1
|
Rogers NJ, Postings ML, Dixon AM, Moat J, Shreeve G, Stuart L, Waterfield NR, Scott P. Membrane lipid composition directs the cellular selectivity of antimicrobial metallohelices. RSC Med Chem 2025; 16:2249-2260. [PMID: 40110349 PMCID: PMC11917443 DOI: 10.1039/d4md00973h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
Two enantiomeric pairs of iron(ii) metallohelices, available as water-soluble, stable, and optically pure bimetallic complexes, differ principally in the length of the central hydrophobic region between two cationic domains, and have distinct activity and cell selectivity profiles against Gram-positive and Gram-negative microbes. The effects of dose concentration and temperature on levels of intracellular accumulation in E. coli and S. aureus, studied via isotopic labelling, indicate that the metallohelices enter the microbial cells via passive diffusion, whereupon (as previously determined) they act on intracellular targets. Whilst the metallohelices with the shorter central hydrophobic regions accumulate less readily than those with the longer hydrophobic bridge in both E. coli and S. aureus cells when incubated at the same concentration, an order of magnitude less is actually required per cell to inhibit growth in E. coli, hence they are more active. Furthermore, these more Gram-negative active compounds (with the shorter central hydrophobic region) are less toxic towards human APRE-19 mammalian cells and equine red blood cells. We hypothesise that these cell selectivities originate from the membrane composition. Dynamic light scattering and zeta potential measurements demonstrate that the more lipophilic metallohelices interact more strongly with the membrane-mimetic vesicles, notably in the charge-neutral mammalian model; thus the selectivity is not simply a result of electrostatic effects. For the less lipophilic metallohelices we observe that the binding affinity with the E. coli model vesicles is greater than with S. aureus vesicles, despite the lower negative surface charge, and this corresponds with the cellular accumulation data and the measured MICs. Specifically, the presence of membrane phosphatidylethanolamine (POPE) significantly increases the binding affinity of these metallohelices, and we postulate that a high proportion of such conical, non-lamellar phospholipids is important for metallohelix transport across the membrane. The metallohelices with the shorter hydrophobic bridge studied have a balance of charge and lipophilicity which allows selective cell entry in E. coli over mammalian cells, while the more lipophilic metallohelices are membrane promiscuous and unselective.
Collapse
Affiliation(s)
- Nicola J Rogers
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong Hong Kong
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Miles L Postings
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Ann M Dixon
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - John Moat
- School of Life Sciences, University of Warwick Gibbet Hill Campus Coventry UK
| | - Georgia Shreeve
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Louise Stuart
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | - Peter Scott
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
2
|
Song H, Kostrhunova H, Cervinka J, Macpherson J, Malina J, Rajan T, Phillips R, Postings M, Shepherd S, Zhang X, Brabec V, Rogers NJ, Scott P. Dicobalt(ii) helices kill colon cancer cells via enantiomer-specific mechanisms; DNA damage or microtubule disruption. Chem Sci 2024; 15:11029-11037. [PMID: 39027295 PMCID: PMC11253168 DOI: 10.1039/d4sc02541e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Highly diastereoselective self-assembly reactions give both enantiomers (Λ and Δ) of anti-parallel triple-stranded bimetallic Co(ii) and Co(iii) cationic helices, without the need for resolution; the first such reaction for Co. The complexes are water soluble and stable, even in the case of Co(ii). Studies in a range of cancer and healthy cell lines indicate high activity and selectivity, and substantial differences between enantiomers. The oxidation state has little effect, and correspondingly, Co(iii) compounds are reduced to Co(ii) e.g. by glutathione. In HCT116 colon cancer cells the Λ enantiomer induces dose-dependent G2-M arrest in the cell cycle and disrupts microtubule architectures. This Co(ii) Λ enantiomer is ca. five times more potent than the isostructural Fe(ii) compound. Since the measured cellular uptakes are similar this implies a higher affinity of the Co system for the intracellular target(s); while the two systems are isostructural they have substantially different charge distributions as shown by calculated hydrophobicity maps. In contrast to the Λ enantiomer, Δ-Co(ii) induces G1 arrest in HCT116 cells, efficiently inhibits the topoisomerase I-catalyzed relaxation of supercoiled plasmid DNA, and, unlike the isostructural Fe(ii) system, causes DNA damage. It thus seems very likely that redox chemistry plays a role in the latter.
Collapse
Affiliation(s)
- Hualong Song
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Centre of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University Beijing 100069 China
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics Brno Czech Republic
| | - Jakub Cervinka
- Czech Academy of Sciences, Institute of Biophysics Brno Czech Republic
- Faculty of Science, Department of Biochemistry, Masaryk University Brno Czech Republic
| | - Julie Macpherson
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics Brno Czech Republic
| | - Teena Rajan
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Roger Phillips
- Department of Pharmacy, University of Huddersfield Huddersfield HD1 3DH UK
| | - Miles Postings
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Samantha Shepherd
- Department of Pharmacy, University of Huddersfield Huddersfield HD1 3DH UK
| | - Xuejian Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics Brno Czech Republic
- Department of Biophysics, Palacky University Olomouc Czech Republic
| | - Nicola J Rogers
- Department of Chemistry, Hong Kong Baptist University Kowloon Tong Hong Kong SAR China
| | - Peter Scott
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
3
|
Coverdale JPC, Kostrhunova H, Markova L, Song H, Postings M, Bridgewater HE, Brabec V, Rogers NJ, Scott P. Triplex metallohelices have enantiomer-dependent mechanisms of action in colon cancer cells. Dalton Trans 2023; 52:6656-6667. [PMID: 37114730 DOI: 10.1039/d3dt00948c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Self-assembled enantiomers of an asymmetric di-iron metallohelix differ in their antiproliferative activities against HCT116 colon cancer cells such that the compound with Λ-helicity at the metals becomes more potent than the Δ compound with increasing exposure time. From concentration- and temperature-dependent 57Fe isotopic labelling studies of cellular accumulation we postulate that while the more potent Λ enantiomer undergoes carrier-mediated efflux, for Δ the process is principally equilibrative. Cell fractionation studies demonstrate that both enantiomers localise in a similar fashion; compound is observed mostly within the cytoskeleton and/or genomic DNA, with significant amounts also found in the nucleus and membrane, but with negligible concentration in the cytosol. Cell cycle analyses using flow cytometry reveal that the Δ enantiomer induces mild arrest in the G1 phase, while Λ causes a very large dose-dependent increase in the G2/M population at a concentration significantly below the relevant IC50. Correspondingly, G2-M checkpoint failure as a result of Λ-metallohelix binding to DNA is shown to be feasible by linear dichroism studies, which indicate, in contrast to the Δ compound, a quite specific mode of binding, probably in the major groove. Further, spindle assembly checkpoint (SAC) failure, which could also be responsible for the observed G2/M arrest, is established as a feasible mechanism for the Λ helix via drug combination (synergy) studies and the discovery of tubulin and actin inhibition. Here, while the Λ compound stabilizes F-actin and induces a distinct change in tubulin architecture of HCT116 cells, Δ promotes depolymerization and more subtle changes in microtubule and actin networks.
Collapse
Affiliation(s)
- J P C Coverdale
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - H Kostrhunova
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - L Markova
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - H Song
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - M Postings
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - H E Bridgewater
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Centre of Exercise, Sport and Life Science, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB, UK
| | - V Brabec
- The Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - N J Rogers
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - P Scott
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
4
|
Schlosser J, Ihmels H. Ligands for Abasic Site-containing DNA and their Use as Fluorescent Probes. Curr Org Synth 2023; 20:96-113. [PMID: 35170411 DOI: 10.2174/1570179419666220216091422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Apurinic and apyrimidinic sites, also referred to as abasic or AP sites, are residues of duplex DNA in which one DNA base is removed from a Watson-Crick base pair. They are formed during the enzymatic repair of DNA and offer binding sites for a variety of guest molecules. Specifically, the AP site may bind an appropriate ligand as a substitute for the missing nucleic base, thus stabilizing the abasic site-containing DNA (AP-DNA). Notably, ligands that bind selectively to abasic sites may be employed for analytical and therapeutical purposes. As a result, there is a search for structural features that establish a strong and selective association of a given ligand with the abasic position in DNA. Against this background, this review provides an overview of the different classes of ligands for abasic site-containing DNA (AP-DNA). This review covers covalently binding substrates, namely amine and oxyamine derivatives, as well as ligands that bind to AP-DNA by noncovalent association, as represented by small heterocyclic aromatic compounds, metal-organic complexes, macrocyclic cyclophanes, and intercalator-nucleobase conjugates. As the systematic development of fluorescent probes for AP-DNA has been somewhat neglected so far, this review article contains a survey of the available reports on the fluorimetric response of the ligand upon binding to the AP-DNA. Based on these data, this compilation shall present a perspective for future developments of fluorescent probes for AP-DNA.
Collapse
Affiliation(s)
- Julika Schlosser
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, Center of Micro- and Nanochemistry and (Bio)Technology (Cμ), Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
5
|
Lisboa LS, Riisom M, Vasdev RAS, Jamieson SMF, Wright LJ, Hartinger CG, Crowley JD. Cavity-Containing [Fe 2L 3] 4+ Helicates: An Examination of Host-Guest Chemistry and Cytotoxicity. Front Chem 2021; 9:697684. [PMID: 34307299 PMCID: PMC8292671 DOI: 10.3389/fchem.2021.697684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 02/04/2023] Open
Abstract
Two new di(2,2′-bipyridine) ligands, 2,6-bis([2,2′-bipyridin]-5-ylethynyl)pyridine (L1) and bis(4-([2,2′-bipyridin]-5-ylethynyl)phenyl)methane (L2) were synthesized and used to generate two metallosupramolecular [Fe2(L)3](BF4)4 cylinders. The ligands and cylinders were characterized using elemental analysis, electrospray ionization mass spectrometry, UV-vis, 1H-, 13C and DOSY nuclear magnetic resonance (NMR) spectroscopies. The molecular structures of the [Fe2(L)3](BF4)4 cylinders were confirmed using X-ray crystallography. Both the [Fe2(L1)3](BF4)4 and [Fe2(L2)3](BF4)4 complexes crystallized as racemic (rac) mixtures of the ΔΔ (P) and ΛΛ (M) helicates. However, 1H NMR spectra showed that in solution the larger [Fe2(L2)3](BF4)4 was a mixture of the rac-ΔΔ/ΛΛ and meso-ΔΛ isomers. The host-guest chemistry of the helicates, which both feature a central cavity, was examined with several small drug molecules. However, none of the potential guests were found to bind within the helicates. In vitro cytotoxicity assays demonstrated that both helicates were active against four cancer cell lines. The smaller [Fe2(L1)3](BF4)4 system displayed low μM activity against the HCT116 (IC50 = 7.1 ± 0.5 μM) and NCI-H460 (IC50 = 4.9 ± 0.4 μM) cancer cells. While the antiproliferative effects against all the cell lines examined were less than the well-known anticancer drug cisplatin, their modes of action would be expected to be very different.
Collapse
Affiliation(s)
- Lynn S Lisboa
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Mie Riisom
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Roan A S Vasdev
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - L James Wright
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - James D Crowley
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Dey N, Haynes CJE. Supramolecular Coordination Complexes as Optical Biosensors. Chempluschem 2021; 86:418-433. [PMID: 33665986 DOI: 10.1002/cplu.202100004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/15/2021] [Indexed: 12/11/2022]
Abstract
In recent years, luminescent supramolecular coordination complexes (SCCs), including 2D-metallacycles and 3D-metallacages have been utilised for biomolecular analysis. Unlike small-molecular probes, the dimensions, size, shape, and flexibility of these complexes can easily be tuned by combining ligands designed with particular geometries, symmetries and denticity with metal ions with strong geometrical binding preferences. The well-defined cavities that result, in combination with the other non-covalent interactions that can be programmed into the ligand design, facilitate great selectivity towards guest binding. In this Review we will discuss the application of luminescent metallacycles and cages in the binding and detection of a wide range of biomolecules, such as carbohydrates, proteins, amino acids, and biogenic amines. We aim to explore the effect of the structural diversity of SCCs on the extent of biomolecular sensing, expressed in terms of sensitivity, selectivity and detection range.
Collapse
Affiliation(s)
- Nilanjan Dey
- Graduate School of Science, Kyoto University, Japan
| | | |
Collapse
|
7
|
Song H, Postings M, Scott P, Rogers NJ. Metallohelices emulate the properties of short cationic α-helical peptides. Chem Sci 2021; 12:1620-1631. [PMID: 34163922 PMCID: PMC8179244 DOI: 10.1039/d0sc06412b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring peptides in many living systems perform antimicrobial and anticancer host defence roles, but their potential for clinical application is limited by low metabolic stability and relatively high costs of goods. Self-assembled helical metal complexes provide an attractive synthetic platform for non-peptidic architectures that can emulate some of the properties of short cationic α-helical peptides, with tuneable charge, shape, size and amphipathicity. Correspondingly there is a growing body of evidence demonstrating that these supramolecular architectures exhibit bioactivity that emulates that of the natural systems. We review that evidence in the context of synthetic advances in the area, driven by the potential for biomedical applications. We note some design considerations for new biologically-relevant metallohelices, and give our outlook on the future of these compounds as therapeutic peptidomimetics.
Collapse
|
8
|
Song H, Allison SJ, Brabec V, Bridgewater HE, Kasparkova J, Kostrhunova H, Novohradsky V, Phillips RM, Pracharova J, Rogers NJ, Shepherd SL, Scott P. Glycoconjugated Metallohelices have Improved Nuclear Delivery and Suppress Tumour Growth In Vivo. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hualong Song
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Simon J. Allison
- School of Applied Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Viktor Brabec
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | | | - Jana Kasparkova
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | - Hana Kostrhunova
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | - Vojtech Novohradsky
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | - Roger M. Phillips
- School of Applied Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Jitka Pracharova
- The Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
- Department of Biophysics Centre of the Region Hana for Biotechnological and Agricultural Research Faculty of Science Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Nicola J. Rogers
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | | | - Peter Scott
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
9
|
Song H, Allison SJ, Brabec V, Bridgewater HE, Kasparkova J, Kostrhunova H, Novohradsky V, Phillips RM, Pracharova J, Rogers NJ, Shepherd SL, Scott P. Glycoconjugated Metallohelices have Improved Nuclear Delivery and Suppress Tumour Growth In Vivo. Angew Chem Int Ed Engl 2020; 59:14677-14685. [PMID: 32489012 PMCID: PMC7497174 DOI: 10.1002/anie.202006814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Monosaccharides are added to the hydrophilic face of a self-assembled asymmetric FeII metallohelix, using CuAAC chemistry. The sixteen resulting architectures are water-stable and optically pure, and exhibit improved antiproliferative selectivity against colon cancer cells (HCT116 p53+/+ ) with respect to the non-cancerous ARPE-19 cell line. While the most selective compound is a glucose-appended enantiomer, its cellular entry is not mainly glucose transporter-mediated. Glucose conjugation nevertheless increases nuclear delivery ca 2.5-fold, and a non-destructive interaction with DNA is indicated. Addition of the glucose units affects the binding orientation of the metallohelix to naked DNA, but does not substantially alter the overall affinity. In a mouse model, the glucose conjugated compound was far better tolerated, and tumour growth delays for the parent compound (2.6 d) were improved to 4.3 d; performance as good as cisplatin but with the advantage of no weight loss in the subjects.
Collapse
Affiliation(s)
- Hualong Song
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Simon J. Allison
- School of Applied SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Viktor Brabec
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | | | - Jana Kasparkova
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | - Hana Kostrhunova
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | - Vojtech Novohradsky
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
| | - Roger M. Phillips
- School of Applied SciencesUniversity of HuddersfieldHuddersfieldHD1 3DHUK
| | - Jitka Pracharova
- The Czech Academy of SciencesInstitute of BiophysicsKralovopolska 13561265BrnoCzech Republic
- Department of BiophysicsCentre of the Region Hana for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 2778371OlomoucCzech Republic
| | | | | | - Peter Scott
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
10
|
Hrabina O, Malina J, Kostrhunova H, Novohradsky V, Pracharova J, Rogers N, Simpson DH, Scott P, Brabec V. Optically Pure Metallohelices That Accumulate in Cell Nuclei, Condense/Aggregate DNA, and Inhibit Activities of DNA Processing Enzymes. Inorg Chem 2020; 59:3304-3311. [DOI: 10.1021/acs.inorgchem.0c00092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ondrej Hrabina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
- Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Jitka Pracharova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
- Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Nicola Rogers
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Daniel H. Simpson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Peter Scott
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
11
|
Abe YS, Sasaki S. The adduct formation between the thioguanine-polyamine ligands and DNA with the AP site under UVA irradiated and non-irradiated conditions. Bioorg Med Chem 2019; 27:115160. [PMID: 31706680 DOI: 10.1016/j.bmc.2019.115160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
Abstract
The AP sites are representative of DNA damage and known as an intermediate in the base excision repair (BER) pathway which is involved in the repair of damaged nucleobases by reactive oxygen species, UVA irradiation, and DNA alkylating agents. Therefore, it is expected that the inhibition or modulation of the AP site repair pathway may be a new type of anticancer drug. In this study, we investigated the effects of the thioguanine-polyamine ligands (SG-ligands) on the affinity and the reactivity for the AP site under UVA irradiated and non-irradiated conditions. The SG-ligands have a photo-reactivity with the A-F-C sequence where F represents a tetrahydrofuran AP site analogue. Interestingly, the SG-ligands promoted the β-elimination of the AP site followed by the formation of a covalent bond with the β-eliminated fragment without UVA irradiation.
Collapse
Affiliation(s)
- Yukiko S Abe
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
12
|
Song H, Rogers NJ, Allison SJ, Brabec V, Bridgewater H, Kostrhunova H, Markova L, Phillips RM, Pinder EC, Shepherd SL, Young LS, Zajac J, Scott P. Discovery of selective, antimetastatic and anti-cancer stem cell metallohelices via post-assembly modification. Chem Sci 2019; 10:8547-8557. [PMID: 31803429 PMCID: PMC6839601 DOI: 10.1039/c9sc02651g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Helicates and related metallofoldamers, synthesised by dynamic self-assembly, represent an area of chemical space inaccessible by traditional organic synthesis, and yet with potential for discovery of new classes of drug. Here we report that water-soluble, optically pure Fe(ii)- and even Zn(ii)-based triplex metallohelices are an excellent platform for post-assembly click reactions. By these means, the in vitro anticancer activity and most importantly the selectivity of a triplex metallohelix Fe(ii) system are dramatically improved. For one compound, a remarkable array of mechanistic and pharmacological behaviours is discovered: inhibition of Na+/K+ ATPase with potency comparable to the drug ouabain, antimetastatic properties (including inhibition of cell migration, re-adhesion and invasion), cancer stem cell targeting, and finally colonosphere inhibition competitive with the drug salinomycin.
Collapse
Affiliation(s)
- Hualong Song
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Nicola J Rogers
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Simon J Allison
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Viktor Brabec
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | | | - Hana Kostrhunova
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Lenka Markova
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Roger M Phillips
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Emma C Pinder
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Samantha L Shepherd
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Lawrence S Young
- Warwick Medical School , University of Warwick , Coventry CV4 7AL , UK
| | - Juraj Zajac
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Peter Scott
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| |
Collapse
|
13
|
Caron C, Duong XNT, Guillot R, Bombard S, Granzhan A. Interaction of Functionalized Naphthalenophanes with Abasic Sites in DNA: DNA Cleavage, DNA Cleavage Inhibition, and Formation of Ligand–DNA Adducts. Chemistry 2019; 25:1949-1962. [DOI: 10.1002/chem.201805555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/30/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Coralie Caron
- CNRS UMR9187, INSERM U1196Institut CuriePSL Research University 91405 Orsay France
- CNRS UMR9187, INSERM U1196Université Paris Sud, Université Paris-Saclay 91405 Orsay France
| | - Xuan N. T. Duong
- CNRS UMR9187, INSERM U1196Institut CuriePSL Research University 91405 Orsay France
- CNRS UMR9187, INSERM U1196Université Paris Sud, Université Paris-Saclay 91405 Orsay France
| | - Régis Guillot
- CNRS UMR8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)Université Paris Sud, Université Paris-Saclay 91405 Orsay France
| | - Sophie Bombard
- CNRS UMR9187, INSERM U1196Institut CuriePSL Research University 91405 Orsay France
- CNRS UMR9187, INSERM U1196Université Paris Sud, Université Paris-Saclay 91405 Orsay France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196Institut CuriePSL Research University 91405 Orsay France
- CNRS UMR9187, INSERM U1196Université Paris Sud, Université Paris-Saclay 91405 Orsay France
| |
Collapse
|
14
|
Affiliation(s)
- Cheng‐Yi Zhu
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 People's Republic of China
| | - Mei Pan
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 People's Republic of China
| | - Cheng‐Yong Su
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 People's Republic of China
| |
Collapse
|
15
|
Mitchell D, Clarkson G, Fox DJ, Vipond RA, Scott P, Gibson MI. Antifreeze Protein Mimetic Metallohelices with Potent Ice Recrystallization Inhibition Activity. J Am Chem Soc 2017; 139:9835-9838. [PMID: 28715207 PMCID: PMC5562393 DOI: 10.1021/jacs.7b05822] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 02/07/2023]
Abstract
Antifreeze proteins are produced by extremophile species to control ice formation and growth, and they have potential applications in many fields. There are few examples of synthetic materials which can reproduce their potent ice recrystallization inhibition property. We report that self-assembled enantiomerically pure, amphipathic metallohelicies inhibited ice growth at just 20 μM. Structure-property relationships and calculations support the hypothesis that amphipathicity is the key motif for activity. This opens up a new field of metallo-organic antifreeze protein mimetics and provides insight into the origins of ice-growth inhibition.
Collapse
Affiliation(s)
| | - Guy Clarkson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - David J. Fox
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Rebecca A. Vipond
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Peter Scott
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
16
|
Laev SS, Salakhutdinov NF, Lavrik OI. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1). Bioorg Med Chem 2017; 25:2531-2544. [PMID: 28161249 DOI: 10.1016/j.bmc.2017.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 01/15/2023]
Abstract
Human apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein which is essential in the base excision repair (BER) pathway of DNA lesions caused by oxidation and alkylation. This protein hydrolyzes DNA adjacent to the 5'-end of an apurinic/apyrimidinic (AP) site to produce a nick with a 3'-hydroxyl group and a 5'-deoxyribose phosphate moiety or activates the DNA-binding activity of certain transcription factors through its redox function. Studies have indicated a role for APE1/Ref-1 in the pathogenesis of cancer and in resistance to DNA-interactive drugs. Thus, this protein has potential as a target in cancer treatment. As a result, major efforts have been directed to identify small molecule inhibitors against APE1/Ref-1 activities. These agents have the potential to become anticancer drugs. The aim of this review is to present recent progress in studies of all published small molecule APE1/Ref-1 inhibitors. The structures and activities of APE1/Ref-1 inhibitors, that target both DNA repair and redox activities, are presented and discussed. To date, there is an urgent need for further development of the design and synthesis of APE1/Ref-1 inhibitors due to high importance of this protein target.
Collapse
Affiliation(s)
- Sergey S Laev
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation.
| | - Nariman F Salakhutdinov
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation
| | - Olga I Lavrik
- Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090, Russian Federation; Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 8, Novosibirsk 630090, Russian Federation
| |
Collapse
|
17
|
Kotera N, Granzhan A, Teulade-Fichou MP. Comparative study of affinity and selectivity of ligands targeting abasic and mismatch sites in DNA using a fluorescence-melting assay. Biochimie 2016; 128-129:133-7. [PMID: 27523781 DOI: 10.1016/j.biochi.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
Recently, several families of small-molecule ligands have been developed to selectively target DNA pairing defects, such as abasic sites and mismatched base pairs, with the aim to interfere with the DNA repair and the template function of the DNA. However, the affinity and selectivity (with respect to well-matched DNA) of these ligands has barely been evaluated in a systematic way. Herein, we report a comparative study of binding affinity and selectivity of a representative panel of 16 ligands targeting abasic sites and a T-T mismatch in DNA, using a fluorescence-monitored melting assay. We demonstrate that bisintercalator-type macrocyclic ligands are characterized by moderate affinity but exceptionally high selectivity with respect to well-matched DNA, whereas other reported ligands show either modest selectivity or rather low affinity in identical conditions.
Collapse
Affiliation(s)
- Naoko Kotera
- Institut Curie, PSL Research University, CNRS UMR9187, INSERM U1196, F-91405, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, INSERM U1196, F-91405, Orsay, France
| | - Anton Granzhan
- Institut Curie, PSL Research University, CNRS UMR9187, INSERM U1196, F-91405, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, INSERM U1196, F-91405, Orsay, France.
| | - Marie-Paule Teulade-Fichou
- Institut Curie, PSL Research University, CNRS UMR9187, INSERM U1196, F-91405, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR9187, INSERM U1196, F-91405, Orsay, France
| |
Collapse
|
18
|
Kaner RA, Allison SJ, Faulkner AD, Phillips RM, Roper DI, Shepherd SL, Simpson DH, Waterfield NR, Scott P. Anticancer metallohelices: nanomolar potency and high selectivity. Chem Sci 2015; 7:951-958. [PMID: 28808525 PMCID: PMC5530816 DOI: 10.1039/c5sc03677a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 12/17/2022] Open
Abstract
New optically pure helicate-like architectures are extremely active against cancer cell lines, with IC50 values as low as 40 nM, but nearly three orders of magnitude less active against healthy cells. There is also low toxicity to microbes and amoeba.
A range of new helicate-like architectures have been prepared via highly diastereoselective self-assembly using readily accessible starting materials. Six pairs of enantiomers [Fe2L3]Cl4·nH2O (L = various bidentate ditopic ligands NN–NN) show very good water solubility and stability. Their activity against a range of cancer cell lines in vitro is structure-dependent and gives IC50 values as low as 40 nM. In an isogenic pair of HCT116 colorectal cancer cells, preferential activity was observed against cell lines that lack functional p53. Selectivity is also excellent, and against healthy human retinal pigment epithelial (ARPE19) and lung fibroblast (WI38) cells IC50 values are nearly three orders of magnitude higher. Cisplatin is unselective in the same tests. The compounds also appear to have low general toxicity in a number of models: there is little if any antimicrobial activity against methicillin-resistant Staphylococcus aureus and Escherichia coli; Acanthamoeba polyphaga is unaffected at 25 μg mL–1 (12.5 μM); Manduca sexta larvae showed clear evidence of systemic distribution of the drug, and rather than any observation of adverse effects they exhibited a significant mean weight gain vs. controls. Investigation of the mode of action revealed no significant interaction of the molecules with DNA, and stimulation of substantial cell death by apoptosis.
Collapse
Affiliation(s)
- Rebecca A Kaner
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK . .,Institute of Advanced Study , University of Warwick , CV4 7HS , UK
| | - Simon J Allison
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Alan D Faulkner
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
| | - Roger M Phillips
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - David I Roper
- School of Life Sciences , University of Warwick , Coventry , CV4 7AL , UK
| | - Samantha L Shepherd
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Daniel H Simpson
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK . .,School of Life Sciences , University of Warwick , Coventry , CV4 7AL , UK
| | | | - Peter Scott
- Department of Chemistry , University of Warwick , Coventry , CV4 7AL , UK .
| |
Collapse
|
19
|
Kotera N, Poyer F, Granzhan A, Teulade-Fichou MP. Efficient inhibition of human AP endonuclease 1 (APE1) via substrate masking by abasic site-binding macrocyclic ligands. Chem Commun (Camb) 2015; 51:15948-51. [DOI: 10.1039/c5cc06084b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bis-naphthalene macrocycles bind to abasic sites in DNA, leading to efficient inhibition of their cleavage by human AP endonuclease 1 (APE1).
Collapse
Affiliation(s)
- Naoko Kotera
- CNRS UMR9187/INSERM U1196 “Chemistry, Modelling and Imaging for Biology”
- Centre de Recherche
- Institut Curie
- 91405 Orsay
- France
| | - Florent Poyer
- CNRS UMR9187/INSERM U1196 “Chemistry, Modelling and Imaging for Biology”
- Centre de Recherche
- Institut Curie
- 91405 Orsay
- France
| | - Anton Granzhan
- CNRS UMR9187/INSERM U1196 “Chemistry, Modelling and Imaging for Biology”
- Centre de Recherche
- Institut Curie
- 91405 Orsay
- France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187/INSERM U1196 “Chemistry, Modelling and Imaging for Biology”
- Centre de Recherche
- Institut Curie
- 91405 Orsay
- France
| |
Collapse
|