1
|
Hisaoka M, Komatsu T, Hashimoto T, Lin J, Ohkawa Y, Okuwaki M. Function of HP1BP3 as a linker histone is regulated by linker histone chaperones, NPM1 and TAF-I. Epigenetics Chromatin 2025; 18:14. [PMID: 40140990 PMCID: PMC11948679 DOI: 10.1186/s13072-025-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Linker histones constitute a class of proteins that are responsible for the formation of higher-order chromatin structures. Core histones are integral components of nucleosome core particles (NCPs), whereas linker histones bind to linker DNA between NCPs. Heterochromatin protein 1 binding protein 3 (HP1BP3) displays sequence similarity to linker histones, with the exception of the presence of three globular domains in its central region. However, the function of HP1BP3 as a linker histone has not been analyzed previously. The present study aimed to elucidate the function of full-length HP1BP3 as a linker histone variant. RESULTS The results of biochemical analyses demonstrate that HP1BP3 efficiently binds to NCPs with similar efficiency as linker histones, thereby forming a chromatosome. Notwithstanding the presence of three globular domains, the results suggest that a single HP1BP3 binds to a single NCP under our biochemical assay condition. Moreover, our findings revealed that the NCP binding activity of HP1BP3 is regulated by linker histone chaperones, nucleophosmin (NPM1) and template activating factor-I (TAF-I). The globular domains and the C-terminal disordered region of HP1BP3 are responsible for binding to histone chaperones. Chromatin immunoprecipitation-sequence analyses demonstrated that HP1BP3 exhibited weak preferences for the genomic loci where histone H3 active modification marks were enriched, whereas a linker histone variant, H1.2, showed weak preferences for the genomic loci where histone H3 inactive modification marks were enriched. It is noteworthy that the preferential binding tendencies of HP1BP3 and H1.2 to active and inactive genomic loci, respectively, are diminished upon the knockdown of either NPM1 or TAF-I. CONCLUSIONS Our findings indicate that HP1BP3 functions as a linker histone variant and that the chromatin binding preference of linker histones, including HP1BP3, is regulated by linker histone chaperones.
Collapse
Affiliation(s)
- Miharu Hisaoka
- Graduate School of Comprehensive Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305- 8575, Japan
| | - Tetsuro Komatsu
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, 371-8512, Japan
| | - Takuma Hashimoto
- Laboratory of Biochemistry, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Jianhuang Lin
- Graduate School of Comprehensive Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305- 8575, Japan
- PhD Program of Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, 812-0054, Fukuoka, Japan
| | - Mitsuru Okuwaki
- Laboratory of Biochemistry, School of Pharmacy and Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
2
|
Zhang J, Yang CQ, Liu ZQ, Wu SP, Li ZG, Zhang LM, Fan HW, Guo ZY, Man HY, Li X, Lu YM, Zhu LQ, Liu D. Cpeb1 remodels cell type-specific translational program to promote fear extinction. SCIENCE ADVANCES 2025; 11:eadr8687. [PMID: 39792668 PMCID: PMC11721575 DOI: 10.1126/sciadv.adr8687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex (IL) during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction. Specifically, Cpeb1 deficiency in neurons activates the translation of heterochromatin protein 1 binding protein 3, which enhances microRNA networks, whereas in microglia, it suppresses the translation of chemokine receptor 1 (Cx3cr1), resulting in an aged-like microglial phenotype. These coordinated alterations impair spine formation and plasticity. Our study highlights the critical role of cell type-specific protein translation in fear extinction and provides an insight into therapeutic targets for disorders with extinction deficits.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chun-Qing Yang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shi-Ping Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zu-Guang Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luo-Man Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, China
| | - Hong-Wei Fan
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi-Yuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, Wuhan University, Wuhan, Hubei 430030, China
| | - You-Ming Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
3
|
Liu Y, Hao W, Huang C, Feng P, Liu H, Guo Z. Interaction of PGC7 and HP1BP3 Maintains Meg3-DMR Methylation by Regulating Chromatin Configuration. J Cell Biochem 2025; 126:e30667. [PMID: 39422314 DOI: 10.1002/jcb.30667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Genomic imprinting is essential for mammalian development. PGC7, an important maternal factor, binds to dimethylated histone H3K9 (H3K9me2), maintaining DNA methylation in zygotes and stem cells. However, the underlying molecular mechanisms of PGC7-maintained genomic imprinting in stem cells are not clear. Our previous study has identified that PGC7 interacts with HP1BP3, a novel member of the histone H1 family. In this study, we found that PGC7 interacts with the central globular domain of HP1BP3 through its C-terminal tail and that HP1BP3 is responsible for the recruitment of PGC7 at the Meg3 differentially methylated region (DMR) in the Dlk1-Dio3 imprinted domain. HP1BP3 or PGC7 depletion decreases enrichment in the Meg3-DMR, leading to DNA hypermethylation in this region. Moreover, the cooperative binding of PGC7 and HP1BP3 can antagonize the enrichment of DNMT3A in the Meg3-DMR, and the depletion of HP1BP3 or PGC7 separately induces chromosome decondensation in this region. In summary, this is the first study demonstrating that PGC7 and HP1BP3 synergistically maintain the methylation status of the Meg3-DMR by enabling a chromatin configuration that interferes with the binding of the de novo DNA methyltransferase DNMT3A.
Collapse
Affiliation(s)
- Yingxiang Liu
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Weijie Hao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Chenyang Huang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Peiwen Feng
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Zekun Guo
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
4
|
Dutta S, Kumar V, Barua A, Vasudevan M. Investigating the differential structural organization and gene expression regulatory networks of lamin A Ig fold domain mutants of muscular dystrophy. Biochem J 2024; 481:1803-1827. [PMID: 39509247 DOI: 10.1042/bcj20240474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Lamins form a proteinaceous meshwork as a major structural component of the nucleus. Lamins, along with their interactors, act as determinants for chromatin organization throughout the nucleus. The major dominant missense mutations responsible for autosomal dominant forms of muscular dystrophies reside in the Ig fold domain of lamin A. However, how lamin A contributes to the distribution of heterochromatin and balances euchromatin, and how it relocates epigenetic marks to shape chromatin states, remains poorly defined, making it difficult to draw conclusions about the prognosis of lamin A-mediated muscular dystrophies. In the first part of this report, we identified the in vitro organization of full-length lamin A proteins due to two well-documented Ig LMNA mutations, R453W and W514R. We further demonstrated that both lamin A/C mutant cells predominantly expressed nucleoplasmic aggregates. Labeling specific markers of epigenetics allowed correlation of lamin A mutations with epigenetic mechanisms. In addition to manipulating epigenetic mechanisms, our proteomic studies traced diverse expressions of transcription regulators, RNA synthesis and processing proteins, protein translation components, and posttranslational modifications. These data suggest severe perturbations in targeting other proteins to the nucleus.
Collapse
Affiliation(s)
- Subarna Dutta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
- Theomics International Private Limited 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru 560038, India
| | - Vikas Kumar
- UMass Chan Medical School, Mass Spectrometry Facility, 222 Maple Avenue, Shrewsbury, MA 01545, U.S.A
| | - Arnab Barua
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Madavan Vasudevan
- Theomics International Private Limited 28, Income Tax Layout, Sadananda Nagar, NGEF Layout, Bengaluru 560038, India
| |
Collapse
|
5
|
Pomella S, Melaiu O, Cifaldi L, Bei R, Gargari M, Campanella V, Barillari G. Biomarkers Identification in the Microenvironment of Oral Squamous Cell Carcinoma: A Systematic Review of Proteomic Studies. Int J Mol Sci 2024; 25:8929. [PMID: 39201614 PMCID: PMC11354375 DOI: 10.3390/ijms25168929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
An important determinant for oral squamous cell carcinoma (OSCC) onset and outcome is the composition of the tumor microenvironment (TME). Thus, the study of the interactions occurring among cancer cells, immune cells, and cancer-associated fibroblasts within the TME could facilitate the understanding of the mechanisms underlying OSCC development and progression, as well as of its sensitivity or resistance to the therapy. In this context, it must be highlighted that the characterization of TME proteins is enabled by proteomic methodologies, particularly mass spectrometry (MS). Aiming to identify TME protein markers employable for diagnosing and prognosticating OSCC, we have retrieved a total of 119 articles spanning 2001 to 2023, of which 17 have passed the selection process, satisfying all its criteria. We have found a total of 570 proteins detected by MS-based proteomics in the TME of OSCC; among them, 542 are identified by a single study, while 28 are cited by two or more studies. These 28 proteins participate in extracellular matrix remodeling and/or energy metabolism. Here, we propose them as markers that could be used to characterize the TME of OSCC for diagnostic/prognostic purposes. Noteworthy, most of the 28 individuated proteins share one feature: being modulated by the hypoxia that is present in the proliferating OSCC mass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (L.C.); (R.B.); (M.G.); (V.C.)
| |
Collapse
|
6
|
Aguirre S, Pappa S, Serna-Pujol N, Padilla N, Iacobucci S, Nacht AS, Vicent GP, Jordan A, de la Cruz X, Martínez-Balbás MA. PHF2-mediated H3K9me balance orchestrates heterochromatin stability and neural progenitor proliferation. EMBO Rep 2024; 25:3486-3505. [PMID: 38890452 PMCID: PMC11315909 DOI: 10.1038/s44319-024-00178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Heterochromatin stability is crucial for progenitor proliferation during early neurogenesis. It relays on the maintenance of local hubs of H3K9me. However, understanding the formation of efficient localized levels of H3K9me remains limited. To address this question, we used neural stem cells to analyze the function of the H3K9me2 demethylase PHF2, which is crucial for progenitor proliferation. Through mass-spectroscopy and genome-wide assays, we show that PHF2 interacts with heterochromatin components and is enriched at pericentromeric heterochromatin (PcH) boundaries where it maintains transcriptional activity. This binding is essential for silencing the satellite repeats, preventing DNA damage and genome instability. PHF2's depletion increases the transcription of heterochromatic repeats, accompanied by a decrease in H3K9me3 levels and alterations in PcH organization. We further show that PHF2's PHD and catalytic domains are crucial for maintaining PcH stability, thereby safeguarding genome integrity. These results highlight the multifaceted nature of PHF2's functions in maintaining heterochromatin stability and regulating gene expression during neural development. Our study unravels the intricate relationship between heterochromatin stability and progenitor proliferation during mammalian neurogenesis.
Collapse
Affiliation(s)
- Samuel Aguirre
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Stella Pappa
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Núria Serna-Pujol
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Natalia Padilla
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119, E-08035, Barcelona, Spain
| | - Simona Iacobucci
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - A Silvina Nacht
- Center for Genomic Regulation (CRG), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Guillermo P Vicent
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Albert Jordan
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain
| | - Xavier de la Cruz
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119, E-08035, Barcelona, Spain
- Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona, 08018, Spain
| | - Marian A Martínez-Balbás
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08028, Spain.
| |
Collapse
|
7
|
Bai Z, Yan C, Nie Y, Zeng Q, Xu L, Wang S, Chang D. Glucose metabolism-based signature predicts prognosis and immunotherapy strategies for colon adenocarcinoma. J Gene Med 2024; 26:e3620. [PMID: 37973153 DOI: 10.1002/jgm.3620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The global prevalence and metastasis rates of colon adenocarcinoma (COAD) are high, and therapeutic success is limited. Although previous research has primarily explored changes in gene phenotypes, the incidence rate of COAD remains unchanged. Metabolic reprogramming is a crucial aspect of cancer research and therapy. The present study aims to develop cluster and polygenic risk prediction models for COAD based on glucose metabolism pathways to assess the survival status of patients and potentially identify novel immunotherapy strategies and related therapeutic targets. METHODS COAD-specific data (including clinicopathological information and gene expression profiles) were sourced from The Cancer Genome Atlas (TCGA) and two Gene Expression Omnibus (GEO) datasets (GSE33113 and GSE39582). Gene sets related to glucose metabolism were obtained from the MSigDB database. The Gene Set Variation Analysis (GSVA) method was utilized to calculate pathway scores for glucose metabolism. The hclust function in R, part of the Pheatmap package, was used to establish a clustering system. The mutation characteristics of identified clusters were assessed via MOVICS software, and differentially expressed genes (DEGs) were filtered using limma software. Signature analysis was performed using the least absolute shrinkage and selection operator (LASSO) method. Survival curves, survival receiver operating characteristic (ROC) curves and multivariate Cox regression were analyzed to assess the efficacy and accuracy of the signature for prognostic prediction. The pRRophetic program was employed to predict drug sensitivity, with data sourced from the Genomics of Drug Sensitivity in Cancer (GDSC) database. RESULTS Four COAD subgroups (i.e., C1, C2, C3 and C4) were identified based on glucose metabolism, with the C4 group having higher survival rates. These four clusters were bifurcated into a new Clust2 system (C1 + C2 + C3 and C4). In total, 2175 DEGs were obtained (C1 + C2 + C3 vs. C4), from which 139 prognosis-related genes were identified. ROC curves predicting 1-, 3- and 5-year survival based on a signature containing nine genes showed an area under the curve greater than 0.7. Meanwhile, the study also found this feature to be an important predictor of prognosis in COAD and accordingly assessed the risk score, with higher risk scores being associated with a worse prognosis. The high-risk and low-risk groups responded differently to immunotherapy and chemotherapeutic agents, and there were differences in functional enrichment pathways. CONCLUSIONS This unique signature based on glucose metabolism may potentially provide a basis for predicting patient prognosis, biological characteristics and more effective immunotherapy strategies for COAD.
Collapse
Affiliation(s)
- Zilong Bai
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Chunyu Yan
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Yuanhua Nie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Qingnuo Zeng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Longwen Xu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Shilong Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Dongmin Chang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| |
Collapse
|
8
|
Babele P, Midha MK, Rao KVS, Kumar A. Temporal Profiling of Host Proteome against Different M. tuberculosis Strains Reveals Delayed Epigenetic Orchestration. Microorganisms 2023; 11:2998. [PMID: 38138142 PMCID: PMC10745383 DOI: 10.3390/microorganisms11122998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023] Open
Abstract
Apart from being preventable and treatable, tuberculosis is the deadliest bacterial disease afflicting humankind owing to its ability to evade host defence responses, many of which are controlled by epigenetic mechanisms. Here, we report the temporal dynamics of the proteome of macrophage-like host cells after infecting them for 6, 18, 30, and 42 h with two laboratory strains (H37Ra and H37Rv) and two clinical strains (BND433 and JAL2287) of Mycobacterium tuberculosis (MTB). Using SWATH-MS, the proteins characterized at the onset of infection broadly represented oxidative stress and cell cytoskeleton processes. Intermediary and later stages of infection are accompanied by a reshaping of the combination of proteins implicated in histone stability, gene expression, and protein trafficking. This study provides strain-specific and time-specific variations in the proteome of the host, which might further the development of host-directed therapeutics and diagnostic tools against the pathogen. Also, our findings accentuate the importance of proteomic tools in delineating the complex recalibration of the host defence enabled as an effect of MTB infection. To the best of our knowledge, this is the first comprehensive proteomic account of the host response to avirulent and virulent strains of MTB at different time periods of the life span of macrophage-like cells. The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE repository with the dataset identifier PXD022352.
Collapse
Affiliation(s)
- Prabhakar Babele
- Translational Health Science and Technology Institute, Faridabad 121001, India; (P.B.); (K.V.S.R.)
| | | | - Kanury V. S. Rao
- Translational Health Science and Technology Institute, Faridabad 121001, India; (P.B.); (K.V.S.R.)
| | - Ajay Kumar
- Translational Health Science and Technology Institute, Faridabad 121001, India; (P.B.); (K.V.S.R.)
| |
Collapse
|
9
|
EZH2 interacts with HP1BP3 to epigenetically activate WNT7B that promotes temozolomide resistance in glioblastoma. Oncogene 2023; 42:461-470. [PMID: 36517590 DOI: 10.1038/s41388-022-02570-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor in adults and harbors a subpopulation of glioma stem cells (GSCs). Enhancer of Zeste Homolog 2 (EZH2), a histone lysine methyltransferase, deeply involves in the stemness maintenance of GSC. However, the precise mechanism and therapeutic potential remain elusive. We postulated that the interactome of EZH2 in GSC is unique. Therefore, we performed proteomic and transcriptomic research to unveil the oncogenic mechanism of EZH2. Immunoprecipitation and mass spectrometry were used to identify proteins that co-precipitate with EZH2. We show that EZH2 binds to heterochromatin protein 1 binding protein 3 (HP1BP3) in GSCs and impairs the methylation of H3K9. Overexpression of HP1BP3 enhances the proliferation, self-renewal and temozolomide (TMZ) resistance of GBM cells. Furthermore, EZH2 and HP1BP3 co-activate WNT7B expression thereby increasing TMZ resistance and stemness of GBM cells. Importantly, inhibition of WNT7B autocrine via LGK974 effectively reverses the TMZ resistance. Our work clarifies a new oncogenic mechanism of EZH2 by which it interacts with HP1BP3 and epigenetically activates WNT7B thereby promoting TMZ resistance in GSCs. Our results provide a rationale for targeting WNT/β-catenin pathway as a promising strategy to overcome TMZ resistance in GSCs.
Collapse
|
10
|
He P, Zhang C, Ji Y, Ge MK, Yu Y, Zhang N, Yang S, Yu JX, Shen SM, Chen GQ. Epithelial cells-enriched lncRNA SNHG8 regulates chromatin condensation by binding to Histone H1s. Cell Death Differ 2022; 29:1569-1581. [PMID: 35140358 PMCID: PMC9345976 DOI: 10.1038/s41418-022-00944-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Linker histone H1 proteins contain many variants in mammalian and can stabilize the condensed state of chromatin by binding to nucleosomes and promoting a more inaccessible structure of DNA. However, it is poorly understood how the binding of histone H1s to chromatin DNA is regulated. Screened as one of a collection of epithelial cells-enriched long non-coding RNAs (lncRNAs), here we found that small nucleolar RNA host gene 8 (SNHG8) is a chromatin-localized lncRNA and presents strong interaction and phase separation with histone H1 variants. Moreover, SNHG8 presents stronger ability to bind H1s than linker DNA, and outcompetes linker DNA for H1 binding. Consequently, loss of SNHG8 increases the amount of H1s that bind to chromatin, promotes chromatin condensation, and induces an epithelial differentiation-associated gene expression pattern. Collectively, our results propose that the highly abundant SNHG8 in epithelial cells keeps histone H1 variants out of nucleosome and its loss contributes to epithelial cell differentiation.
Collapse
Affiliation(s)
- Ping He
- State Key Laboratory of Oncogenes and Related Genes, and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Renji hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China
| | - Cheng Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Yan Ji
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Meng-Kai Ge
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Yun Yu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Na Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Shuo Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Jian-Xiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, SJTU-SM, Shanghai, 200025, China
| | - Shao-Ming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China.
| | - Guo-Qiang Chen
- State Key Laboratory of Oncogenes and Related Genes, and Chinese Academy of Medical Sciences Research Unit (NO.2019RU043), Shanghai Cancer Institute, Renji hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China. .,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China.
| |
Collapse
|
11
|
Oliviero G, Kovalchuk S, Rogowska-Wrzesinska A, Schwämmle V, Jensen ON. Distinct and diverse chromatin-proteomes of ageing mouse organs reveal protein signatures that correlate with physiological functions. eLife 2022; 11:73524. [PMID: 35259090 PMCID: PMC8933006 DOI: 10.7554/elife.73524] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Temporal molecular changes in ageing mammalian organs are of relevance to disease aetiology because many age-related diseases are linked to changes in the transcriptional and epigenetic machinery that regulate gene expression. We performed quantitative proteome analysis of chromatin-enriched protein extracts to investigate the dynamics of the chromatin proteomes of the mouse brain, heart, lung, kidney, liver, and spleen at 3, 5, 10, and 15 months of age. Each organ exhibited a distinct chromatin proteome and sets of unique proteins. The brain and spleen chromatin proteomes were the most extensive, diverse, and heterogenous among the six organs. The spleen chromatin proteome appeared static during the lifespan, presenting a young phenotype that reflects the permanent alertness state and important role of this organ in physiological defence and immunity. We identified a total of 5928 proteins, including 2472 nuclear or chromatin-associated proteins across the six mouse organs. Up to 3125 proteins were quantified in each organ, demonstrating distinct and organ-specific temporal protein expression timelines and regulation at the post-translational level. Bioinformatics meta-analysis of these chromatin proteomes revealed distinct physiological and ageing-related features for each organ. Our results demonstrate the efficiency of organelle-specific proteomics for in vivo studies of a model organism and consolidate the hypothesis that chromatin-associated proteins are involved in distinct and specific physiological functions in ageing organs.
Collapse
Affiliation(s)
- Giorgio Oliviero
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Sergey Kovalchuk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
12
|
Shang M, Weng L, Wu S, Liu B, Yin X, Wang Z, Mao A. HP1BP3 promotes tumor growth and metastasis by upregulating miR-23a to target TRAF5 in esophageal squamous cell carcinoma. Am J Cancer Res 2021; 11:2928-2943. [PMID: 34249436 PMCID: PMC8263663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/01/2021] [Indexed: 06/13/2023] Open
Abstract
HP1BP3, an ubiquitously expressed nuclear protein belonging to the H1 histone family of proteins, plays an important role in cell growth and viability. Recently, it was reported that HP1BP3 exclusively regulates miRNA biogenesis by enhancing transcriptional miRNA processing. Although HP1BP3 has previously been implicated in common cancer types, the mechanistic functions and effects of HP1BP3 and its role in the prognosis of esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we report that ESCC tissues and cell lines show increased endogenous expression of HP1BP3. Knockdown of HP1BP3 in TE-1 cells significantly inhibited tumor growth and metastasis in vivo emphasizing its role in cell proliferation and invasion. In contrast, overexpression of HP1BP3 significantly enhanced tumor growth and metastasis in Eca-109 cells. Further, we found that HP1BP3 regulates these functions by upregulating miR-23a, which directly binds to the 3'UTR region of TRAF5 downstream to alter cell survival and proliferation. Our findings describe a role for HP1BP3 in promoting tumor growth and metastasis by upregulating miR-23a to target TRAF5 in esophageal cancer. This study provides novel insights into the potential of targeting miRNAs for therapy and as clinical markers for cancer progression.
Collapse
Affiliation(s)
- Mingyi Shang
- Department of Interventional Radiology, Tong Ren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Li Weng
- Department of Interventional Radiology, Tong Ren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Shaoqiu Wu
- Department of Interventional Radiology, Tong Ren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Bingyan Liu
- Department of Interventional Radiology, Tong Ren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Xiang Yin
- Department of Interventional Radiology, Tong Ren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zhongmin Wang
- Clinical Research Center, Shanghai Jiao Tong University School of MedicineShanghai, China
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Aiwu Mao
- Department of Interventional Radiology, Tong Ren Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
- Clinical Research Center, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
13
|
Syntaxin 1A Gene Is Negatively Regulated in a Cell/Tissue Specific Manner by YY1 Transcription Factor, Which Binds to the -183 to -137 Promoter Region Together with Gene Silencing Factors Including Histone Deacetylase. Biomolecules 2021; 11:biom11020146. [PMID: 33498722 PMCID: PMC7910890 DOI: 10.3390/biom11020146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
The HPC-1/syntaxin 1A (Stx1a) gene, which is involved in synaptic transmission and neurodevelopmental disorders, is a TATA-less gene with several transcription start sites. It is activated by the binding of Sp1 and acetylated histone H3 to the −204 to +2 core promoter region (CPR) in neuronal cell/tissue. Furthermore, it is depressed by the association of class 1 histone deacetylases (HDACs) to Stx1a–CPR in non-neuronal cell/tissue. To further clarify the factors characterizing Stx1a gene silencing in non-neuronal cell/tissue not expressing Stx1a, we attempted to identify the promoter region forming DNA–protein complex only in non-neuronal cells. Electrophoresis mobility shift assays (EMSA) demonstrated that the −183 to −137 OL2 promoter region forms DNA–protein complex only in non-neuronal fetal rat skin keratinocyte (FRSK) cells which do not express Stx1a. Furthermore, the Yin-Yang 1 (YY1) transcription factor binds to the −183 to −137 promoter region of Stx1a in FRSK cells, as shown by competitive EMSA and supershift assay. Chromatin immunoprecipitation assay revealed that YY1 in vivo associates to Stx1a–CPR in cell/tissue not expressing Stx1a and that trichostatin A treatment in FRSK cells decreases the high-level association of YY1 to Stx1a-CPR in default. Reporter assay indicated that YY1 negatively regulates Stx1a transcription. Finally, mass spectrometry analysis showed that gene silencing factors, including HDAC1, associate onto the −183 to −137 promoter region together with YY1. The current study is the first to report that Stx1a transcription is negatively regulated in a cell/tissue-specific manner by YY1 transcription factor, which binds to the −183 to −137 promoter region together with gene silencing factors, including HDAC.
Collapse
|
14
|
Shi G, Hu Y, Zhu X, Jiang Y, Pang J, Wang C, Huang W, Zhao Y, Ma W, Liu D, Huang J, Songyang Z. A critical role of telomere chromatin compaction in ALT tumor cell growth. Nucleic Acids Res 2020; 48:6019-6031. [PMID: 32379321 PMCID: PMC7293046 DOI: 10.1093/nar/gkaa224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/17/2020] [Accepted: 04/18/2020] [Indexed: 01/15/2023] Open
Abstract
ALT tumor cells often contain abundant DNA damage foci at telomeres and rely on the alternative lengthening of telomeres (ALT) mechanism to maintain their telomeres. How the telomere chromatin is regulated and maintained in these cells remains largely unknown. In this study, we present evidence that heterochromatin protein 1 binding protein 3 (HP1BP3) can localize to telomeres and is particularly enriched on telomeres in ALT cells. HP1BP3 inhibition led to preferential growth inhibition of ALT cells, which was accompanied by telomere chromatin decompaction, increased presence of C-circles, more pronounced ALT-associated phenotypes and elongated telomeres. Furthermore, HP1BP3 appeared to participate in regulating telomere histone H3K9me3 epigenetic marks. Taken together, our data suggest that HP1BP3 functions on telomeres to maintain telomere chromatin and represents a novel target for inhibiting ALT cancer cells.
Collapse
Affiliation(s)
- Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yang Hu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xing Zhu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanling Jiang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Junjie Pang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuanle Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenjun Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Dan Liu
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA 77030
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research and SYSU-BCM Joint Research Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA 77030.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
15
|
Tonelli Gombalová Z, Košuth J, Alexovič Matiašová A, Zrubáková J, Žežula I, Giallongo T, Di Giulio AM, Carelli S, Tomašková L, Daxnerová Z, Ševc J. Majority of cerebrospinal fluid‐contacting neurons in the spinal cord of
C57Bl/6N
mice is present in ectopic position unlike in other studied experimental mice strains and mammalian species. J Comp Neurol 2020; 528:2523-2550. [DOI: 10.1002/cne.24909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Zuzana Tonelli Gombalová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Ján Košuth
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Anna Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Jarmila Zrubáková
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Ivan Žežula
- Institute of Mathematics, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Toniella Giallongo
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Anna Maria Di Giulio
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Stephana Carelli
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Lenka Tomašková
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Zuzana Daxnerová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Juraj Ševc
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| |
Collapse
|
16
|
Neuner SM, Ding S, Kaczorowski CC. Knockdown of heterochromatin protein 1 binding protein 3 recapitulates phenotypic, cellular, and molecular features of aging. Aging Cell 2019; 18:e12886. [PMID: 30549219 PMCID: PMC6351847 DOI: 10.1111/acel.12886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
Identifying genetic factors that modify an individual's susceptibility to cognitive decline in aging is critical to understanding biological processes involved and mitigating risk associated with a number of age‐related disorders. Recently, heterochromatin protein 1 binding protein 3 (Hp1bp3) was identified as a mediator of cognitive aging. Here, we provide a mechanistic explanation for these findings and show that targeted knockdown of Hp1bp3 in the hippocampus by 50%–75% is sufficient to induce cognitive deficits and transcriptional changes reminiscent of those observed in aging and Alzheimer's disease brains. Specifically, neuroinflammatory‐related pathways become activated following Hp1bp3 knockdown in combination with a robust decrease in genes involved in synaptic activity and neuronal function. To test the hypothesis that Hp1bp3 mediates susceptibility to cognitive deficits via a role in neuronal excitability, we performed slice electrophysiology demonstrate transcriptional changes after Hp1bp3 knockdown manifest functionally as a reduction in hippocampal neuronal intrinsic excitability and synaptic plasticity. In addition, as Hp1bp3 is a known mediator of miRNA biogenesis, here we profile the miRNA transcriptome and identify mir‐223 as a putative regulator of a portion of observed mRNA changes, particularly those that are inflammatory‐related. In summary, work here identifies Hp1bp3 as a critical mediator of aging‐related changes at the phenotypic, cellular, and molecular level and will help inform the development of therapeutics designed to target either Hp1bp3 or its downstream effectors in order to promote cognitive longevity.
Collapse
Affiliation(s)
- Sarah M. Neuner
- The Jackson Laboratory Bar Harbor Maine
- Neuroscience Institute University of Tennessee Health Science Center Memphis Tennessee
| | | | | |
Collapse
|
17
|
Horzmann KA, Reidenbach LS, Thanki DH, Winchester AE, Qualizza BA, Ryan GA, Egan KE, Hedrick VE, Sobreira TJP, Peterson SM, Weber GJ, Wirbisky-Hershberger SE, Sepúlveda MS, Freeman JL. Embryonic atrazine exposure elicits proteomic, behavioral, and brain abnormalities with developmental time specific gene expression signatures. J Proteomics 2018; 186:71-82. [PMID: 30012420 PMCID: PMC6193558 DOI: 10.1016/j.jprot.2018.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Atrazine (ATZ), the second most commonly used herbicide in the United States, is an endocrine disrupting chemical linked to cancer and a common drinking water contaminant. This study further investigates ATZ-related developmental toxicity by testing the following hypotheses in zebrafish: the effects of embryonic ATZ exposure are dependent on timing of exposure; embryonic ATZ exposure alters brain development and function; and embryonic ATZ exposure changes protein abundance in carcinogenesis-related pathways. After exposing embryos to 0, 0.3, 3, or 30 parts per billion (ppb) ATZ, we monitored the expression of cytochrome P450 family 17 subfamily A member 1 (cyp17a1), glyoxalase I (glo1), ring finger protein 14 (rnf14), salt inducible kinase 2 (sik2), tetratricopeptide domain 3 (ttc3), and tumor protein D52 like 1 (tpd52l1) at multiple embryonic time points to determine normal expression and if ATZ exposure altered expression. Only cyp17a1 had normal dynamic expression, but ttc3 and tpd52l1 had ATZ-related expression changes before 72 h. Larvae exposed to 0.3 ppb ATZ had increased brain length, while larvae exposed to 30 ppb ATZ were hypoactive. Proteomic analysis identified altered protein abundance in pathways related to cellular function, neurodevelopment, and genital-tract cancer. The results indicate embryonic ATZ toxicity involves interactions of multiple pathways. SIGNIFICANCE This is the first report of proteomic alterations following embryonic exposure to atrazine, an environmentally persistent pesticide and common water contaminant. Although the transcriptomic alterations in larval zebrafish with embryonic atrazine exposure have been reported, neither the time at which gene expression changes occur nor the resulting proteomic changes have been investigated. This study seeks to address these knowledge gaps by evaluating atrazine's effect on gene expression through multiple time points during embryogenesis, and correlating changes in gene expression to pathological alterations in brain length and functional changes in behavior. Finally, pathway analysis of the proteomic alterations identifies connections between the molecular changes and functional outcomes associated with embryonic atrazine exposure.
Collapse
Affiliation(s)
- Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Leeah S Reidenbach
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Devang H Thanki
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Anna E Winchester
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Brad A Qualizza
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Geoffrey A Ryan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Kaitlyn E Egan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Victoria E Hedrick
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Tiago J P Sobreira
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Samuel M Peterson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Gregory J Weber
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | | | - Maria S Sepúlveda
- Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
18
|
Lin CH, Lin E, Lane HY. Genetic Biomarkers on Age-Related Cognitive Decline. Front Psychiatry 2017; 8:247. [PMID: 29209239 PMCID: PMC5702307 DOI: 10.3389/fpsyt.2017.00247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/07/2017] [Indexed: 12/29/2022] Open
Abstract
With ever-increasing elder populations, age-related cognitive decline, which is characterized as a gradual decline in cognitive capacity in the aging process, has turned out to be a mammoth public health concern. Since genetic information has become increasingly important to explore the biological mechanisms of cognitive decline, the search for genetic biomarkers of cognitive aging has received much attention. There is growing evidence that single-nucleotide polymorphisms (SNPs) within the ADAMTS9, BDNF, CASS4, COMT, CR1, DNMT3A, DTNBP1, REST, SRR, TOMM40, circadian clock, and Alzheimer's diseases-associated genes may contribute to susceptibility to cognitive aging. In this review, we first illustrated evidence of the genetic contribution to disease susceptibility to age-related cognitive decline in recent studies ranging from approaches of candidate genes to genome-wide association studies. We then surveyed a variety of association studies regarding age-related cognitive decline with consideration of gene-gene and gene-environment interactions. Finally, we highlighted their limitations and future directions. In light of advances in precision medicine and multi-omics technologies, future research in genomic medicine promises to lead to innovative ideas that are relevant to disease prevention and novel drugs for cognitive aging.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan
| | - Eugene Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Electrical Engineering, University of Washington, Seattle, WA, United States
- TickleFish Systems Corporation, Seattle, WA, United States
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
19
|
Liu H, Zhang L, Wei Q, Shi Z, Shi X, Du J, Huang C, Zhang Y, Guo Z. Comprehensive Proteomic Analysis of PGC7-Interacting Proteins. J Proteome Res 2017; 16:3113-3123. [PMID: 28712289 DOI: 10.1021/acs.jproteome.6b00883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Primordial germ cell 7 (PGC7), a maternal factor essential for early development, plays a critical role in the regulation of DNA methylation, transcriptional repression, chromatin condensation, and cell division and the maintenance of cell pluripotentiality. Despite the fundamental roles of PGC7 in these cellular processes, only a few molecular and functional interactions of PGC7 have been reported. Here, a streptavidin-biotin affinity purification technique combined with LC-MS/MS was used to analyze potential proteins that interact with PGC7. In total, 291 potential PGC7-interacting proteins were identified. Through an in-depth bioinformatic analysis of potential interactors, we linked PGC7 to critical cellular processes including translation, RNA processing, cell cycle, and regulation of heterochromatin structure. To better understand the functional interactions of PGC7 with its potential interactors, we constructed a protein-protein interaction network using the STRING database. In addition, we discussed in detail the interactions between PGC7 and some of its newly validated partners. The identification of these potential interactors of PGC7 expands our knowledge on the PGC7 interactome and provides a valuable resource for understanding the diverse functions of this protein.
Collapse
Affiliation(s)
- Hongliang Liu
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Lei Zhang
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Qing Wei
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Zhaopeng Shi
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Xiaoyan Shi
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi 712100, China.,Medical Experiment Center of Shaanxi University of Chinese Medicine , Xianyang, Shaanxi 712000, China
| | - Juan Du
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi 712100, China.,Medicine School of Yan'an University , Yan'an, Shaanxi 716000, China
| | - Chenyang Huang
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi 712100, China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University , Yangling, Shaanxi 712100, China
| |
Collapse
|
20
|
Garfinkel BP, Arad S, Neuner SM, Netser S, Wagner S, Kaczorowski CC, Rosen CJ, Gal M, Soreq H, Orly J. HP1BP3 expression determines maternal behavior and offspring survival. GENES BRAIN AND BEHAVIOR 2017; 15:678-88. [PMID: 27470444 DOI: 10.1111/gbb.12312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/03/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022]
Abstract
Maternal care is an indispensable behavioral component necessary for survival and reproductive success in mammals, and postpartum maternal behavior is mediated by an incompletely understood complex interplay of signals including effects of epigenetic regulation. We approached this issue using our recently established mice with targeted deletion of heterochromatin protein 1 binding protein 3 (HP1BP3), which we found to be a novel epigenetic repressor with critical roles in postnatal growth. Here, we report a dramatic reduction in the survival of pups born to Hp1bp3(-/-) deficient mouse dams, which could be rescued by co-fostering with wild-type dams. Hp1bp3(-/-) females failed to retrieve both their own pups and foster pups in a pup retrieval test, and showed reduced anxiety-like behavior in the open-field and elevated-plus-maze tests. In contrast, Hp1bp3(-/-) females showed no deficits in behaviors often associated with impaired maternal care, including social behavior, depression, motor coordination and olfactory capability; and maintained unchanged anxiety-associated hallmarks such as cholinergic status and brain miRNA profiles. Collectively, our results suggest a novel role for HP1BP3 in regulating maternal and anxiety-related behavior in mice and call for exploring ways to manipulate this epigenetic process.
Collapse
Affiliation(s)
- B P Garfinkel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. .,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - S Arad
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Biomedical Sciences, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S M Neuner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S Netser
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - S Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - C C Kaczorowski
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - C J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - M Gal
- Biomedical Sciences, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,The IVF Unit - Obstetrics and Gynecology Department, Shaare Zedek Medical Center, Jerusalem, Israel
| | - H Soreq
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - J Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Xu D, Yang Q, Cui M, Zhang Q. The novel transcriptional factor HP1BP3 negatively regulates Hsp70 transcription in Crassostrea hongkongensis. Sci Rep 2017; 7:1401. [PMID: 28469151 PMCID: PMC5431216 DOI: 10.1038/s41598-017-01573-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/29/2017] [Indexed: 11/29/2022] Open
Abstract
ChHP1BP3, a chromatin complex-related protein known with dynamic features, was identified as a ChHsp70 promoter-associated factor in Crassostrea hongkongensis by DNA-affinity purification and mass spectrometry analysis. Direct interaction between purified ChHP1BP3 and the ChHsp70 promoter region was demonstrated using EMSA. ChHp1bp3 depletion led to clear enhancements in ChHsp70 mRNA expression in C. hongkongensis hemocytes. However, ChHp1bp3 overexpression in heterologous HEK293T cells correlated with fluctuations in ChHsp70 transcription. Quantitative RT-PCR analysis showed that both ChHsp70 and ChHp1bp3 transcription were responsive to external physical/chemical stresses by heat, CdCl2 and NP. This indicated a plausible correlation between ChHsp70 and ChHp1bp3 in the stress-induced genetic regulatory pathway. While, the distinctive ChHp1bp3 expression patterns upon physical and chemical stresses suggest that the mechanisms that mediate ChHp1bp3 induction might be stress-specific. This study discovered a novel role for HP1BP3 as a negative regulator in controlling Hsp70 transcription in C. hongkongensis, and contributed to better understanding the complex regulatory mechanisms governing Hsp70 transcription.
Collapse
Affiliation(s)
- Delin Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, P.R. China
| | - Qin Yang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, P.R. China
| | - Miao Cui
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, P.R. China.
| | - Qizhong Zhang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou, 510632, P.R. China.
| |
Collapse
|
22
|
Liu H, Liang C, Kollipara RK, Matsui M, Ke X, Jeong BC, Wang Z, Yoo KS, Yadav GP, Kinch LN, Grishin NV, Nam Y, Corey DR, Kittler R, Liu Q. HP1BP3, a Chromatin Retention Factor for Co-transcriptional MicroRNA Processing. Mol Cell 2016; 63:420-32. [PMID: 27425409 DOI: 10.1016/j.molcel.2016.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/26/2016] [Accepted: 06/09/2016] [Indexed: 02/08/2023]
Abstract
Recent studies suggest that the microprocessor (Drosha-DGCR8) complex can be recruited to chromatin to catalyze co-transcriptional processing of primary microRNAs (pri-miRNAs) in mammalian cells. However, the molecular mechanism of co-transcriptional miRNA processing is poorly understood. Here we find that HP1BP3, a histone H1-like chromatin protein, specifically associates with the microprocessor and promotes global miRNA biogenesis in human cells. Chromatin immunoprecipitation (ChIP) studies reveal genome-wide co-localization of HP1BP3 and Drosha and HP1BP3-dependent Drosha binding to actively transcribed miRNA loci. Moreover, HP1BP3 specifically binds endogenous pri-miRNAs and facilitates the Drosha/pri-miRNA association in vivo. Knockdown of HP1BP3 compromises pri-miRNA processing by causing premature release of pri-miRNAs from the chromatin. Taken together, these studies suggest that HP1BP3 promotes co-transcriptional miRNA processing via chromatin retention of nascent pri-miRNA transcripts. This work significantly expands the functional repertoire of the H1 family of proteins and suggests the existence of chromatin retention factors for widespread co-transcriptional miRNA processing.
Collapse
Affiliation(s)
- Haoming Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunyang Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masayuki Matsui
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiong Ke
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Byung-Cheon Jeong
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiqiang Wang
- International Institute for Integrated Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Kyoung Shin Yoo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaya P Yadav
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa N Kinch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunsun Nam
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David R Corey
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralf Kittler
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qinghua Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; International Institute for Integrated Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Neuner SM, Garfinkel BP, Wilmott LA, Ignatowska-Jankowska BM, Citri A, Orly J, Lu L, Overall RW, Mulligan MK, Kempermann G, Williams RW, O'Connell KMS, Kaczorowski CC. Systems genetics identifies Hp1bp3 as a novel modulator of cognitive aging. Neurobiol Aging 2016; 46:58-67. [PMID: 27460150 DOI: 10.1016/j.neurobiolaging.2016.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/07/2016] [Accepted: 06/11/2016] [Indexed: 12/13/2022]
Abstract
An individual's genetic makeup plays an important role in determining susceptibility to cognitive aging. Identifying the specific genes that contribute to cognitive aging may aid in early diagnosis of at-risk patients, as well as identify novel therapeutics targets to treat or prevent development of symptoms. Challenges to identifying these specific genes in human studies include complex genetics, difficulty in controlling environmental factors, and limited access to human brain tissue. Here, we identify Hp1bp3 as a novel modulator of cognitive aging using a genetically diverse population of mice and confirm that HP1BP3 protein levels are significantly reduced in the hippocampi of cognitively impaired elderly humans relative to cognitively intact controls. Deletion of functional Hp1bp3 in mice recapitulates memory deficits characteristic of aged impaired mice and humans, further supporting the idea that Hp1bp3 and associated molecular networks are modulators of cognitive aging. Overall, our results suggest Hp1bp3 may serve as a potential target against cognitive aging and demonstrate the utility of genetically diverse animal models for the study of complex human disease.
Collapse
Affiliation(s)
- Sarah M Neuner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Benjamin P Garfinkel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lynda A Wilmott
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bogna M Ignatowska-Jankowska
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Joseph Orly
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rupert W Overall
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany
| | - Megan K Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gerd Kempermann
- CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden 01307, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden 01307, Germany
| | - Robert W Williams
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kristen M S O'Connell
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Catherine C Kaczorowski
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
24
|
Osborne L, Clive M, Kimmel M, Gispen F, Guintivano J, Brown T, Cox O, Judy J, Meilman S, Braier A, Beckmann MW, Kornhuber J, Fasching PA, Goes F, Payne JL, Binder EB, Kaminsky Z. Replication of Epigenetic Postpartum Depression Biomarkers and Variation with Hormone Levels. Neuropsychopharmacology 2016; 41:1648-58. [PMID: 26503311 PMCID: PMC4832028 DOI: 10.1038/npp.2015.333] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/02/2015] [Accepted: 09/18/2015] [Indexed: 11/09/2022]
Abstract
DNA methylation variation at HP1BP3 and TTC9B is modified by estrogen exposure in the rodent hippocampus and was previously shown to be prospectively predictive of postpartum depression (PPD) when modeled in antenatal blood. The objective of this study was to replicate the predictive efficacy of the previously established model in women with and without a previous psychiatric diagnosis and to understand the effects of changing hormone levels on PPD biomarker loci. Using a statistical model trained on DNA methylation data from N=51 high-risk women, we prospectively predicted PPD status in an independent N=51 women using first trimester antenatal gene expression levels of HP1BP3 and TTC9B, with an area under the receiver operator characteristic curve (AUC) of 0.81 (95% CI: 0.69-0.92, p<5 × 10(-4)). Modeling DNA methylation of these genes in N=240 women without a previous psychiatric diagnosis resulted in a cross-sectional prediction of PPD status with an AUC of 0.81 (95% CI: 0.68-0.93, p=0.01). TTC9B and HP1BP3 DNA methylation at early antenatal time points showed moderate evidence for association to the change in estradiol and allopregnanolone over the course of pregnancy, suggesting that epigenetic variation at these loci may be important for mediating hormonal sensitivity. In addition both loci showed PPD-specific trajectories with age, possibly mediated by age-associated hormonal changes. The data add to the growing body of evidence suggesting that PPD is mediated by differential gene expression and epigenetic sensitivity to pregnancy hormones and that modeling proxies of this sensitivity enable accurate prediction of PPD.
Collapse
Affiliation(s)
- Lauren Osborne
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Makena Clive
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Kimmel
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fiona Gispen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jerry Guintivano
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tori Brown
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olivia Cox
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Judy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samantha Meilman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aviva Braier
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Fernando Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer L Payne
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Zachary Kaminsky
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,The Mood Disorder Center, Johns Hopkins University, 720 Rutland Avenue, Ross Research Building 1070, Baltimore, MD 21205, USA, Tel: +1 443 287 0093, Fax: +1 410 502 0065,E-mail:
| |
Collapse
|
25
|
Hadac JN, Miller DD, Grimes IC, Clipson L, Newton MA, Schelman WR, Halberg RB. Heterochromatin Protein 1 Binding Protein 3 Expression as a Candidate Marker of Intrinsic 5-Fluorouracil Resistance. Anticancer Res 2016; 36:845-852. [PMID: 26976970 PMCID: PMC4876978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
BACKGROUND Despite receiving post-operative 5-fluorouracil (5-FU)-based chemotherapy, approximately 50% of patients with stage IIIC colon cancer experience recurrence. Currently, no molecular signature can predict response to 5-FU. MATERIALS AND METHODS Mouse models of colon cancer have been developed and characterized. Individual tumors in these mice can be longitudinally monitored and assessed to identify differences between those that are responsive and those that are resistant to therapy. Gene expression was analyzed in serial biopsies that were collected before and after treatment with 5-FU. Colon tumors had heterogeneous responses to treatment with 5-FU. Microarray analysis of pre-treatment biopsies revealed that Hp1bp3, a gene encoding heterochromatin protein 1 binding protein 3, was differentially expressed between sensitive and resistant tumors. CONCLUSION Using mouse models of human colorectal cancer, Hp1bp3 was identified as a candidate marker of intrinsic 5-FU resistance and may represent a potential biomarker for patient stratification or a target of clinical importance.
Collapse
Affiliation(s)
- Jamie N Hadac
- Department of Oncology, K4/532 Clinical Science Center, Madison, WI, U.S.A
| | - Devon D Miller
- Department of Medicine, Division of Gastroenterology and Hepatology, K4/532 Clinical Science Center, Madison, WI, U.S.A
| | - Ian C Grimes
- Department of Medicine, Division of Gastroenterology and Hepatology, K4/532 Clinical Science Center, Madison, WI, U.S.A
| | - Linda Clipson
- Department of Oncology, K4/532 Clinical Science Center, Madison, WI, U.S.A
| | - Michael A Newton
- Departments of Statistics and of Biostatistics and Medical Informatics, 1245a, K6/434 Medical Sciences Center, Madison, WI, U.S.A
| | - William R Schelman
- Department of Medicine, Division of Hematology and Oncology, K4/532 Clinical Science Center, Madison, WI, U.S.A
| | - Richard B Halberg
- Department of Medicine, Division of Gastroenterology and Hepatology, K4/532 Clinical Science Center, Madison, WI, U.S.A. Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, U.S.A.
| |
Collapse
|
26
|
Garfinkel BP, Arad S, Le PT, Bustin M, Rosen CJ, Gabet Y, Orly J. Proportionate Dwarfism in Mice Lacking Heterochromatin Protein 1 Binding Protein 3 (HP1BP3) Is Associated With Alterations in the Endocrine IGF-1 Pathway. Endocrinology 2015; 156:4558-70. [PMID: 26402843 PMCID: PMC5393342 DOI: 10.1210/en.2015-1668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/18/2015] [Indexed: 01/08/2023]
Abstract
Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3(-/-) mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography analysis showed that Hp1bp3(-/-) mice present a dramatic impairment of their bone development and structure. By 3 weeks of age, mice of both sexes have severely impaired cortical and trabecular bone, and these defects persist into adulthood and beyond. Primary cultures of both osteoblasts and osteoclasts from Hp1bp3(-/-) bone marrow and splenocytes, respectively, showed normal differentiation and function, strongly suggesting that the impaired bone accrual is due to noncell autonomous systemic cues in vivo. One major endocrine pathway regulating both body growth and bone acquisition is the IGF regulatory system, composed of IGF-1, the IGF receptors, and the IGF-binding proteins (IGFBPs). At 3 weeks of age, Hp1bp3(-/-) mice exhibited a 60% reduction in circulating IGF-1 and a 4-fold increase in the levels of IGFBP-1 and IGFBP-2. These alterations were reflected in similar changes in the hepatic transcripts of the Igf1, Igfbp1, and Igfbp2 genes. Collectively, these results suggest that HP1BP3 plays a key role in normal growth and bone development by regulating transcription of endocrine IGF-1 components.
Collapse
Affiliation(s)
- Benjamin P. Garfinkel
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | - Shiri Arad
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | - Phuong T. Le
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | - Michael Bustin
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | - Clifford J. Rosen
- Department of Biological Chemistry (B.P.G., S.A., J.O.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Center for Clinical and Translational Research (P.T.L., C.J.R.), Maine Medical Center Research Institute, Scarborough, Maine 04074; Protein Section (M.B.), Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; and Department of Anatomy and Anthropology (Y.G.), Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | | | | |
Collapse
|