1
|
Zhang Z, Bi F, Huang Y, Guo W. Construction of dental pulp decellularized matrix by cyclic lavation combined with mechanical stirring and its proteomic analysis. Biomed Mater 2024; 19:045002. [PMID: 38653259 DOI: 10.1088/1748-605x/ad4245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
The decellularized matrix has a great potential for tissue remodeling and regeneration; however, decellularization could induce host immune rejection due to incomplete cell removal or detergent residues, thereby posing significant challenges for its clinical application. Therefore, the selection of an appropriate detergent concentration, further optimization of tissue decellularization technique, increased of biosafety in decellularized tissues, and reduction of tissue damage during the decellularization procedures are pivotal issues that need to be investigated. In this study, we tested several conditions and determined that 0.1% Sodium dodecyl sulfate and three decellularization cycles were the optimal conditions for decellularization of pulp tissue. Decellularization efficiency was calculated and the preparation protocol for dental pulp decellularization matrix (DPDM) was further optimized. To characterize the optimized DPDM, the microstructure, odontogenesis-related protein and fiber content were evaluated. Our results showed that the properties of optimized DPDM were superior to those of the non-optimized matrix. We also performed the 4D-Label-free quantitative proteomic analysis of DPDM and demonstrated the preservation of proteins from the natural pulp. This study provides a optimized protocol for the potential application of DPDM in pulp regeneration.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Fei Bi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yibing Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, People's Republic of China
- Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming 650500, People's Republic of China
| |
Collapse
|
2
|
Schwarzl T, Sahadevan S, Lang B, Miladi M, Backofen R, Huber W, Hentze MW, Tartaglia GG. Improved discovery of RNA-binding protein binding sites in eCLIP data using DEWSeq. Nucleic Acids Res 2024; 52:e1. [PMID: 37962298 PMCID: PMC10783507 DOI: 10.1093/nar/gkad998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/04/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Enhanced crosslinking and immunoprecipitation (eCLIP) sequencing is a method for transcriptome-wide detection of binding sites of RNA-binding proteins (RBPs). However, identified crosslink sites can deviate from experimentally established functional elements of even well-studied RBPs. Current peak-calling strategies result in low replication and high false positive rates. Here, we present the R/Bioconductor package DEWSeq that makes use of replicate information and size-matched input controls. We benchmarked DEWSeq on 107 RBPs for which both eCLIP data and RNA sequence motifs are available and were able to more than double the number of motif-containing binding regions relative to standard eCLIP processing. The improvement not only relates to the number of binding sites (3.1-fold with known motifs for RBFOX2), but also their subcellular localization (1.9-fold of mitochondrial genes for FASTKD2) and structural targets (2.2-fold increase of stem-loop regions for SLBP. On several orthogonal CLIP-seq datasets, DEWSeq recovers a larger number of motif-containing binding sites (3.3-fold). DEWSeq is a well-documented R/Bioconductor package, scalable to adequate numbers of replicates, and tends to substantially increase the proportion and total number of RBP binding sites containing biologically relevant features.
Collapse
Affiliation(s)
- Thomas Schwarzl
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Sudeep Sahadevan
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Benjamin Lang
- Department of Structural Biology and Center of Excellence for Data-Driven Discovery, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Milad Miladi
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79098 Freiburg im Breisgau, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79098 Freiburg im Breisgau, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Gian Gaetano Tartaglia
- Center for Life Nano & Neuroscience, Italian Institute of Technology, 00161 Rome, Italy and Department of Biology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
3
|
Zhou J, Tang CK. Cytoplasmic Polyadenylation Element Binding Protein 1 and Atherosclerosis: Prospective Target and New Insights. Curr Vasc Pharmacol 2024; 22:95-105. [PMID: 38284693 DOI: 10.2174/0115701611258090231221082502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
The ribonucleic acid (RNA)-binding protein Cytoplasmic Polyadenylation Element Binding Protein 1 (CPEB1), a key member of the CPEB family, is essential in controlling gene expression involved in both healthy physiological and pathological processes. CPEB1 can bind to the 3'- untranslated regions (UTR) of substrate messenger ribonucleic acid (mRNA) and regulate its translation. There is increasing evidence that CPEB1 is closely related to the pathological basis of atherosclerosis. According to recent investigations, many pathological processes, including inflammation, lipid metabolism, endothelial dysfunction, angiogenesis, oxidative stress, cellular senescence, apoptosis, and insulin resistance, are regulated by CPEB1. This review considers the prevention and treatment of atherosclerotic heart disease in relation to the evolution of the physiological function of CPEB1, recent research breakthroughs, and the potential participation of CPEB1 in atherosclerosis.
Collapse
Affiliation(s)
- Jing Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
4
|
Poetz F, Lebedeva S, Schott J, Lindner D, Ohler U, Stoecklin G. Control of immediate early gene expression by CPEB4-repressor complex-mediated mRNA degradation. Genome Biol 2022; 23:193. [PMID: 36096941 PMCID: PMC9465963 DOI: 10.1186/s13059-022-02760-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) is known to associate with cytoplasmic polyadenylation elements (CPEs) located in the 3' untranslated region (UTR) of specific mRNAs and assemble an activator complex promoting the translation of target mRNAs through cytoplasmic polyadenylation. RESULTS Here, we find that CPEB4 is part of an alternative repressor complex that mediates mRNA degradation by associating with the evolutionarily conserved CCR4-NOT deadenylase complex. We identify human CPEB4 as an RNA-binding protein (RBP) with enhanced association to poly(A) RNA upon inhibition of class I histone deacetylases (HDACs), a condition known to cause widespread degradation of poly(A)-containing mRNA. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis using endogenously tagged CPEB4 in HeLa cells reveals that CPEB4 preferentially binds to the 3'UTR of immediate early gene mRNAs, at G-containing variants of the canonical U- and A-rich CPE located in close proximity to poly(A) sites. By transcriptome-wide mRNA decay measurements, we find that the strength of CPEB4 binding correlates with short mRNA half-lives and that loss of CPEB4 expression leads to the stabilization of immediate early gene mRNAs. Akin to CPEB4, we demonstrate that CPEB1 and CPEB2 also confer mRNA instability by recruitment of the CCR4-NOT complex. CONCLUSIONS While CPEB4 was previously known for its ability to stimulate cytoplasmic polyadenylation, our findings establish an additional function for CPEB4 as the RNA adaptor of a repressor complex that enhances the degradation of short-lived immediate early gene mRNAs.
Collapse
Affiliation(s)
- Fabian Poetz
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Svetlana Lebedeva
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Uwe Ohler
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
- Department of Biology, Humboldt Universität Berlin, 10099, Berlin, Germany
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3) and Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
MicroSalmon: A Comprehensive, Searchable Resource of Predicted MicroRNA Targets and 3'UTR Cis-Regulatory Elements in the Full-Length Sequenced Atlantic Salmon Transcriptome. Noncoding RNA 2021; 7:ncrna7040061. [PMID: 34698276 PMCID: PMC8544657 DOI: 10.3390/ncrna7040061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Complete 3′UTRs unambiguously assigned to specific mRNA isoforms from the Atlantic salmon full-length (FL) transcriptome were collected into a 3′UTRome. miRNA response elements (MREs) and other cis-regulatory motifs were subsequently predicted and assigned to 3′UTRs of all FL-transcripts. The MicroSalmon GitHub repository provides all results. RNAHybrid and sRNAtoolbox tools predicted the MREs. UTRscan and the Teiresias algorithm predicted other 3′UTR cis-acting motifs, both known vertebrate motifs and putative novel motifs. MicroSalmon provides search programs to retrieve all FL-transcripts targeted by a miRNA (median number 1487), all miRNAs targeting an FL-transcript (median number 27), and other cis-acting motifs. As thousands of FL-transcripts may be targets of each miRNA, additional experimental strategies are necessary to reduce the likely true and relevant targets to a number that may be functionally validated. Low-complexity motifs known to affect mRNA decay in vertebrates were over-represented. Many of these were enriched in the terminal end, while purine- or pyrimidine-rich motifs with unknown functions were enriched immediately downstream of the stop codon. Furthermore, several novel complex motifs were over-represented, indicating conservation and putative function. In conclusion, MicroSalmon is an extensive and useful, searchable resource for study of Atlantic salmon transcript regulation by miRNAs and cis-acting 3′UTR motifs.
Collapse
|
6
|
Ruiz L, Kaczmarska Z, Gomes T, Aragon E, Torner C, Freier R, Baginski B, Martin-Malpartida P, de Martin Garrido N, Marquez JA, Cordeiro TN, Pluta R, Macias MJ. Unveiling the dimer/monomer propensities of Smad MH1-DNA complexes. Comput Struct Biotechnol J 2021; 19:632-646. [PMID: 33510867 PMCID: PMC7810915 DOI: 10.1016/j.csbj.2020.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
MH1 domains of BMP-activated Smads populate a dimer-monomer equilibrium. Swapping loop1 between BMP- and TGFβ Smads turns dimers into monomers and vice versa. BMP-responsive genomic regions have a lower average count of motifs than TGFβ ones.
Smad transcription factors are the main downstream effectors of the Transforming growth factor β superfamily (TGFβ) signalling network. The DNA complexes determined here by X-ray crystallography for the Bone Morphogenetic Proteins (BMP) activated Smad5 and Smad8 proteins reveal that all MH1 domains bind [GGC(GC)|(CG)] motifs similarly, although TGFβ-activated Smad2/3 and Smad4 MH1 domains bind as monomers whereas Smad1/5/8 form helix-swapped dimers. Dimers and monomers are also present in solution, as revealed by NMR. To decipher the characteristics that defined these dimers, we designed chimeric MH1 domains and characterized them using X-ray crystallography. We found that swapping the loop1 between TGFβ- and BMP- activated MH1 domains switches the dimer/monomer propensities. When we scanned the distribution of Smad-bound motifs in ChIP-Seq peaks (Chromatin immunoprecipitation followed by high-throughput sequencing) in Smad-responsive genes, we observed specific site clustering and spacing depending on whether the peaks correspond to BMP- or TGFβ-responsive genes. We also identified significant correlations between site distribution and monomer or dimer propensities. We propose that the MH1 monomer or dimer propensity of Smads contributes to the distinct motif selection genome-wide and together with the MH2 domain association, help define the composition of R-Smad/Smad4 trimeric complexes.
Collapse
Affiliation(s)
- Lidia Ruiz
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Zuzanna Kaczmarska
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France.,International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, Warsaw 02-109, Poland
| | - Tiago Gomes
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Eric Aragon
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Carles Torner
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Regina Freier
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Blazej Baginski
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Natàlia de Martin Garrido
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - José A Marquez
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Radoslaw Pluta
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Maria J Macias
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain.,ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
7
|
Lixa C, Mujo A, de Magalhães MTQ, Almeida FCL, Lima LMTR, Pinheiro AS. Oligomeric transition and dynamics of RNA binding by the HuR RRM1 domain in solution. JOURNAL OF BIOMOLECULAR NMR 2018; 72:179-192. [PMID: 30535889 DOI: 10.1007/s10858-018-0217-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Human antigen R (HuR) functions as a major post-transcriptional regulator of gene expression through its RNA-binding activity. HuR is composed by three RNA recognition motifs, namely RRM1, RRM2, and RRM3. The two N-terminal RRM domains are disposed in tandem and contribute mostly to HuR interaction with adenine and uracil-rich elements (ARE) in mRNA. Here, we used a combination of NMR and electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) to characterize the structure, dynamics, RNA recognition, and dimerization of HuR RRM1. Our solution structure reveals a canonical RRM fold containing a 19-residue, intrinsically disordered N-terminal extension, which is not involved in RNA binding. NMR titration results confirm the primary RNA-binding site to the two central β-strands, β1 and β3, for a cyclooxygenase 2 (Cox2) ARE I-derived, 7-nucleotide RNA ligand. We show by 15N relaxation that, in addition to the N- and C-termini, the β2-β3 loop undergoes fast backbone dynamics (ps-ns) both in the free and RNA-bound state, indicating that no structural ordering happens upon RNA interaction. ESI-IMS-MS reveals that HuR RRM1 dimerizes, however dimer population represents a minority. Dimerization occurs via the α-helical surface, which is oppositely orientated to the RNA-binding β-sheet. By using a DNA analog of the Cox2 ARE I, we show that DNA binding stabilizes HuR RRM1 monomer and shifts the monomer-dimer equilibrium toward the monomeric species. Altogether, our results deepen the current understanding of the mechanism of RNA recognition employed by HuR.
Collapse
Affiliation(s)
- Carolina Lixa
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Amanda Mujo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Mariana T Q de Magalhães
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Fabio C L Almeida
- National Center for Nuclear Magnetic Resonance Jiri Jonas, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Luis Mauricio T R Lima
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
| |
Collapse
|
8
|
Schelhorn C, Martín-Malpartida P, Suñol D, Macias MJ. Structural Analysis of the Pin1-CPEB1 interaction and its potential role in CPEB1 degradation. Sci Rep 2015; 5:14990. [PMID: 26456073 PMCID: PMC4601027 DOI: 10.1038/srep14990] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022] Open
Abstract
The Cytoplasmic Polyadenylation Element Binding proteins are RNA binding proteins involved in the translational regulation of mRNA. During cell cycle progression, CPEB1 is labeled for degradation by phosphorylation-dependent ubiquitination by the SCF(β-TrCP) ligase. The peptidyl-prolyl isomerase Pin1 plays a key role in CPEB1 degradation. Conditioned by the cell cycle stage, CPEB1 and Pin1 interactions occur in a phosphorylation-independent or -dependent manner. CPEB1 contains six potential phosphorylatable Pin1 binding sites. Using a set of biophysical techniques, we discovered that the pS210 site is unique, since it displays binding activity not only to the WW domain but also to the prolyl-isomerase domain of Pin1. The NMR structure of the Pin1 WW-CPEB1 pS210 (PDB ID: 2n1o) reveals that the pSerPro motif is bound in trans configuration through contacts with amino acids located in the first turn of the WW domain and the conserved tryptophan in the β3-strand. NMR relaxation analyses of Pin1 suggest that inter-domain flexibility is conferred by the modulation of the interaction with peptides containing the pS210 site, which is essential for degradation.
Collapse
Affiliation(s)
- Constanze Schelhorn
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Pau Martín-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, 08028, Spain
| | - David Suñol
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, 08028, Spain
| | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona, 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
9
|
Chen PJ, Weng JY, Hsu PH, Shew JY, Huang YS, Lee WH. NPGPx modulates CPEB2-controlled HIF-1α RNA translation in response to oxidative stress. Nucleic Acids Res 2015; 43:9393-404. [PMID: 26446990 PMCID: PMC4627054 DOI: 10.1093/nar/gkv1010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022] Open
Abstract
Non-selenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx or GPx7) is an oxidative stress sensor that modulates the antioxidative activity of its target proteins through intermolecular disulfide bond formation. Given NPGPx's role in protecting cells from oxidative damage, identification of the oxidative stress-induced protein complexes, which forms with key stress factors, may offer novel insight into intracellular reactive oxygen species homeostasis. Here, we show that NPGPx forms a disulfide bond with the translational regulator cytoplasmic polyadenylation element-binding protein 2 (CPEB2) that results in negative regulation of hypoxia-inducible factor 1-alpha (HIF-1α) RNA translation. In NPGPx-proficient cells, high oxidative stress that disrupts this bonding compromises the association of CPEB2 with HIF-1α RNA, leading to elevated HIF-1α RNA translation. NPGPx-deficient cells, in contrast, demonstrate increased HIF-1α RNA translation under normoxia with both impaired induction of HIF-1α synthesis and blunted HIF-1α-programmed transcription following oxidative stress. Together, these results reveal a molecular mechanism for how NPGPx mediates CPEB2-controlled HIF-1α RNA translation in a redox-sensitive manner.
Collapse
Affiliation(s)
- Po-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jui-Yun Weng
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Pang-Hung Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jin-Yuh Shew
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Shuian Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan Graduate Institute of Clinical Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
10
|
MacNicol MC, Cragle CE, Arumugam K, Fosso B, Pesole G, MacNicol AM. Functional Integration of mRNA Translational Control Programs. Biomolecules 2015. [PMID: 26197342 PMCID: PMC4598765 DOI: 10.3390/biom5031580] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Regulated mRNA translation plays a key role in control of cell cycle progression in a variety of physiological and pathological processes, including in the self-renewal and survival of stem cells and cancer stem cells. While targeting mRNA translation presents an attractive strategy for control of aberrant cell cycle progression, mRNA translation is an underdeveloped therapeutic target. Regulated mRNAs are typically controlled through interaction with multiple RNA binding proteins (RBPs) but the mechanisms by which the functions of distinct RBPs bound to a common target mRNA are coordinated are poorly understood. The challenge now is to gain insight into these mechanisms of coordination and to identify the molecular mediators that integrate multiple, often conflicting, inputs. A first step includes the identification of altered mRNA ribonucleoprotein complex components that assemble on mRNAs bound by multiple, distinct RBPs compared to those recruited by individual RBPs. This review builds upon our knowledge of combinatorial control of mRNA translation during the maturation of oocytes from Xenopus laevis, to address molecular strategies that may mediate RBP diplomacy and conflict resolution for coordinated control of mRNA translational output. Continued study of regulated ribonucleoprotein complex dynamics promises valuable new insights into mRNA translational control and may suggest novel therapeutic strategies for the treatment of disease.
Collapse
Affiliation(s)
- Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Chad E Cragle
- Interdisciplinary BioSciences Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Karthik Arumugam
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Bruno Fosso
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari 70126, Italy.
| | - Graziano Pesole
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari 70126, Italy.
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari 70125, Italy.
| | - Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|