucleoside triphosphates (dNTPs) were prepared by direct aqueous Sonogashira cross-coupling of halogenated dNTPs with dihydroxybut-1-yne and converted to 3,4-dihydroxybutyl dNTPs through catalytic hydrogenation. Sodium periodate oxidative cleavage of dihydroxybutyl-dUTP gave the desired aliphatic aldehyde-linked dUTP, whereas the oxidative cleavage of the corresponding deazaadenine dNTP gave a cyclic aminal. All dihydroxyalkyl or -alkynyl dNTPs and the formylethyl-dUTP were good substrates for DNA polymerases and were used for synthesis of diol- or aldehyde-linked DNA. The aldehyde linked DNA was used for the labelling or bioconjugations through hydrazone formation or reductive aminations.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | - Veronika Raindlová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| |
Collapse
|
12
|
Jin H, Roy U, Lee G, Schärer OD, Cho Y. Structural mechanism of DNA interstrand cross-link unhooking by the bacterial FAN1 nuclease. J Biol Chem 2018; 293:6482-6496. [PMID: 29514982 PMCID: PMC5925792 DOI: 10.1074/jbc.ra118.002171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/05/2018] [Indexed: 01/04/2023] Open
Abstract
DNA interstrand cross-links (ICLs) block the progress of the replication and transcription machineries and can weaken chromosomal stability, resulting in various diseases. FANCD2-FANCI-associated nuclease (FAN1) is a conserved structure-specific nuclease that unhooks DNA ICLs independently of the Fanconi anemia pathway. Recent structural studies have proposed two different mechanistic features for ICL unhooking by human FAN1: a specific basic pocket that recognizes the terminal phosphate of a 1-nucleotide (nt) 5' flap or FAN1 dimerization. Herein, we show that despite lacking these features, Pseudomonas aeruginosa FAN1 (PaFAN1) cleaves substrates at ∼3-nt intervals and resolves ICLs. Crystal structures of PaFAN1 bound to various DNA substrates revealed that its conserved basic Arg/Lys patch comprising Arg-228 and Lys-260 recognizes phosphate groups near the 5' terminus of a DNA substrate with a 1-nt flap or a nick. Substitution of Lys-260 did not affect PaFAN1's initial endonuclease activity but significantly decreased its subsequent exonuclease activity and ICL unhooking. The Arg/Lys patch also interacted with phosphates at a 3-nt gap, and this interaction could drive movement of the scissile phosphates into the PaFAN1-active site. In human FAN1, the ICL-resolving activity was not affected by individual disruption of the Arg/Lys patch or basic pocket. However, simultaneous substitution of both FAN1 regions significantly reduced its ICL-resolving activity, suggesting that these two basic regions play a complementary role in ICL repair. On the basis of these findings, we propose a conserved role for two basic regions in FAN1 to guide ICL unhooking and to maintain genomic stability.
Collapse
Affiliation(s)
- Hyeonseok Jin
- From the Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbook 37673, South Korea
| | - Upasana Roy
- the Departments of Chemistry and Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
| | - Gwangrog Lee
- the Department of Biology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Orlando D Schärer
- the Departments of Chemistry and Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
- the Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, South Korea, and
- the Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Yunje Cho
- From the Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbook 37673, South Korea,
| |
Collapse
|
13
|
Kato N, Kawasoe Y, Williams H, Coates E, Roy U, Shi Y, Beese LS, Schärer OD, Yan H, Gottesman ME, Takahashi TS, Gautier J. Sensing and Processing of DNA Interstrand Crosslinks by the Mismatch Repair Pathway. Cell Rep 2017; 21:1375-1385. [PMID: 29091773 PMCID: PMC5806701 DOI: 10.1016/j.celrep.2017.10.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/21/2017] [Accepted: 10/08/2017] [Indexed: 12/20/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) that are repaired in non-dividing cells must be recognized independently of replication-associated DNA unwinding. Using cell-free extracts from Xenopus eggs that support neither replication nor transcription, we establish that ICLs are recognized and processed by the mismatch repair (MMR) machinery. We find that ICL repair requires MutSα (MSH2-MSH6) and the mismatch recognition FXE motif in MSH6, strongly suggesting that MutSα functions as an ICL sensor. MutSα recruits MutLα and EXO1 to ICL lesions, and the catalytic activity of both these nucleases is essential for ICL repair. As anticipated for a DNA unwinding-independent recognition process, we demonstrate that least distorting ICLs fail to be recognized and repaired by the MMR machinery. This establishes that ICL structure is a critical determinant of repair efficiency outside of DNA replication.
Collapse
Affiliation(s)
- Niyo Kato
- Institute of Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | - Hannah Williams
- Institute of Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Elena Coates
- Institute of Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Upasana Roy
- Department of Chemistry and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yuqian Shi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Orlando D Schärer
- Department of Chemistry and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Institute for Basic Science Center for Genomic Integrity and School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Hong Yan
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Max E Gottesman
- Institute of Cancer Research, Columbia University, New York, NY 10032, USA
| | | | - Jean Gautier
- Institute of Cancer Genetics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
14
|
Castaño A, Roy U, Schärer OD. Preparation of Stable Nitrogen Mustard DNA Interstrand Cross-Link Analogs for Biochemical and Cell Biological Studies. Methods Enzymol 2017. [PMID: 28645378 DOI: 10.1016/bs.mie.2017.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrogen mustards (NMs) react with two bases on opposite strands of a DNA duplex to form a covalent linkage, yielding adducts called DNA interstrand cross-links (ICLs). This prevents helix unwinding, blocking essential processes such as replication and transcription. Accumulation of ICLs causes cell death in rapidly dividing cells, especially cancer cells, making ICL-forming agents like NMs valuable in chemotherapy. However, the repair of ICLs can contribute to chemoresistance through a number of pathways that remain poorly understood. One of the impediments in studying NM ICL repair mechanisms has been the difficulty of generating site-specific and stable NM ICLs. Here, we describe two methods to synthesize stable NM ICL analogs that make it possible to study DNA ICL repair. As a proof of principle of the suitability of these NM ICLs for biochemical and cell biological studies, we use them in primer extension assays with Klenow polymerase. We show that the NM ICL analogs block the polymerase activity and remain intact under our experimental conditions.
Collapse
Affiliation(s)
| | - Upasana Roy
- Stony Brook University, Stony Brook, NY, United States
| | - Orlando D Schärer
- Stony Brook University, Stony Brook, NY, United States; Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea; Ulsan National Institute of Science and Technology, Ulsan, Korea.
| |
Collapse
|
15
|
Yang Z, Nejad MI, Varela JG, Price NE, Wang Y, Gates KS. A role for the base excision repair enzyme NEIL3 in replication-dependent repair of interstrand DNA cross-links derived from psoralen and abasic sites. DNA Repair (Amst) 2017; 52:1-11. [PMID: 28262582 PMCID: PMC5424475 DOI: 10.1016/j.dnarep.2017.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 12/23/2022]
Abstract
Interstrand DNA-DNA cross-links are highly toxic lesions that are important in medicinal chemistry, toxicology, and endogenous biology. In current models of replication-dependent repair, stalling of a replication fork activates the Fanconi anemia pathway and cross-links are "unhooked" by the action of structure-specific endonucleases such as XPF-ERCC1 that make incisions flanking the cross-link. This process generates a double-strand break, which must be subsequently repaired by homologous recombination. Recent work provided evidence for a new, incision-independent unhooking mechanism involving intrusion of a base excision repair (BER) enzyme, NEIL3, into the world of cross-link repair. The evidence suggests that the glycosylase action of NEIL3 unhooks interstrand cross-links derived from an abasic site or the psoralen derivative trioxsalen. If the incision-independent NEIL3 pathway is blocked, repair reverts to the incision-dependent route. In light of the new model invoking participation of NEIL3 in cross-link repair, we consider the possibility that various BER glycosylases or other DNA-processing enzymes might participate in the unhooking of chemically diverse interstrand DNA cross-links.
Collapse
Affiliation(s)
- Zhiyu Yang
- University of Missouri Department of Chemistry, 125 Chemistry Building Columbia, MO 65211, United States
| | - Maryam Imani Nejad
- University of Missouri Department of Chemistry, 125 Chemistry Building Columbia, MO 65211, United States
| | - Jacqueline Gamboa Varela
- University of Missouri Department of Chemistry, 125 Chemistry Building Columbia, MO 65211, United States
| | - Nathan E Price
- University of California-Riverside, Department of Chemistry, 501 Big Springs Road Riverside, CA 92521-0403, United States
| | - Yinsheng Wang
- University of California-Riverside, Department of Chemistry, 501 Big Springs Road Riverside, CA 92521-0403, United States
| | - Kent S Gates
- University of Missouri Department of Chemistry, 125 Chemistry Building Columbia, MO 65211, United States; University of Missouri Department of Biochemistry, 125 Chemistry Building Columbia, MO 65211, United States.
| |
Collapse
|
16
|
Roy U, Mukherjee S, Sharma A, Frank EG, Schärer OD. The structure and duplex context of DNA interstrand crosslinks affects the activity of DNA polymerase η. Nucleic Acids Res 2016; 44:7281-91. [PMID: 27257072 PMCID: PMC5009737 DOI: 10.1093/nar/gkw485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/20/2016] [Indexed: 12/18/2022] Open
Abstract
Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol η activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only a minimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases.
Collapse
Affiliation(s)
- Upasana Roy
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Shivam Mukherjee
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Anjali Sharma
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Ekaterina G Frank
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Orlando D Schärer
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
17
|
Gamboa Varela J, Gates KS. Simple, High-Yield Syntheses of DNA Duplexes Containing Interstrand DNA-DNA Cross-Links Between an N(4) -Aminocytidine Residue and an Abasic Site. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2016; 65:5.16.1-5.16.15. [PMID: 27248783 PMCID: PMC5000854 DOI: 10.1002/cpnc.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The protocol describes the preparation and purification of interstrand DNA-DNA cross-links derived from the reaction of an N(4) -aminocytidine residue with an abasic site in duplex DNA. The procedures employ inexpensive, commercially available chemicals and enzymes to carry out post-synthetic modification of commercially available oligodeoxynucleotides. The yield of cross-linked duplex is typically better than 90%. If purification is required, the cross-linked duplex can be readily separated from single-stranded DNA starting materials by denaturing gel electrophoresis. The resulting covalent hydrazone-based cross-links are stable under physiologically relevant conditions and may be useful for biophysical studies, structural analyses, DNA repair studies, and materials science applications. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| |
Collapse
|
18
|
Chen CH, Hu TH, Huang TC, Chen YL, Chen YR, Cheng CC, Chen CT. Delineation of G-Quadruplex Alkylation Sites Mediated by 3,6-Bis(1-methyl-4-vinylpyridinium iodide)carbazole-Aniline Mustard Conjugates. Chemistry 2015; 21:17379-90. [PMID: 26769627 DOI: 10.1002/chem.201502595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 11/12/2022]
Abstract
A new G-quadruplex (G-4)-directing alkylating agent BMVC-C3M was designed and synthesized to integrate 3,6-bis(1-methyl-4-vinylpyridinium iodide)carbazole (BMVC) with aniline mustard. Various telomeric G-4 structures (hybrid-2 type and antiparallel) and an oncogene promoter, c-MYC (parallel), were constructed to react with BMVC-C3M, yielding 35 % alkylation yield toward G-4 DNA over other DNA categories (<6 %) and high specificity under competition conditions. Analysis of the intact alkylation adducts by electrospray ionization mass spectroscopy (ESI-MS) revealed the stepwise DNA alkylation mechanism of aniline mustard for the first time. Furthermore, the monoalkylation sites and intrastrand cross-linking sites were determined and found to be dependent on G-4 topology based on the results of footprinting analysis in combination with mass spectroscopic techniques and in silico modeling. The results indicated that BMVC-C3M preferentially alkylated at A15 (H26), G12 (H24), and G2 (c-MYC), respectively, as monoalkylated adducts and formed A15-C3M-A21 (H26), G12-C3M-G4 (H24), and G2-C3M-G4/G17 (c-MYC), respectively, as cross-linked dialkylated adducts. Collectively, the stability and site-selective cross-linking capacity of BMVC-C3M provides a credible tool for the structural and functional characterization of G-4 DNAs in biological systems.
Collapse
Affiliation(s)
- Chien-Han Chen
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.), Fax: (+886) 2-23636359
| | - Tsung-Hao Hu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.), Fax: (+886) 2-23636359
| | - Tzu-Chiao Huang
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.), Fax: (+886) 2-23636359
| | - Ying-Lan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 11529 Taiwan (R.O.C.).,Institute of Plant Biology and Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.)
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei, 11529 Taiwan (R.O.C.)
| | - Chien-Chung Cheng
- Department of Applied Chemistry, Chia-Yi University, No. 300, Xuefu Road, Chiayi City, 60004 Taiwan (R.O.C.), Fax: (+886) 5-2717901.
| | - Chao-Tsen Chen
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan (R.O.C.), Fax: (+886) 2-23636359.
| |
Collapse
|
19
|
Pizzolato J, Mukherjee S, Schärer OD, Jiricny J. FANCD2-associated nuclease 1, but not exonuclease 1 or flap endonuclease 1, is able to unhook DNA interstrand cross-links in vitro. J Biol Chem 2015. [PMID: 26221031 DOI: 10.1074/jbc.m115.663666] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cisplatin and its derivatives, nitrogen mustards and mitomycin C, are used widely in cancer chemotherapy. Their efficacy is linked primarily to their ability to generate DNA interstrand cross-links (ICLs), which effectively block the progression of transcription and replication machineries. Release of this block, referred to as unhooking, has been postulated to require endonucleases that incise one strand of the duplex on either side of the ICL. Here we investigated how the 5' flap nucleases FANCD2-associated nuclease 1 (FAN1), exonuclease 1 (EXO1), and flap endonuclease 1 (FEN1) process a substrate reminiscent of a replication fork arrested at an ICL. We now show that EXO1 and FEN1 cleaved the substrate at the boundary between the single-stranded 5' flap and the duplex, whereas FAN1 incised it three to four nucleotides in the double-stranded region. This affected the outcome of processing of a substrate containing a nitrogen mustard-like ICL two nucleotides in the duplex region because FAN1, unlike EXO1 and FEN1, incised the substrate predominantly beyond the ICL and, therefore, failed to release the 5' flap. We also show that FAN1 was able to degrade a linear ICL substrate. This ability of FAN1 to traverse ICLs in DNA could help to elucidate its biological function, which is currently unknown.
Collapse
Affiliation(s)
- Julia Pizzolato
- From the Institute of Molecular Cancer Research, University of Zurich and
| | | | - Orlando D Schärer
- the Departments of Chemistry and Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-3400
| | - Josef Jiricny
- From the Institute of Molecular Cancer Research, University of Zurich and the Department of Biology, Swiss Institute of Technology (ETH) Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland, and
| |
Collapse
|
20
|
Gamboa Varela J, Gates KS. A simple, high-yield synthesis of DNA duplexes containing a covalent, thermally cleavable interstrand cross-link at a defined location. Angew Chem Int Ed Engl 2015; 54:7666-9. [PMID: 25967397 PMCID: PMC4532324 DOI: 10.1002/anie.201502566] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 12/31/2022]
Abstract
Interstrand DNA-DNA cross-links are highly toxic to cells because these lesions block the extraction of information from the genetic material. The pathways by which cells repair cross-links are important, but not well understood. The preparation of chemically well-defined cross-linked DNA substrates represents a significant challenge in the study of cross-link repair. Here a simple method is reported that employs "post-synthetic" modifications of commercially available 2'-deoxyoligonucleotides to install a single cross-link in high yield at a specified location within a DNA duplex. The cross-linking process exploits the formation of a hydrazone between a non-natural N(4) -amino-2'-deoxycytidine nucleobase and the aldehyde residue of an abasic site in duplex DNA. The resulting cross-link is stable under physiological conditions, but can be readily dissociated and re-formed through heating-cooling cycles.
Collapse
Affiliation(s)
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, MO 65211 (USA).
- Department of Biochemistry, University of Missouri, Columbia, MO 65211 (USA).
| |
Collapse
|
21
|
Gamboa Varela J, Gates KS. A Simple, High-Yield Synthesis of DNA Duplexes Containing a Covalent, Thermally Cleavable Interstrand Cross-Link at a Defined Location. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|