1
|
Kirven K, Bevilacqua P, Assmann S. VariantFoldRNA: a flexible, containerized, and scalable pipeline for genome-wide riboSNitch prediction. NAR Genom Bioinform 2025; 7:lqaf066. [PMID: 40443739 PMCID: PMC12121482 DOI: 10.1093/nargab/lqaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 05/15/2025] [Indexed: 06/02/2025] Open
Abstract
Single nucleotide polymorphisms (SNPs) can alter RNA structure by changing the proportions of existing conformations or leading to new conformations in the structural ensemble. Such structure-changing SNPs, or riboSNitches, have been associated with diseases in humans and climate adaptation in plants. While several computational tools are available for predicting whether an SNP is a riboSNitch, these tools were generally developed to analyze individual RNAs and are not optimized for genome-wide analyses. To fill this gap, we developed VariantFoldRNA, a flexible, containerized, and automated pipeline for genome-wide prediction of riboSNitches. Our pipeline automatically installs all dependencies, can be run locally or on high-performance clusters, and is modular, enabling the user to customize the analysis for the research question of interest. VariantFoldRNA can predict riboSNitches genome-wide at user-specified temperatures and splicing conditions, opening the door to novel analyses. The pipeline is an open-source command-line tool that is freely available at https://github.com/The-Bevilacqua-Lab/variantfoldrna.
Collapse
Affiliation(s)
- Kobie J Kirven
- Graduate Program in Bioinformatics and Genomics, Pennsylvania State University, University Park, PA 16802, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
| | - Sarah M Assmann
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States
- Department of Biology, Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
2
|
Zhang H, Ding Y. RNA Structure: Function and Application in Plant Biology. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:115-141. [PMID: 40101225 DOI: 10.1146/annurev-arplant-083123-055521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
RNA orchestrates intricate structures that influence gene expression and protein production in all living organisms, with implications for fundamental biology, medicine, and agriculture. Although extensive research has been conducted on RNA biology, many regulatory mechanisms remain elusive due to the complex and dynamic nature of RNA structures and past technological limitations. Recent advancements in RNA structure technology have revolutionized plant RNA biology research. Here, we review cutting-edge technologies for studying RNA structures in plants and their functional significance in diverse biological processes. Additionally, we highlight the pivotal role of RNA structure in influencing plant growth, development, and responses to environmental stresses. We also discuss the potential evolutionary significance of RNA structure in natural adaptation and crop domestication. Finally, we propose leveraging RNA structure-mediated gene regulation as an innovative strategy to bolster plant resilience against climate change.
Collapse
Affiliation(s)
- Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China;
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom;
| |
Collapse
|
3
|
Xavier JM, Magno R, Russell R, de Almeida BP, Jacinta-Fernandes A, Besouro-Duarte A, Dunning M, Samarajiwa S, O'Reilly M, Maia AM, Rocha CL, Rosli N, Ponder BAJ, Maia AT. Identification of candidate causal variants and target genes at 41 breast cancer risk loci through differential allelic expression analysis. Sci Rep 2024; 14:22526. [PMID: 39341862 PMCID: PMC11438911 DOI: 10.1038/s41598-024-72163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Understanding breast cancer genetic risk relies on identifying causal variants and candidate target genes in risk loci identified by genome-wide association studies (GWAS), which remains challenging. Since most loci fall in active gene regulatory regions, we developed a novel approach facilitated by pinpointing the variants with greater regulatory potential in the disease's tissue of origin. Through genome-wide differential allelic expression (DAE) analysis, using microarray data from 64 normal breast tissue samples, we mapped the variants associated with DAE (daeQTLs). Then, we intersected these with GWAS data to reveal candidate risk regulatory variants and analysed their cis-acting regulatory potential. Finally, we validated our approach by extensive functional analysis of the 5q14.1 breast cancer risk locus. We observed widespread gene expression regulation by cis-acting variants in breast tissue, with 65% of coding and noncoding expressed genes displaying DAE (daeGenes). We identified over 54 K daeQTLs for 6761 (26%) daeGenes, including 385 daeGenes harbouring variants previously associated with BC risk. We found 1431 daeQTLs mapped to 93 different loci in strong linkage disequilibrium with risk-associated variants (risk-daeQTLs), suggesting a link between risk-causing variants and cis-regulation. There were 122 risk-daeQTL with stronger cis-acting potential in active regulatory regions with protein binding evidence. These variants mapped to 41 risk loci, of which 29 had no previous report of target genes and were candidates for regulating the expression levels of 65 genes. As validation, we identified and functionally characterised five candidate causal variants at the 5q14.1 risk locus targeting the ATG10 and ATP6AP1L genes, likely acting via modulation of alternative transcription and transcription factor binding. Our study demonstrates the power of DAE analysis and daeQTL mapping to identify causal regulatory variants and target genes at breast cancer risk loci, including those with complex regulatory landscapes. It additionally provides a genome-wide resource of variants associated with DAE for future functional studies.
Collapse
Affiliation(s)
- Joana M Xavier
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal.
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal.
| | - Ramiro Magno
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal
- Pattern Institute PT, Faro, Portugal
| | - Roslin Russell
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Bernardo P de Almeida
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
- InstaDeep, Paris, France
| | - Ana Jacinta-Fernandes
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
| | | | - Mark Dunning
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
- Sheffield Bioinformatics Core, The School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Shamith Samarajiwa
- Medical Research Council (MRC) Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- Genetics and Genomics Section, Imperial College London, London, UK
| | - Martin O'Reilly
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
| | | | - Cátia L Rocha
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Faculty of Medicine, Instituto de Saúde Ambiental (ISAMB), University of Lisbon, Lisbon, Portugal
| | - Nordiana Rosli
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Training Division, Ministry of Health Malaysia, Putrajaya, Malaysia
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Bruce A J Ponder
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
| | - Ana-Teresa Maia
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal.
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal.
| |
Collapse
|
4
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. THE PLANT CELL 2023; 35:1671-1707. [PMID: 36747354 PMCID: PMC10226581 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Forstmeier PC, Meyer MO, Bevilacqua PC. The Functional RNA Identification (FRID) Pipeline: Identification of Potential Pseudoknot-Containing RNA Elements as Therapeutic Targets for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535424. [PMID: 37066195 PMCID: PMC10103974 DOI: 10.1101/2023.04.03.535424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The COVID-19 pandemic persists despite the development of effective vaccines. As such, it remains crucial to identify new targets for antiviral therapies. The causative virus of COVID-19, SARS-CoV-2, is a positive-sense RNA virus with RNA structures that could serve as therapeutic targets. One such RNA with established function is the frameshift stimulatory element (FSE), which promotes programmed ribosomal frameshifting. To accelerate identification of additional functional RNA elements, we introduce a novel computational approach termed the Functional RNA Identification (FRID) pipeline. The guiding principle of our pipeline, which uses established component programs as well as customized component programs, is that functional RNA elements have conserved secondary and pseudoknot structures that facilitate function. To assess the presence and conservation of putative functional RNA elements in SARS-CoV-2, we compared over 6,000 SARS-CoV-2 genomic isolates. We identified 22 functional RNA elements from the SARS-CoV-2 genome, 14 of which have conserved pseudoknots and serve as potential targets for small molecule or antisense oligonucleotide therapeutics. The FRID pipeline is general and can be applied to identify pseudoknotted RNAs for targeted therapeutics in genomes or transcriptomes from any virus or organism.
Collapse
|
6
|
RNA Secondary Structure Alteration Caused by Single Nucleotide Variants. Methods Mol Biol 2023; 2586:107-120. [PMID: 36705901 DOI: 10.1007/978-1-0716-2768-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A point mutation in coding RNA can cause not only an amino acid substitution but also a dynamic change of RNA secondary structure, leading to a dysfunctional RNA. Although in silico structure prediction has been used to detect structure-disrupting point mutations known as riboSNitches, exhaustive simulation of long RNAs is needed to detect a significant enrichment or depletion of riboSNitches in functional RNAs. Here, we have developed a novel algorithm Radiam (RNA secondary structure Analysis with Deletion, Insertion, And substitution Mutations) for a comprehensive riboSNitch analysis of long RNAs. Radiam is based on the ParasoR framework, which efficiently computes local RNA secondary structures for long RNAs. ParasoR can compute a variety of structure scores over globally consistent structures with maximal span constraints for the base pair distance. Using the reusable structure database made by ParasoR, Radiam performs an efficient recomputation of the secondary structures for mutated sequences. An exhaustive simulation of Radiam is expected to find reliable riboSNitch candidates on long RNAs by evaluating their statistical significance in terms of the change of local structure stability.
Collapse
|
7
|
Wang H, Lu X, Zheng H, Wang W, Zhang G, Wang S, Lin P, Zhuang Y, Chen C, Chen Q, Qu J, Xu L. RNAsmc: A integrated tool for comparing RNA secondary structure and evaluating allosteric effects. Comput Struct Biotechnol J 2023; 21:965-973. [PMID: 36733704 PMCID: PMC9876829 DOI: 10.1016/j.csbj.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
RNA structure plays a crucial role in gene regulation, in RNA stability and the essential biological processes. RNA secondary structure (RSS) motifs are the basic building blocks for investigating the biological mechanisms of structure. Here, we present a strategy for structural motif-based dynamic alignment, namely, RNA secondary-structural motif-comparing (RNAsmc), to identify structural motifs and quantitatively evaluate their underlying molecular functions. RNAsmc also has strong robustness to sequence length, folding protocol and RNA structural profile by chemical probing. Notably, it is also applicable to quantify structural variation in special RNA editing events (SNVs or SNPs, fragment insertion or deletion, etc.). The findings indicate that RNAsmc can uncover the heterogeneity of RNA secondary structure and score for similarities among components, which provides an impetus to cluster RNA families and evaluate allosteric effects. We find that RNAsmc exhibits remarkable detection efficiency for experimentally-derived RiboSNitches. Finally, the pipeline was assembled into an R software package to serve as an automated toolkit to explore, align, and cluster RSS. It is freely available for download at https://CRAN.R-project.org/package=RNAsmc.
Collapse
Affiliation(s)
- Hong Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Center of Optometry International Innovation of Wenzhou, Eye Valley, Wenzhou 325027, China
| | - Xiaoyan Lu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hewei Zheng
- Wekemo Tech Group Co., Ltd. Shenzhen 518000, China
| | - Wencan Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Realdata Medical Research Co., Ltd, Wenzhou 325027, China
| | - Guosi Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Siyu Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Peng Lin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Youyuan Zhuang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chong Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qi Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jia Qu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Center of Optometry International Innovation of Wenzhou, Eye Valley, Wenzhou 325027, China
- Corresponding authors at: National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Liangde Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Center of Optometry International Innovation of Wenzhou, Eye Valley, Wenzhou 325027, China
- Corresponding authors at: National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
8
|
Waldern JM, Kumar J, Laederach A. Disease-associated human genetic variation through the lens of precursor and mature RNA structure. Hum Genet 2022; 141:1659-1672. [PMID: 34741198 PMCID: PMC9072596 DOI: 10.1007/s00439-021-02395-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Disease-associated variants (DAVs) are commonly considered either through a genomic lens that describes variant function at the DNA level, or at the protein function level if the variant is translated. Although the genomic and proteomic effects of variation are well-characterized, genetic variants disrupting post-transcriptional regulation is another mechanism of disease that remains understudied. Specific RNA sequence motifs mediate post-transcriptional regulation both in the nucleus and cytoplasm of eukaryotic cells, often by binding to RNA-binding proteins or other RNAs. However, many DAVs map far from these motifs, which suggests deeper layers of post-transcriptional mechanistic control. Here, we consider a transcriptomic framework to outline the importance of post-transcriptional regulation as a mechanism of disease-causing single-nucleotide variation in the human genome. We first describe the composition of the human transcriptome and the importance of abundant yet overlooked components such as introns and untranslated regions (UTRs) of messenger RNAs (mRNAs). We present an analysis of Human Gene Mutation Database variants mapping to mRNAs and examine the distribution of causative disease-associated variation across the transcriptome. Although our analysis confirms the importance of post-transcriptional regulatory motifs, a majority of DAVs do not directly map to known regulatory motifs. Therefore, we review evidence that regions outside these well-characterized motifs can regulate function by RNA structure-mediated mechanisms in all four elements of an mRNA: exons, introns, 5' and 3' UTRs. To this end, we review published examples of riboSNitches, which are single-nucleotide variants that result in a change in RNA structure that is causative of the disease phenotype. In this review, we present the current state of knowledge of how DAVs act at the transcriptome level, both through altering post-transcriptional regulatory motifs and by the effects of RNA structure.
Collapse
Affiliation(s)
- Justin M Waldern
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jayashree Kumar
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
Ma H, Wen H, Xue Z, Li G, Zhang Z. RNANetMotif: Identifying sequence-structure RNA network motifs in RNA-protein binding sites. PLoS Comput Biol 2022; 18:e1010293. [PMID: 35819951 PMCID: PMC9275694 DOI: 10.1371/journal.pcbi.1010293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/09/2022] [Indexed: 11/19/2022] Open
Abstract
RNA molecules can adopt stable secondary and tertiary structures, which are essential in mediating physical interactions with other partners such as RNA binding proteins (RBPs) and in carrying out their cellular functions. In vivo and in vitro experiments such as RNAcompete and eCLIP have revealed in vitro binding preferences of RBPs to RNA oligomers and in vivo binding sites in cells. Analysis of these binding data showed that the structure properties of the RNAs in these binding sites are important determinants of the binding events; however, it has been a challenge to incorporate the structure information into an interpretable model. Here we describe a new approach, RNANetMotif, which takes predicted secondary structure of thousands of RNA sequences bound by an RBP as input and uses a graph theory approach to recognize enriched subgraphs. These enriched subgraphs are in essence shared sequence-structure elements that are important in RBP-RNA binding. To validate our approach, we performed RNA structure modeling via coarse-grained molecular dynamics folding simulations for selected 4 RBPs, and RNA-protein docking for LIN28B. The simulation results, e.g., solvent accessibility and energetics, further support the biological relevance of the discovered network subgraphs. RNA binding proteins (RBPs) regulate every aspect of RNA biology, including splicing, translation, transportation, and degradation. High-throughput technologies such as eCLIP have identified thousands of binding sites for a given RBP throughout the genome. It has been shown by earlier studies that, in addition to nucleotide sequences, the structure and conformation of RNAs also play important role in RBP-RNA interactions. Analogous to protein-protein interactions or protein-DNA interactions, it is likely that there exist intrinsic sequence-structure motifs common to these RNAs that underlie their binding specificity to specific RBPs. It is known that RNAs form energetically favorable secondary structures, which can be represented as graphs, with nucleotides being nodes and backbone covalent bonds and base-pairing hydrogen bonds representing edges. We hypothesize that these graphs can be mined by graph theory approaches to identify sequence-structure motifs as enriched sub-graphs. In this article, we described the details of this approach, termed RNANetMotif and associated new concepts, namely EKS (Extended K-mer Subgraph) and GraphK graph algorithm. To test the utility of our approach, we conducted 3D structure modeling of selected RNA sequences through molecular dynamics (MD) folding simulation and evaluated the significance of the discovered RNA motifs by comparing their spatial exposure with other regions on the RNA. We believe that this approach has the novelty of treating the RNA sequence as a graph and RBP binding sites as enriched subgraph, which has broader applications beyond RBP-RNA interactions.
Collapse
Affiliation(s)
- Hongli Ma
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- School of Mathematics, Shandong University, Jinan, China
| | - Han Wen
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Zhiyuan Xue
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guojun Li
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China
- School of Mathematics, Shandong University, Jinan, China
- School of Mathematical Science, Liaocheng University, Liaocheng, China
| | - Zhaolei Zhang
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
G R, Mitra A, Pk V. Predicting functional riboSNitches in the context of alternative splicing. Gene X 2022; 837:146694. [PMID: 35738445 DOI: 10.1016/j.gene.2022.146694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/11/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
RNAs are the major regulators of gene expression, and their secondary structures play crucial roles at different levels. RiboSNitches are disease-associated SNPs that cause changes in the pre-mRNA secondary structural ensemble. Several riboSNitches have been detected in the 5' and 3' untranslated regions and lncRNA. Although cases of secondary structural elements playing a regulatory role in alternative splicing are known, regions specific to splicing events, such as splice junctions have not received much attention. We tested splice-site mutations for their efficiency in disrupting the secondary structure and hypothesized that these could play a crucial role in alternative splicing. Multiple riboSNitch prediction methods were applied to obtain overlapping results that are potentially more reliable. Putative riboSNitches were identified from aberrant 5' and 3' splice site mutations, cancer-causing somatic mutations, and genes that harbor the regulatory RNA secondary structural elements. Our workflow for predicting riboSNitches associated with alternative splicing is novel and paves the way for subsequent experimental validation.
Collapse
Affiliation(s)
- Ramya G
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| | - Vinod Pk
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, Telangana 500032, India.
| |
Collapse
|
11
|
Ferrero-Serrano Á, Sylvia MM, Forstmeier PC, Olson AJ, Ware D, Bevilacqua PC, Assmann SM. Experimental demonstration and pan-structurome prediction of climate-associated riboSNitches in Arabidopsis. Genome Biol 2022; 23:101. [PMID: 35440059 PMCID: PMC9017077 DOI: 10.1186/s13059-022-02656-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background Genome-wide association studies (GWAS) aim to correlate phenotypic changes with genotypic variation. Upon transcription, single nucleotide variants (SNVs) may alter mRNA structure, with potential impacts on transcript stability, macromolecular interactions, and translation. However, plant genomes have not been assessed for the presence of these structure-altering polymorphisms or “riboSNitches.” Results We experimentally demonstrate the presence of riboSNitches in transcripts of two Arabidopsis genes, ZINC RIBBON 3 (ZR3) and COTTON GOLGI-RELATED 3 (CGR3), which are associated with continentality and temperature variation in the natural environment. These riboSNitches are also associated with differences in the abundance of their respective transcripts, implying a role in regulating the gene's expression in adaptation to local climate conditions. We then computationally predict riboSNitches transcriptome-wide in mRNAs of 879 naturally inbred Arabidopsis accessions. We characterize correlations between SNPs/riboSNitches in these accessions and 434 climate descriptors of their local environments, suggesting a role of these variants in local adaptation. We integrate this information in CLIMtools V2.0 and provide a new web resource, T-CLIM, that reveals associations between transcript abundance variation and local environmental variation. Conclusion We functionally validate two plant riboSNitches and, for the first time, demonstrate riboSNitch conditionality dependent on temperature, coining the term “conditional riboSNitch.” We provide the first pan-genome-wide prediction of riboSNitches in plants. We expand our previous CLIMtools web resource with riboSNitch information and with 1868 additional Arabidopsis genomes and 269 additional climate conditions, which will greatly facilitate in silico studies of natural genetic variation, its phenotypic consequences, and its role in local adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02656-4.
Collapse
Affiliation(s)
- Ángel Ferrero-Serrano
- Department of Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| | - Megan M Sylvia
- Department of Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Peter C Forstmeier
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Andrew J Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Philip C Bevilacqua
- Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, State College, PA, 16802, USA.,Center for RNA Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA. .,Center for RNA Molecular Biology, Pennsylvania State University, University Park, State College, PA, 16802, USA.
| |
Collapse
|
12
|
Yang X, Yu H, Sun W, Ding L, Li J, Cheema J, Ramirez-Gonzalez R, Zhao X, Martín AC, Lu F, Liu B, Uauy C, Ding Y, Zhang H. Wheat in vivo RNA structure landscape reveals a prevalent role of RNA structure in modulating translational subgenome expression asymmetry. Genome Biol 2021; 22:326. [PMID: 34847934 PMCID: PMC8638558 DOI: 10.1186/s13059-021-02549-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Polyploidy, especially allopolyploidy, which entails merging divergent genomes via hybridization and whole-genome duplication (WGD), is a major route to speciation in plants. The duplication among the parental genomes (subgenomes) often leads to one subgenome becoming dominant over the other(s), resulting in subgenome asymmetry in gene content and expression. Polyploid wheats are allopolyploids with most genes present in two (tetraploid) or three (hexaploid) functional copies, which commonly show subgenome expression asymmetry. It is unknown whether a similar subgenome asymmetry exists during translation. We aim to address this key biological question and explore the major contributing factors to subgenome translation asymmetry. RESULTS Here, we obtain the first tetraploid wheat translatome and reveal that subgenome expression asymmetry exists at the translational level. We further perform in vivo RNA structure profiling to obtain the wheat RNA structure landscape and find that mRNA structure has a strong impact on translation, independent of GC content. We discover a previously uncharacterized contribution of RNA structure in subgenome translation asymmetry. We identify 3564 single-nucleotide variations (SNVs) across the transcriptomes between the two tetraploid wheat subgenomes, which induce large RNA structure disparities. These SNVs are highly conserved within durum wheat cultivars but are divergent in both domesticated and wild emmer wheat. CONCLUSIONS We successfully determine both the translatome and in vivo RNA structurome in tetraploid wheat. We reveal that RNA structure serves as an important modulator of translational subgenome expression asymmetry in polyploids. Our work provides a new perspective for molecular breeding of major polyploid crops.
Collapse
Affiliation(s)
- Xiaofei Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Haopeng Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Wenqing Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Ling Ding
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Ji Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jitender Cheema
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Azahara C Martín
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
13
|
Dynamic Molecular Epidemiology Reveals Lineage-Associated Single-Nucleotide Variants That Alter RNA Structure in Chikungunya Virus. Genes (Basel) 2021; 12:genes12020239. [PMID: 33567556 PMCID: PMC7914560 DOI: 10.3390/genes12020239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 01/21/2023] Open
Abstract
Chikungunya virus (CHIKV) is an emerging Alphavirus which causes millions of human infections every year. Outbreaks have been reported in Africa and Asia since the early 1950s, from three CHIKV lineages: West African, East Central South African, and Asian Urban. As new outbreaks occurred in the Americas, individual strains from the known lineages have evolved, creating new monophyletic groups that generated novel geographic-based lineages. Building on a recently updated phylogeny of CHIKV, we report here the availability of an interactive CHIKV phylodynamics dataset, which is based on more than 900 publicly available CHIKV genomes. We provide an interactive view of CHIKV molecular epidemiology built on Nextstrain, a web-based visualization framework for real-time tracking of pathogen evolution. CHIKV molecular epidemiology reveals single nucleotide variants that change the stability and fold of locally stable RNA structures. We propose alternative RNA structure formation in different CHIKV lineages by predicting more than a dozen RNA elements that are subject to perturbation of the structure ensemble upon variation of a single nucleotide.
Collapse
|
14
|
Lin J, Chen Y, Zhang Y, Ouyang Z. Identification and analysis of RNA structural disruptions induced by single nucleotide variants using Riprap and RiboSNitchDB. NAR Genom Bioinform 2020; 2:lqaa057. [PMID: 33575608 PMCID: PMC7671322 DOI: 10.1093/nargab/lqaa057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/22/2020] [Accepted: 08/11/2020] [Indexed: 11/27/2022] Open
Abstract
RNA conformational alteration has significant impacts on cellular processes and phenotypic variations. An emerging genetic factor of RNA conformational alteration is a new class of single nucleotide variant (SNV) named riboSNitch. RiboSNitches have been demonstrated to be involved in many genetic diseases. However, identifying riboSNitches is notably difficult as the signals of RNA structural disruption are often subtle. Here, we introduce a novel computational framework–RIboSNitch Predictor based on Robust Analysis of Pairing probabilities (Riprap). Riprap identifies structurally disrupted regions around any given SNVs based on robust analysis of local structural configurations between wild-type and mutant RNA sequences. Compared to previous approaches, Riprap shows higher accuracy when assessed on hundreds of known riboSNitches captured by various experimental RNA structure probing methods including the parallel analysis of RNA structure (PARS) and the selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE). Further, Riprap detects the experimentally validated riboSNitch that regulates human catechol-O-methyltransferase haplotypes and outputs structurally disrupted regions precisely at base resolution. Riprap provides a new approach to interpreting disease-related genetic variants. In addition, we construct a database (RiboSNitchDB) that includes the annotation and visualization of all presented riboSNitches in this study as well as 24 629 predicted riboSNitches from human expression quantitative trait loci.
Collapse
Affiliation(s)
- Jianan Lin
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Yang Chen
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuping Zhang
- Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
| | - Zhengqing Ouyang
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
15
|
Abstract
RNA molecules fold into complex three-dimensional structures that sample alternate conformations ranging from minor differences in tertiary structure dynamics to major differences in secondary structure. This allows them to form entirely different substructures with each population potentially giving rise to a distinct biological outcome. The substructures can be partitioned along an existing energy landscape given a particular static cellular cue or can be shifted in response to dynamic cues such as ligand binding. We review a few key examples of RNA molecules that sample alternate conformations and how these are capitalized on for control of critical regulatory functions.
Collapse
Affiliation(s)
- Marie Teng-Pei Wu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Victoria D'Souza
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
16
|
Abstract
RNA performs and regulates a diverse range of cellular processes, with new functional roles being uncovered at a rapid pace. Interest is growing in how these functions are linked to RNA structures that form in the complex cellular environment. A growing suite of technologies that use advances in RNA structural probes, high-throughput sequencing and new computational approaches to interrogate RNA structure at unprecedented throughput are beginning to provide insights into RNA structures at new spatial, temporal and cellular scales.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Angela M Yu
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
17
|
He F, Wei R, Zhou Z, Huang L, Wang Y, Tang J, Zou Y, Shi L, Gu X, Davis MJ, Su Z. Integrative Analysis of Somatic Mutations in Non-coding Regions Altering RNA Secondary Structures in Cancer Genomes. Sci Rep 2019; 9:8205. [PMID: 31160636 PMCID: PMC6546760 DOI: 10.1038/s41598-019-44489-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
RNA secondary structure may influence many cellular processes, including RNA processing, stability, localization, and translation. Single-nucleotide variations (SNVs) that alter RNA secondary structure, referred to as riboSNitches, are potentially causative of human diseases, especially in untranslated regions (UTRs) and noncoding RNAs (ncRNAs). The functions of somatic mutations that act as riboSNitches in cancer development remain poorly understood. In this study, we developed a computational pipeline called SNIPER (riboSNitch-enriched or depleted elements in cancer genomes), which employs MeanDiff and EucDiff to detect riboSNitches and then identifies riboSNitch-enriched or riboSNitch-depleted non-coding elements across tumors. SNIPER is available at github: https://github.com/suzhixi/SNIPER/. We found that riboSNitches were more likely to be pathogenic. Moreover, we predicted several UTRs and lncRNAs (long non-coding RNA) that significantly enriched or depleted riboSNitches in cancer genomes, indicative of potential cancer driver or essential noncoding elements. Our study highlights the possibly neglected importance of RNA secondary structure in cancer genomes and provides a new strategy to identify new cancer-associated genes.
Collapse
Affiliation(s)
- Funan He
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ran Wei
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leihuan Huang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yinan Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jie Tang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yangyun Zou
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Leming Shi
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China.,Shanghai Cancer Center and Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Melissa J Davis
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Zhixi Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433, China. .,Singlera Genomics Inc, Shanghai, China.
| |
Collapse
|
18
|
Léger S, Costa MBW, Tulpan D. Pairwise visual comparison of small RNA secondary structures with base pair probabilities. BMC Bioinformatics 2019; 20:293. [PMID: 31142266 PMCID: PMC6542128 DOI: 10.1186/s12859-019-2902-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Predicted RNA secondary structures are typically visualized using dot-plots for base pair binding probabilities and planar graphs for unique structures, such as the minimum free energy structure. These are however difficult to analyze simultaneously. RESULTS This work introduces a compact unified view of the most stable conformation of an RNA secondary structure and its base pair probabilities, which is called the Circular Secondary Structure Base Pairs Probabilities Plot (CS2BP2-Plot). Along with our design we provide access to a web server implementation of our solution that facilitates pairwise comparison of short RNA (and DNA) sequences up to 200 base pairs. The web server first calculates the minimum free energy secondary structure and the base pair probabilities for up to 10 RNA or DNA sequences using RNAfold and then provides a two panel comparative view that includes CS2BP2-Plots along with the traditional graph, planar and circular diagrams obtained with VARNA. The CS2BP2-Plots include highlighting of the nucleotide differences between two selected sequences using ClustalW local alignments. We also provide descriptive statistics, dot-bracket secondary structure representations and ClustalW local alignments for compared sequences. CONCLUSIONS Using circular diagrams and colour and weight-coded arcs, we demonstrate how a single image can replace the state-of-the-art dual representations (dot-plots and minimum free energy structures) for base-pair probabilities of RNA secondary structures while allowing efficient exploration and comparison of different RNA conformations via a web server front end. With that, we provide the community, especially the biologically oriented, with an intuitive tool for ncRNA visualization. Web-server: https://nrcmonsrv01.nrc.ca/cs2bp2plot.
Collapse
Affiliation(s)
- Serge Léger
- Digital Technologies Research Center, National Research Council Canada, 100 des Aboiteaux St, Moncton, NB E1A7R1 Canada
| | - Maria Beatriz Walter Costa
- Department of Computer Science, TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Dan Tulpan
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario Canada
- Digital Technologies Research Center, National Research Council Canada, 100 des Aboiteaux St, Moncton, NB E1A7R1 Canada
- School of Computer Science, University of Guelph, Guelph, Ontario Canada
| |
Collapse
|
19
|
Hardwick SA, Bassett M, Kaczorowski D, Blackburn J, Barton K, Bartonicek N, Carswell SL, Tilgner HU, Loy C, Halliday G, Mercer TR, Smith MA, Mattick JS. Targeted, High-Resolution RNA Sequencing of Non-coding Genomic Regions Associated With Neuropsychiatric Functions. Front Genet 2019; 10:309. [PMID: 31031799 PMCID: PMC6473190 DOI: 10.3389/fgene.2019.00309] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022] Open
Abstract
The human brain is one of the last frontiers of biomedical research. Genome-wide association studies (GWAS) have succeeded in identifying thousands of haplotype blocks associated with a range of neuropsychiatric traits, including disorders such as schizophrenia, Alzheimer's and Parkinson's disease. However, the majority of single nucleotide polymorphisms (SNPs) that mark these haplotype blocks fall within non-coding regions of the genome, hindering their functional validation. While some of these GWAS loci may contain cis-acting regulatory DNA elements such as enhancers, we hypothesized that many are also transcribed into non-coding RNAs that are missing from publicly available transcriptome annotations. Here, we use targeted RNA capture ('RNA CaptureSeq') in combination with nanopore long-read cDNA sequencing to transcriptionally profile 1,023 haplotype blocks across the genome containing non-coding GWAS SNPs associated with neuropsychiatric traits, using post-mortem human brain tissue from three neurologically healthy donors. We find that the majority (62%) of targeted haplotype blocks, including 13% of intergenic blocks, are transcribed into novel, multi-exonic RNAs, most of which are not yet recorded in GENCODE annotations. We validated our findings with short-read RNA-seq, providing orthogonal confirmation of novel splice junctions and enabling a quantitative assessment of the long-read assemblies. Many novel transcripts are supported by independent evidence of transcription including cap analysis of gene expression (CAGE) data and epigenetic marks, and some show signs of potential functional roles. We present these transcriptomes as a preliminary atlas of non-coding transcription in human brain that can be used to connect neurological phenotypes with gene expression.
Collapse
Affiliation(s)
- Simon A. Hardwick
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, United States
| | - Maya Bassett
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Dominik Kaczorowski
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - James Blackburn
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Kirston Barton
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Nenad Bartonicek
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Shaun L. Carswell
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Hagen U. Tilgner
- Brain and Mind Research Institute and Center for Neurogenetics, Weill Cornell Medicine, New York, NY, United States
| | - Clement Loy
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Glenda Halliday
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Tim R. Mercer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| | - Martin A. Smith
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
| | - John S. Mattick
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW, Australia
- Green Templeton College, Oxford, United Kingdom
| |
Collapse
|
20
|
Genome-Wide Discovery of DEAD-Box RNA Helicase Targets Reveals RNA Structural Remodeling in Transcription Termination. Genetics 2019; 212:153-174. [PMID: 30902808 DOI: 10.1534/genetics.119.302058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 11/18/2022] Open
Abstract
RNA helicases are a class of enzymes that unwind RNA duplexes in vitro but whose cellular functions are largely enigmatic. Here, we provide evidence that the DEAD-box protein Dbp2 remodels RNA-protein complex (RNP) structure to facilitate efficient termination of transcription in Saccharomyces cerevisiae via the Nrd1-Nab3-Sen1 (NNS) complex. First, we find that loss of DBP2 results in RNA polymerase II accumulation at the 3' ends of small nucleolar RNAs and a subset of mRNAs. In addition, Dbp2 associates with RNA sequence motifs and regions bound by Nrd1 and can promote its recruitment to NNS-targeted regions. Using Structure-seq, we find altered RNA/RNP structures in dbp2∆ cells that correlate with inefficient termination. We also show a positive correlation between the stability of structures in the 3' ends and a requirement for Dbp2 in termination. Taken together, these studies provide a role for RNA remodeling by Dbp2 and further suggests a mechanism whereby RNA structure is exploited for gene regulation.
Collapse
|
21
|
Lackey L, Coria A, Woods C, McArthur E, Laederach A. Allele-specific SHAPE-MaP assessment of the effects of somatic variation and protein binding on mRNA structure. RNA (NEW YORK, N.Y.) 2018; 24:513-528. [PMID: 29317542 PMCID: PMC5855952 DOI: 10.1261/rna.064469.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 05/22/2023]
Abstract
The impact of inherited and somatic mutations on messenger RNA (mRNA) structure remains poorly understood. Recent technological advances that leverage next-generation sequencing to obtain experimental structure data, such as SHAPE-MaP, can reveal structural effects of mutations, especially when these data are incorporated into structure modeling. Here, we analyze the ability of SHAPE-MaP to detect the relatively subtle structural changes caused by single-nucleotide mutations. We find that allele-specific sorting greatly improved our detection ability. Thus, we used SHAPE-MaP with a novel combination of clone-free robotic mutagenesis and allele-specific sorting to perform a rapid, comprehensive survey of noncoding somatic and inherited riboSNitches in two cancer-associated mRNAs, TPT1 and LCP1 Using rigorous thermodynamic modeling of the Boltzmann suboptimal ensemble, we identified a subset of mutations that change TPT1 and LCP1 RNA structure, with approximately 14% of all variants identified as riboSNitches. To confirm that these in vitro structures were biologically relevant, we tested how dependent TPT1 and LCP1 mRNA structures were on their environments. We performed SHAPE-MaP on TPT1 and LCP1 mRNAs in the presence or absence of cellular proteins and found that both mRNAs have similar overall folds in all conditions. RiboSNitches identified within these mRNAs in vitro likely exist under biological conditions. Overall, these data reveal a robust mRNA structural landscape where differences in environmental conditions and most sequence variants do not significantly alter RNA structural ensembles. Finally, predicting riboSNitches in mRNAs from sequence alone remains particularly challenging; these data will provide the community with benchmarks for further algorithmic development.
Collapse
Affiliation(s)
- Lela Lackey
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Aaztli Coria
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Chanin Woods
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Evonne McArthur
- School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
22
|
Woods CT, Laederach A. Classification of RNA structure change by 'gazing' at experimental data. Bioinformatics 2018; 33:1647-1655. [PMID: 28130241 PMCID: PMC5447233 DOI: 10.1093/bioinformatics/btx041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 01/20/2017] [Indexed: 11/12/2022] Open
Abstract
Motivation Mutations (or Single Nucleotide Variants) in folded RiboNucleic Acid structures that cause local or global conformational change are riboSNitches. Predicting riboSNitches is challenging, as it requires making two, albeit related, structure predictions. The data most often used to experimentally validate riboSNitch predictions is Selective 2' Hydroxyl Acylation by Primer Extension, or SHAPE. Experimentally establishing a riboSNitch requires the quantitative comparison of two SHAPE traces: wild-type (WT) and mutant. Historically, SHAPE data was collected on electropherograms and change in structure was evaluated by 'gel gazing.' SHAPE data is now routinely collected with next generation sequencing and/or capillary sequencers. We aim to establish a classifier capable of simulating human 'gazing' by identifying features of the SHAPE profile that human experts agree 'looks' like a riboSNitch. Results We find strong quantitative agreement between experts when RNA scientists 'gaze' at SHAPE data and identify riboSNitches. We identify dynamic time warping and seven other features predictive of the human consensus. The classSNitch classifier reported here accurately reproduces human consensus for 167 mutant/WT comparisons with an Area Under the Curve (AUC) above 0.8. When we analyze 2019 mutant traces for 17 different RNAs, we find that features of the WT SHAPE reactivity allow us to improve thermodynamic structure predictions of riboSNitches. This is significant, as accurate RNA structural analysis and prediction is likely to become an important aspect of precision medicine. Availability and Implementation The classSNitch R package is freely available at http://classsnitch.r-forge.r-project.org . Contact alain@email.unc.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chanin Tolson Woods
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Ledda M, Aviran S. PATTERNA: transcriptome-wide search for functional RNA elements via structural data signatures. Genome Biol 2018; 19:28. [PMID: 29495968 PMCID: PMC5833111 DOI: 10.1186/s13059-018-1399-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
Establishing a link between RNA structure and function remains a great challenge in RNA biology. The emergence of high-throughput structure profiling experiments is revolutionizing our ability to decipher structure, yet principled approaches for extracting information on structural elements directly from these data sets are lacking. We present PATTERNA, an unsupervised pattern recognition algorithm that rapidly mines RNA structure motifs from profiling data. We demonstrate that PATTERNA detects motifs with an accuracy comparable to commonly used thermodynamic models and highlight its utility in automating data-directed structure modeling from large data sets. PATTERNA is versatile and compatible with diverse profiling techniques and experimental conditions.
Collapse
Affiliation(s)
- Mirko Ledda
- Department of Biomedical Engineering and Genome Center, UC Davis, 1 Shields Ave, Davis, 95616 USA
- Integrative Genetics and Genomics Graduate Group, UC Davis, 1 Shields Ave, Davis, 95616 USA
| | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, UC Davis, 1 Shields Ave, Davis, 95616 USA
| |
Collapse
|
24
|
Moss WN. RNA2DMut: a web tool for the design and analysis of RNA structure mutations. RNA (NEW YORK, N.Y.) 2018; 24:273-286. [PMID: 29183923 PMCID: PMC5824348 DOI: 10.1261/rna.063933.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
With the widespread application of high-throughput sequencing, novel RNA sequences are being discovered at an astonishing rate. The analysis of function, however, lags behind. In both the cis- and trans-regulatory functions of RNA, secondary structure (2D base-pairing) plays essential regulatory roles. In order to test RNA function, it is essential to be able to design and analyze mutations that can affect structure. This was the motivation for the creation of the RNA2DMut web tool. With RNA2DMut, users can enter in RNA sequences to analyze, constrain mutations to specific residues, or limit changes to purines/pyrimidines. The sequence is analyzed at each base to determine the effect of every possible point mutation on 2D structure. The metrics used in RNA2DMut rely on the calculation of the Boltzmann structure ensemble and do not require a robust 2D model of RNA structure for designing mutations. This tool can facilitate a wide array of uses involving RNA: for example, in designing and evaluating mutants for biological assays, interrogating RNA-protein interactions, identifying key regions to alter in SELEX experiments, and improving RNA folding and crystallization properties for structural biology. Additional tools are available to help users introduce other mutations (e.g., indels and substitutions) and evaluate their effects on RNA structure. Example calculations are shown for five RNAs that require 2D structure for their function: the MALAT1 mascRNA, an influenza virus splicing regulatory motif, the EBER2 viral noncoding RNA, the Xist lncRNA repA region, and human Y RNA 5. RNA2DMut can be accessed at https://rna2dmut.bb.iastate.edu/.
Collapse
Affiliation(s)
- Walter N Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
25
|
Ren C, Liu F, Ouyang Z, An G, Zhao C, Shuai J, Cai S, Bo X, Shu W. Functional annotation of structural ncRNAs within enhancer RNAs in the human genome: implications for human disease. Sci Rep 2017; 7:15518. [PMID: 29138457 PMCID: PMC5686184 DOI: 10.1038/s41598-017-15822-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/03/2017] [Indexed: 12/28/2022] Open
Abstract
Enhancer RNAs (eRNAs) are a novel class of non-coding RNA (ncRNA) molecules transcribed from the DNA sequences of enhancer regions. Despite extensive efforts devoted to revealing the potential functions and underlying mechanisms of eRNAs, it remains an open question whether eRNAs are mere transcriptional noise or relevant biologically functional species. Here, we identified a catalogue of eRNAs in a broad range of human cell/tissue types and extended our understanding of eRNAs by demonstrating their multi-omic signatures. Gene Ontology (GO) analysis revealed that eRNAs play key roles in human cell identity. Furthermore, we detected numerous known and novel functional RNA structures within eRNA regions. To better characterize the cis-regulatory effects of non-coding variation in these structural ncRNAs, we performed a comprehensive analysis of the genetic variants of structural ncRNAs in eRNA regions that are associated with inflammatory autoimmune diseases. Disease-associated variants of the structural ncRNAs were disproportionately enriched in immune-specific cell types. We also identified riboSNitches in lymphoid eRNAs and investigated the potential pathogenic mechanisms by which eRNAs might function in autoimmune diseases. Collectively, our findings offer valuable insights into the function of eRNAs and suggest that eRNAs might be effective diagnostic and therapeutic targets for human diseases.
Collapse
Affiliation(s)
- Chao Ren
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Feng Liu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.,Department of Information, The 188th Hospital of ChaoZhou, ChaoZhou, China
| | - Zhangyi Ouyang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Gaole An
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chenghui Zhao
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jun Shuai
- Department of Information, The 188th Hospital of ChaoZhou, ChaoZhou, China
| | - Shuhong Cai
- Department of Information, The 188th Hospital of ChaoZhou, ChaoZhou, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Wenjie Shu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
26
|
RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure. Nat Commun 2017; 8:1440. [PMID: 29129909 PMCID: PMC5682290 DOI: 10.1038/s41467-017-01458-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 09/19/2017] [Indexed: 11/09/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is the master RNA editor, catalyzing the deamination of adenosine to inosine. RNA editing is vital for preventing abnormal activation of cytosolic nucleic acid sensing pathways by self-double-stranded RNAs. Here we determine, by parallel analysis of RNA secondary structure sequencing (PARS-seq), the global RNA secondary structure changes in ADAR1 deficient cells. Surprisingly, ADAR1 silencing resulted in a lower global double-stranded to single-stranded RNA ratio, suggesting that A-to-I editing can stabilize a large subset of imperfect RNA duplexes. The duplexes destabilized by editing are composed of vastly complementary inverted Alus found in untranslated regions of genes performing vital biological processes, including housekeeping functions and type-I interferon responses. They are predominantly cytoplasmic and generally demonstrate higher ribosomal occupancy. Our findings imply that the editing effect on RNA secondary structure is context dependent and underline the intricate regulatory role of ADAR1 on global RNA secondary structure.
Collapse
|
27
|
Sloma MF, Mathews DH. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs. PLoS Comput Biol 2017; 13:e1005827. [PMID: 29107980 PMCID: PMC5690697 DOI: 10.1371/journal.pcbi.1005827] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 11/16/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package.
Collapse
Affiliation(s)
- Michael F. Sloma
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States of America
| | - David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, United States of America
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
28
|
An RNA structure-mediated, posttranscriptional model of human α-1-antitrypsin expression. Proc Natl Acad Sci U S A 2017; 114:E10244-E10253. [PMID: 29109288 PMCID: PMC5703279 DOI: 10.1073/pnas.1706539114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Protein and mRNA expression are in most cases poorly correlated, which suggests that the posttranscriptional regulatory program of a cell is an important component of gene expression. This regulatory network is still poorly understood, including how RNA structure quantitatively contributes to translational control. We present here a series of structural and functional experiments that together allow us to derive a quantitative, structure-dependent model of translation that accurately predicts translation efficiency in reporter assays and primary human tissue for a complex and medically important protein, α-1-antitrypsin. Our model demonstrates the importance of accurate, experimentally derived RNA structural models partnered with Kozak sequence information to explain protein expression and suggests a strategy by which α-1-antitrypsin expression may be increased in diseased individuals. Chronic obstructive pulmonary disease (COPD) affects over 65 million individuals worldwide, where α-1-antitrypsin deficiency is a major genetic cause of the disease. The α-1-antitrypsin gene, SERPINA1, expresses an exceptional number of mRNA isoforms generated entirely by alternative splicing in the 5′-untranslated region (5′-UTR). Although all SERPINA1 mRNAs encode exactly the same protein, expression levels of the individual mRNAs vary substantially in different human tissues. We hypothesize that these transcripts behave unequally due to a posttranscriptional regulatory program governed by their distinct 5′-UTRs and that this regulation ultimately determines α-1-antitrypsin expression. Using whole-transcript selective 2′-hydroxyl acylation by primer extension (SHAPE) chemical probing, we show that splicing yields distinct local 5′-UTR secondary structures in SERPINA1 transcripts. Splicing in the 5′-UTR also changes the inclusion of long upstream ORFs (uORFs). We demonstrate that disrupting the uORFs results in markedly increased translation efficiencies in luciferase reporter assays. These uORF-dependent changes suggest that α-1-antitrypsin protein expression levels are controlled at the posttranscriptional level. A leaky-scanning model of translation based on Kozak translation initiation sequences alone does not adequately explain our quantitative expression data. However, when we incorporate the experimentally derived RNA structure data, the model accurately predicts translation efficiencies in reporter assays and improves α-1-antitrypsin expression prediction in primary human tissues. Our results reveal that RNA structure governs a complex posttranscriptional regulatory program of α-1-antitrypsin expression. Crucially, these findings describe a mechanism by which genetic alterations in noncoding gene regions may result in α-1-antitrypsin deficiency.
Collapse
|
29
|
Dawn of the in vivo RNA structurome and interactome. Biochem Soc Trans 2017; 44:1395-1410. [PMID: 27911722 DOI: 10.1042/bst20160075] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/19/2016] [Accepted: 07/04/2016] [Indexed: 12/11/2022]
Abstract
RNA is one of the most fascinating biomolecules in living systems given its structural versatility to fold into elaborate architectures for important biological functions such as gene regulation, catalysis, and information storage. Knowledge of RNA structures and interactions can provide deep insights into their functional roles in vivo For decades, RNA structural studies have been conducted on a transcript-by-transcript basis. The advent of next-generation sequencing (NGS) has enabled the development of transcriptome-wide structural probing methods to profile the global landscape of RNA structures and interactions, also known as the RNA structurome and interactome, which transformed our understanding of the RNA structure-function relationship on a transcriptomic scale. In this review, molecular tools and NGS methods used for RNA structure probing are presented, novel insights uncovered by RNA structurome and interactome studies are highlighted, and perspectives on current challenges and potential future directions are discussed. A more complete understanding of the RNA structures and interactions in vivo will help illuminate the novel roles of RNA in gene regulation, development, and diseases.
Collapse
|
30
|
Choudhary K, Deng F, Aviran S. Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions. QUANTITATIVE BIOLOGY 2017; 5:3-24. [PMID: 28717530 PMCID: PMC5510538 DOI: 10.1007/s40484-017-0093-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Structure profiling experiments provide single-nucleotide information on RNA structure. Recent advances in chemistry combined with application of high-throughput sequencing have enabled structure profiling at transcriptome scale and in living cells, creating unprecedented opportunities for RNA biology. Propelled by these experimental advances, massive data with ever-increasing diversity and complexity have been generated, which give rise to new challenges in interpreting and analyzing these data. RESULTS We review current practices in analysis of structure profiling data with emphasis on comparative and integrative analysis as well as highlight emerging questions. Comparative analysis has revealed structural patterns across transcriptomes and has become an integral component of recent profiling studies. Additionally, profiling data can be integrated into traditional structure prediction algorithms to improve prediction accuracy. CONCLUSIONS To keep pace with experimental developments, methods to facilitate, enhance and refine such analyses are needed. Parallel advances in analysis methodology will complement profiling technologies and help them reach their full potential.
Collapse
Affiliation(s)
| | | | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
31
|
Ying HQ, Peng HX, He BS, Pan YQ, Wang F, Sun HL, Liu X, Chen J, Lin K, Wang SK. MiR-608, pre-miR-124-1 and pre-miR26a-1 polymorphisms modify susceptibility and recurrence-free survival in surgically resected CRC individuals. Oncotarget 2016; 7:75865-75873. [PMID: 27713147 PMCID: PMC5342784 DOI: 10.18632/oncotarget.12422] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 09/25/2016] [Indexed: 01/22/2023] Open
Abstract
Genetic variation within microRNA (miRNA) may result in its abnormal folding or aberrant expression, contributing to colorectal turmorigenesis and metastasis. However, the association of six polymorphisms (miR-608 rs4919510, miR-499a rs3746444, miR-146a rs2910164, pre-miR-143 rs41291957, pre-miR-124-1 rs531564 and pre-miR-26a-1 rs7372209) with colorectal cancer (CRC) risk, therapeutic response and survival remains unclear. A retrospective study was carried out to investigate the association in 1358 0-III stage resected CRC patients and 1079 healthy controls using Sequenom's MassARRAY platform. The results showed that rs4919510 was significantly associated with a decreased susceptibility to CRC in co-dominant, allele and recessive genetic models, and the protective role of rs4919510 allele G and genotype GG was more pronounced among stage 0-II cases; significant association between rs531564 and poor RFS was observed in cases undergoing adjuvant chemo-radiotherapy in co-dominant, allele and dominant models; moreover, there was a positive association between rs7372209 and recurrence-free survival in stage II cases in co-dominant and over-dominant models; additionally, a cumulative effect of rs531564 and rs7372209 at-risk genotypes with hazard ratio at 1.30 and 1.95 for one and two at-risk genotypes was examined in stage II cases, respectively. Our findings indicated that rs4919510 allele G and genotype GG were protective factors for 0-II stage CRC, rs7372209 and rs531564 could decrease RFS in II stage individuals and resected CRC patients receiving adjuvant chemo-radiology.
Collapse
Affiliation(s)
- Hou-Qun Ying
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Hong-Xin Peng
- Medical School of Southeast University, Nanjing 210009, Jiangsu, China
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Bang-Shun He
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Yu-Qin Pan
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Feng Wang
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Hui-Ling Sun
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Xian Liu
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Jie Chen
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Kang Lin
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Shu-Kui Wang
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| |
Collapse
|
32
|
Nariman-Saleh-Fam Z, Bastami M, Somi MH, Samadi N, Abbaszadegan MR, Behjati F, Ghaedi H, Tavakkoly-Bazzaz J, Masotti A. In silico dissection of miRNA targetome polymorphisms and their role in regulating miRNA-mediated gene expression in esophageal cancer. Cell Biochem Biophys 2016; 74:483-497. [PMID: 27518186 DOI: 10.1007/s12013-016-0754-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/09/2016] [Indexed: 12/14/2022]
Abstract
Esophageal cancer is the eighth most common cancer worldwide. Also middle-aged obese adults with higher body mass index during childhood have a greater risk to develop esophageal cancer. The contribution of microRNAs to esophageal cancer has been extensively studied and it became clear that these noncoding RNAs may play crucial roles in pathogenesis, diagnosis and prognosis of the disease. Increasing evidences have suggested that polymorphisms perturbing microRNA targetome (i.e., the compendium of all microRNA target sites) are associated with cancers including esophageal cancer. However, the extent to which such variants contribute to esophageal cancer is still unclear. In this study, we applied an in silico approach to systematically identify polymorphisms perturbing microRNA targetome in esophageal cancer and performed various analyses to predict the functional consequences of the occurrence of these variants. The computational results were integrated to provide a prioritized list of the most potentially disrupting esophageal cancer-implicated microRNA targetome polymorphisms along with the in silico insight into the mechanisms with which such variations may modulate microRNA-mediated regulation. The results of this study will be valuable for future functional experiments aimed at dissecting the roles of microRNA targetome polymorphisms in the onset and progression of esophageal cancer.
Collapse
Affiliation(s)
- Ziba Nariman-Saleh-Fam
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Samadi
- Faculty of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Abbaszadegan
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, 9196773117, Iran
| | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Gene Expression - Microarrays Laboratory, Viale di San Paolo 15, Rome, 00146, Italy.
| |
Collapse
|
33
|
Kutchko KM, Laederach A. Transcending the prediction paradigm: novel applications of SHAPE to RNA function and evolution. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27396578 PMCID: PMC5179297 DOI: 10.1002/wrna.1374] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Selective 2′‐hydroxyl acylation analyzed by primer extension (SHAPE) provides information on RNA structure at single‐nucleotide resolution. It is most often used in conjunction with RNA secondary structure prediction algorithms as a probabilistic or thermodynamic restraint. With the recent advent of ultra‐high‐throughput approaches for collecting SHAPE data, the applications of this technology are extending beyond structure prediction. In this review, we discuss recent applications of SHAPE data in the transcriptomic context and how this new experimental paradigm is changing our understanding of these experiments and RNA folding in general. SHAPE experiments probe both the secondary and tertiary structure of an RNA, suggesting that model‐free approaches for within and comparative RNA structure analysis can provide significant structural insight without the need for a full structural model. New methods incorporating SHAPE at different nucleotide resolutions are required to parse these transcriptomic data sets to transcend secondary structure modeling with global structural metrics. These ‘multiscale’ approaches provide deeper insights into RNA global structure, evolution, and function in the cell. WIREs RNA 2017, 8:e1374. doi: 10.1002/wrna.1374 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Katrina M Kutchko
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
34
|
Strobel EJ, Watters KE, Loughrey D, Lucks JB. RNA systems biology: uniting functional discoveries and structural tools to understand global roles of RNAs. Curr Opin Biotechnol 2016; 39:182-191. [PMID: 27132125 DOI: 10.1016/j.copbio.2016.03.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/11/2022]
Abstract
RNAs assume sophisticated structures that are active in myriad cellular processes. In this review, we highlight newly identified ribozymes, riboswitches, and small RNAs, some of which control the function of cellular metabolic and gene expression networks. We then examine recent developments in genome-wide RNA structure probing technologies that are yielding new insights into the structural landscape of the transcriptome. Finally, we discuss how these RNA 'structomic' methods can address emerging questions in RNA systems biology, from the mechanisms behind long non-coding RNAs to new bases for human diseases.
Collapse
Affiliation(s)
- Eric J Strobel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Kyle E Watters
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - David Loughrey
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Julius B Lucks
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
35
|
Bhartiya D, Scaria V. Genomic variations in non-coding RNAs: Structure, function and regulation. Genomics 2016; 107:59-68. [DOI: 10.1016/j.ygeno.2016.01.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 01/05/2023]
|
36
|
Mao F, Xiao L, Li X, Liang J, Teng H, Cai W, Sun ZS. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins. Nucleic Acids Res 2016; 44:D154-63. [PMID: 26635394 PMCID: PMC4702914 DOI: 10.1093/nar/gkv1308] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/01/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
Transcription factors bind to the genome by forming specific contacts with the primary DNA sequence; however, RNA-binding proteins (RBPs) have greater scope to achieve binding specificity through the RNA secondary structure. It has been revealed that single nucleotide variants (SNVs) that alter RNA structure, also known as RiboSNitches, exhibit 3-fold greater local structure changes than replicates of the same DNA sequence, demonstrated by the fact that depletion of RiboSNitches could result in the alteration of specific RNA shapes at thousands of sites, including 3' UTRs, binding sites of microRNAs and RBPs. However, the network between SNVs and post-transcriptional regulation remains unclear. Here, we developed RBP-Var, a database freely available at http://www.rbp-var.biols.ac.cn/, which provides annotation of functional variants involved in post-transcriptional interaction and regulation. RBP-Var provides an easy-to-use web interface that allows users to rapidly find whether SNVs of interest can transform the secondary structure of RNA and identify RBPs whose binding may be subsequently disrupted. RBP-Var integrates DNA and RNA biology to understand how various genetic variants and post-transcriptional mechanisms cooperate to orchestrate gene expression. In summary, RBP-Var is useful in selecting candidate SNVs for further functional studies and exploring causal SNVs underlying human diseases.
Collapse
Affiliation(s)
- Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luoyuan Xiao
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Xianfeng Li
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, 410078, China
| | - Jialong Liang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
37
|
Hu X, Wu Y, Lu ZJ, Yip KY. Analysis of sequencing data for probing RNA secondary structures and protein–RNA binding in studying posttranscriptional regulations. Brief Bioinform 2015; 17:1032-1043. [DOI: 10.1093/bib/bbv106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/11/2015] [Indexed: 11/12/2022] Open
|
38
|
Kubota M, Tran C, Spitale RC. Progress and challenges for chemical probing of RNA structure inside living cells. Nat Chem Biol 2015; 11:933-41. [PMID: 26575240 PMCID: PMC5068366 DOI: 10.1038/nchembio.1958] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/14/2015] [Indexed: 01/18/2023]
Abstract
Proper gene expression is essential for the survival of every cell. Once thought to be a passive transporter of genetic information, RNA has recently emerged as a key player in nearly every pathway in the cell. A full description of its structure is critical to understanding RNA function. Decades of research have focused on utilizing chemical tools to interrogate the structures of RNAs, with recent focus shifting to performing experiments inside living cells. This Review will detail the design and utility of chemical reagents used in RNA structure probing. We also outline how these reagents have been used to gain a deeper understanding of RNA structure in vivo. We review the recent merger of chemical probing with deep sequencing. Finally, we outline some of the hurdles that remain in fully characterizing the structure of RNA inside living cells, and how chemical biology can uniquely tackle such challenges.
Collapse
Affiliation(s)
- Miles Kubota
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Catherine Tran
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
39
|
A Dual Model for Prioritizing Cancer Mutations in the Non-coding Genome Based on Germline and Somatic Events. PLoS Comput Biol 2015; 11:e1004583. [PMID: 26588488 PMCID: PMC4654583 DOI: 10.1371/journal.pcbi.1004583] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/04/2015] [Indexed: 11/19/2022] Open
Abstract
We address here the issue of prioritizing non-coding mutations in the tumoral genome. To this aim, we created two independent computational models. The first (germline) model estimates purifying selection based on population SNP data. The second (somatic) model estimates tumor mutation density based on whole genome tumor sequencing. We show that each model reflects a different set of constraints acting either on the normal or tumor genome, and we identify the specific genome features that most contribute to these constraints. Importantly, we show that the somatic mutation model carries independent functional information that can be used to narrow down the non-coding regions that may be relevant to cancer progression. On this basis, we identify positions in non-coding RNAs and the non-coding parts of mRNAs that are both under purifying selection in the germline and protected from mutation in tumors, thus introducing a new strategy for future detection of cancer driver elements in the expressed non-coding genome. Cancer cells undergo a mutation/selection process that resembles that of any living cell. Most mutations in cancer cell DNA occur in the so-called "non-coding" regions that represent 98.5% of the genome length. Pinning down which of these mutations contribute to the fitness of cancer cells would be important for identifying new "cancer drivers", which may in turn lead to future treatments. Unfortunately, predicting the impact of a non-coding DNA alteration remains extremely difficult. In this study, we analyze millions of non-coding cancer mutations and show cancer-specific mutational patterns can be used to predict non-coding regions that are preserved from mutations and may thus be important for cancer cell survival. Combining this information with population data, we propose a new scoring system that should help prioritize important non-coding mutations in future studies.
Collapse
|
40
|
Smola MJ, Calabrese JM, Weeks KM. Detection of RNA-Protein Interactions in Living Cells with SHAPE. Biochemistry 2015; 54:6867-75. [PMID: 26544910 DOI: 10.1021/acs.biochem.5b00977] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SHAPE-MaP is unique among RNA structure probing strategies in that it both measures flexibility at single-nucleotide resolution and quantifies the uncertainties in these measurements. We report a straightforward analytical framework that incorporates these uncertainties to allow detection of RNA structural differences between any two states, and we use it here to detect RNA-protein interactions in healthy mouse trophoblast stem cells. We validate this approach by analysis of three model cytoplasmic and nuclear ribonucleoprotein complexes, in 2 min in-cell probing experiments. In contrast, data produced by alternative in-cell SHAPE probing methods correlate poorly (r = 0.2) with those generated by SHAPE-MaP and do not yield accurate signals for RNA-protein interactions. We then examine RNA-protein and RNA-substrate interactions in the RNase MRP complex and, by comparing in-cell interaction sites with disease-associated mutations, characterize these noncoding mutations in terms of molecular phenotype. Together, these results reveal that SHAPE-MaP can define true interaction sites and infer RNA functions under native cellular conditions with limited preexisting knowledge of the proteins or RNAs involved.
Collapse
Affiliation(s)
- Matthew J Smola
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| | - J Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|