1
|
Li X, Jiang Y. Research Progress of Group II Intron Splicing Factors in Land Plant Mitochondria. Genes (Basel) 2024; 15:176. [PMID: 38397166 PMCID: PMC10887915 DOI: 10.3390/genes15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondria are important organelles that provide energy for the life of cells. Group II introns are usually found in the mitochondrial genes of land plants. Correct splicing of group II introns is critical to mitochondrial gene expression, mitochondrial biological function, and plant growth and development. Ancestral group II introns are self-splicing ribozymes that can catalyze their own removal from pre-RNAs, while group II introns in land plant mitochondria went through degenerations in RNA structures, and thus they lost the ability to self-splice. Instead, splicing of these introns in the mitochondria of land plants is promoted by nuclear- and mitochondrial-encoded proteins. Many proteins involved in mitochondrial group II intron splicing have been characterized in land plants to date. Here, we present a summary of research progress on mitochondrial group II intron splicing in land plants, with a major focus on protein splicing factors and their probable functions on the splicing of mitochondrial group II introns.
Collapse
Affiliation(s)
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
2
|
Best C, Mizrahi R, Edris R, Tang H, Zer H, Colas des Francs-Small C, Finkel OM, Zhu H, Small ID, Ostersetzer-Biran O. MSP1 encodes an essential RNA-binding pentatricopeptide repeat factor required for nad1 maturation and complex I biogenesis in Arabidopsis mitochondria. THE NEW PHYTOLOGIST 2023; 238:2375-2392. [PMID: 36922396 DOI: 10.1111/nph.18880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023]
Abstract
Mitochondrial biogenesis relies on nuclearly encoded factors, which regulate the expression of the organellar-encoded genes. Pentatricopeptide repeat (PPR) proteins constitute a major gene family in angiosperms that are pivotal in many aspects of mitochondrial (mt)RNA metabolism (e.g. trimming, splicing, or stability). Here, we report the analysis of MITOCHONDRIA STABILITY/PROCESSING PPR FACTOR1 (MSP1, At4g20090), a canonical PPR protein that is necessary for mitochondrial functions and embryo development. Loss-of-function allele of MSP1 leads to seed abortion. Here, we employed an embryo-rescue method for the molecular characterization of msp1 mutants. Our analyses reveal that msp1 embryogenesis fails to proceed beyond the heart/torpedo stage as a consequence of a nad1 pre-RNA processing defect, resulting in the loss of respiratory complex I activity. Functional complementation confirmed that msp1 phenotypes result from a disruption of the MSP1 gene. In Arabidopsis, the maturation of nad1 involves the processing of three RNA fragments, nad1.1, nad1.2, and nad1.3. Based on biochemical analyses and mtRNA profiles of wild-type and msp1 plants, we concluded that MSP1 facilitates the generation of the 3' terminus of nad1.1 transcript, a prerequisite for nad1 exons a-b splicing. Our data substantiate the importance of mtRNA metabolism for the biogenesis of the respiratory system during early plant life.
Collapse
Affiliation(s)
- Corinne Best
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ron Mizrahi
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Rana Edris
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Hui Tang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hagit Zer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Omri M Finkel
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Hongliang Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ian D Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
3
|
Zumkeller S, Knoop V. Categorizing 161 plant (streptophyte) mitochondrial group II introns into 29 families of related paralogues finds only limited links between intron mobility and intron-borne maturases. BMC Ecol Evol 2023; 23:5. [PMID: 36915058 PMCID: PMC10012718 DOI: 10.1186/s12862-023-02108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Group II introns are common in the two endosymbiotic organelle genomes of the plant lineage. Chloroplasts harbor 22 positionally conserved group II introns whereas their occurrence in land plant (embryophyte) mitogenomes is highly variable and specific for the seven major clades: liverworts, mosses, hornworts, lycophytes, ferns, gymnosperms and flowering plants. Each plant group features "signature selections" of ca. 20-30 paralogues from a superset of altogether 105 group II introns meantime identified in embryophyte mtDNAs, suggesting massive intron gains and losses along the backbone of plant phylogeny. We report on systematically categorizing plant mitochondrial group II introns into "families", comprising evidently related paralogues at different insertion sites, which may even be more similar than their respective orthologues in phylogenetically distant taxa. Including streptophyte (charophyte) algae extends our sampling to 161 and we sort 104 streptophyte mitochondrial group II introns into 25 core families of related paralogues evidently arising from retrotransposition events. Adding to discoveries of only recently created intron paralogues, hypermobile introns and twintrons, our survey led to further discoveries including previously overlooked "fossil" introns in spacer regions or e.g., in the rps8 pseudogene of lycophytes. Initially excluding intron-borne maturase sequences for family categorization, we added an independent analysis of maturase phylogenies and find a surprising incongruence between intron mobility and the presence of intron-borne maturases. Intriguingly, however, we find that several examples of nuclear splicing factors meantime characterized simultaneously facilitate splicing of independent paralogues now placed into the same intron families. Altogether this suggests that plant group II intron mobility, in contrast to their bacterial counterparts, is not intimately linked to intron-encoded maturases.
Collapse
Affiliation(s)
- Simon Zumkeller
- IZMB, Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Volker Knoop
- IZMB, Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
4
|
Fan K, Fu Q, Wei Q, Jia S, Zhao A, Wang T, Cao J, Liu Y, Ren Z, Liu Y. ZmnMAT1, a nuclear-encoded type I maturase, is required for the splicing of mitochondrial Nad1 intron 1 and Nad4 intron 2. FRONTIERS IN PLANT SCIENCE 2022; 13:1033869. [PMID: 36507372 PMCID: PMC9727264 DOI: 10.3389/fpls.2022.1033869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Maturases can specifically bind to intron-containing pre-RNAs, folding them into catalytic structures that facilitate intron splicing in vivo. Plants possess four nuclear-encoded maturase-related factors (nMAT1-nMAT4) and some maturases have been shown to involve in the splicing of different mitochondrial group II introns; however, the specific biological functions of maturases in maize are largely uncharacterized. In this study, we identified a maize ZmnMAT1 gene, which encodes a mitochondrion-localized type I maturase with an RT domain at N-terminus and an X domain at C-terminus. Loss-of-function mutation in ZmnMAT1 significantly reduced the splicing efficiencies of Nad1 intron 1 and Nad4 intron 2, and showed arrested embryogenesis and endosperm development, which may be related to impaired mitochondrial ultrastructure and function due to the destruction of the assembly and activity of complex I. Direct physical interaction was undetectable between ZmnMAT1 and the proteins associated with the splicing of Nad1 intron 1 and/or Nad4 intron 2 by yeast two-hybrid assays, suggesting the complexity of group II intron splicing in plants.
Collapse
Affiliation(s)
- Kaijian Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qinghui Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianhan Wei
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Sinian Jia
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Anqi Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Tengteng Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Cao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenjing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Liao X, Li XJ, Zheng GT, Chang FR, Fang L, Yu H, Huang J, Zhang YF. Mitochondrion-encoded circular RNAs are widespread and translatable in plants. PLANT PHYSIOLOGY 2022; 189:1482-1500. [PMID: 35325205 PMCID: PMC9237725 DOI: 10.1093/plphys/kiac143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 05/28/2023]
Abstract
Nucleus-encoded circular RNAs (ncircRNAs) have been widely detected in eukaryotes, and most circRNA identification algorithms are designed to identify them. However, using these algorithms, few mitochondrion-encoded circRNAs (mcircRNAs) have been identified in plants, and the role of plant mcircRNAs has not yet been addressed. Here, we developed a circRNA identification algorithm, mitochondrion-encoded circRNA identifier, based on common features of plant mitochondrial genomes. We identified 7,524, 9,819, 1,699, 1,821, 1,809, and 5,133 mcircRNAs in maize (Zea mays), Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), tomato (Solanum lycopersicum), cucumber (Cucumis sativus), and grape (Vitis vinifera), respectively. These mcircRNAs were experimentally validated. Plant mcircRNAs had distinct characteristics from ncircRNAs, and they were more likely to be derived from RNA degradation but not intron backsplicing. Alternative circularization was prevalent in plant mitochondria, and most parental genomic regions hosted multiple mcircRNA isoforms, which have homogenous 5' termini but heterogeneous 3' ends. By analysis of mitopolysome and mitoribosome profiling data, 1,463 mcircRNAs bound to ribosomes were detected in maize and Arabidopsis. Further analysis of mass spectrometry-based proteomics data identified 358 mcircRNA-derived polypeptides. Overall, we developed a computational pipeline that efficiently identifies plant mcircRNAs, and we demonstrated mcircRNAs are widespread and translated in plants.
Collapse
Affiliation(s)
| | | | | | - Feng-Rui Chang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lin Fang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hang Yu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | | |
Collapse
|
6
|
Mizrahi R, Shevtsov-Tal S, Ostersetzer-Biran O. Group II Intron-Encoded Proteins (IEPs/Maturases) as Key Regulators of Nad1 Expression and Complex I Biogenesis in Land Plant Mitochondria. Genes (Basel) 2022; 13:genes13071137. [PMID: 35885919 PMCID: PMC9321910 DOI: 10.3390/genes13071137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are semi-autonomous organelles that produce much of the energy required for cellular metabolism. As descendants of a bacterial symbiont, most mitochondria harbor their own genetic system (mtDNA/mitogenome), with intrinsic machineries for transcription and protein translation. A notable feature of plant mitochondria involves the presence of introns (mostly group II-type) that reside in many organellar genes. The splicing of the mtRNAs relies on the activities of various protein cofactors, which may also link organellar functions with cellular or environmental signals. The splicing of canonical group II introns is aided by an ancient class of RT-like enzymes (IEPs/maturases, MATs) that are encoded by the introns themselves and act specifically on their host introns. The plant organellar introns are degenerated in structure and are generally also missing their cognate intron-encoded proteins. The factors required for plant mtRNA processing are mostly nuclearly-encoded, with the exception of a few degenerated MATs. These are in particular pivotal for the maturation of NADH-dehydrogenase transcripts. In the following review we provide an update on the non-canonical MAT factors in angiosperm mitochondria and summarize the current knowledge of their essential roles in regulating Nad1 expression and complex I (CI) biogenesis during embryogenesis and early plant life.
Collapse
|
7
|
Lin WC, Chen YH, Gu SY, Shen HL, Huang KC, Lin WD, Chang MC, Chang IF, Hong CY, Cheng WH. CFM6 is an Essential CRM Protein Required for the Splicing of nad5 Transcript in Arabidopsis Mitochondria. PLANT & CELL PHYSIOLOGY 2022; 63:217-233. [PMID: 34752612 DOI: 10.1093/pcp/pcab161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 05/21/2023]
Abstract
Plant chloroplast RNA splicing and ribosome maturation (CRM)-domain-containing proteins are capable of binding RNA to facilitate the splicing of group I or II introns in chloroplasts, but their functions in mitochondria are less clear. In the present study, Arabidopsis thaliana CFM6, a protein with a single CRM domain, was expressed in most plant tissues, particularly in flower tissues, and restricted to mitochondria. Mutation of CFM6 causes severe growth defects, including stunted growth, curled leaves, delayed embryogenesis and pollen development. CFM6 functions specifically in the splicing of group II intron 4 of nad5, which encodes a subunit of mitochondrial complex I, as evidenced by the loss of nad5 intron 4 splicing and high accumulation of its pretranscripts in cfm6 mutants. The phenotypic and splicing defects of cfm6 were rescued in transgenic plants overexpressing 35S::CFM6-YFP. Splicing failure in cfm6 also led to the loss of complex I activity and to its improper assembly. Moreover, dysfunction of complex I induced the expression of proteins or genes involved in alternative respiratory pathways in cfm6. Collectively, CFM6, a previously uncharacterized CRM domain-containing protein, is specifically involved in the cis-splicing of nad5 intron 4 and plays a pivotal role in mitochondrial complex I biogenesis and normal plant growth.
Collapse
Affiliation(s)
- Wei-Chih Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Ya-Huei Chen
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan
| | - Shin-Yuan Gu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Hwei-Ling Shen
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Kai-Chau Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chwan-Yang Hong
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114, Taiwan
| |
Collapse
|
8
|
Qian J, Li M, Zheng M, Hsu YF. Arabidopsis SSB1, a Mitochondrial Single-Stranded DNA-Binding Protein, is Involved in ABA Response and Mitochondrial RNA Splicing. PLANT & CELL PHYSIOLOGY 2021; 62:1321-1334. [PMID: 34185867 DOI: 10.1093/pcp/pcab097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
A mitochondrion is a semiautonomous organelle that provides energy for life activities and balances plant growth and stress responses. Abscisic acid (ABA) regulates multiple physiological processes, including seed maturation, seed dormancy, stomatal closure and various abiotic stress responses. However, the relationship between mitochondrial activity and the ABA response is unclear. In this study, an Arabidopsis mutant, ssb1-1, was isolated because of its hypersensitivity toward ABA. Assessment results showed that ABA negatively regulates the expression of Arabidopsis SSB1. Mutations in ABA-insensitive 4 (ABI4) and ABI5, genes of key transcription factors involved in ABA-dependent seed dormancy, attenuated the ABA sensitivity of ssb1-1 during germination, suggesting that Arabidopsis SSB1 may act as a regulator in ABA response. Inhibition of endogenous ABA biosynthesis reversed the NaCl-sensitive phenotype of the ssb1-1 mutant, indicating that enhanced ABA biosynthesis is critical for the salinity stress response of ssb1-1. Moreover, compared to that of the wild type, ssb1-1 accumulated more reactive oxygen species (ROS) and exhibited increased sensitivity to the application of exogenous H2O2 during seed germination. SSB1 is also required for mitochondrial RNA splicing, as indicated by the result showing that SSB1 loss of function led to a decreased splicing efficiency of nad1 intron1 and nad2 intron1. Taken together, our data reported here provide insights into a novel role of Arabidopsis SSB1 in ABA signaling and mitochondrial RNA splicing.
Collapse
Affiliation(s)
- Jie Qian
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Meng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Min Zheng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yi-Feng Hsu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
10
|
Fan K, Ren Z, Zhang X, Liu Y, Fu J, Qi C, Tatar W, Rasmusson AG, Wang G, Liu Y. The pentatricopeptide repeat protein EMP603 is required for the splicing of mitochondrial Nad1 intron 2 and seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6933-6948. [PMID: 34279607 DOI: 10.1093/jxb/erab339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Intron splicing is an essential event in post-transcriptional RNA processing in plant mitochondria, which requires the participation of diverse nuclear-encoded splicing factors. However, it is presently unclear how these proteins cooperatively take part in the splicing of specific introns. In this study, we characterized a nuclear-encoded mitochondrial P-type pentatricopeptide repeat (PPR) protein named EMP603. This protein is essential for splicing of intron 2 in the Nad1 gene and interacts with the mitochondria-localized DEAD-box RNA helicase PMH2-5140, the RAD52-like proteins ODB1-0814 and ODB1-5061, and the CRM domain-containing protein Zm-mCSF1. Further study revealed that the N-terminal region of EMP603 interacts with the DEAD-box of PMH2-5140, the CRM domain of Zm-mCSF1, and OBD1-5061, but not with OBD1-0814, whereas the PPR domain of EMP603 can interact with ODB1-0814, ODB1-5061, and PMH2-5140, but not with Zm-mCSF1. Defects in EMP603 severely disrupt the assembly and activity of mitochondrial complex I, leading to impaired mitochondrial function, and delayed seed development. The interactions revealed between EMP603 and PMH2-5140, ODB1-0814, ODB1-5061, and Zm-mCSF1 indicate a possible involvement of a dynamic 'spliceosome-like' complex in intron splicing, and may accelerate the elucidation of the intron splicing mechanism in plant mitochondria.
Collapse
Affiliation(s)
- Kaijian Fan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenjing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junjie Fu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunlai Qi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wurinile Tatar
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunjun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Transcriptional Landscape and Splicing Efficiency in Arabidopsis Mitochondria. Cells 2021; 10:cells10082054. [PMID: 34440822 PMCID: PMC8392254 DOI: 10.3390/cells10082054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Plant mitochondrial transcription is initiated from multiple promoters without an apparent motif, which precludes their identification in other species based on sequence comparisons. Even though coding regions take up only a small fraction of plant mitochondrial genomes, deep RNAseq studies uncovered that these genomes are fully or nearly fully transcribed with significantly different RNA read depth across the genome. Transcriptomic analysis can be a powerful tool to understand the transcription process in diverse angiosperms, including the identification of potential promoters and co-transcribed genes or to study the efficiency of intron splicing. In this work, we analyzed the transcriptional landscape of the Arabidopsis mitochondrial genome (mtDNA) based on large-scale RNA sequencing data to evaluate the use of RNAseq to study those aspects of the transcription process. We found that about 98% of the Arabidopsis mtDNA is transcribed with highly different RNA read depth, which was elevated in known genes. The location of a sharp increase in RNA read depth upstream of genes matched the experimentally identified promoters. The continuously high RNA read depth across two adjacent genes agreed with the known co-transcribed units in Arabidopsis mitochondria. Most intron-containing genes showed a high splicing efficiency with no differences between cis and trans-spliced introns or between genes with distinct splicing mechanisms. Deep RNAseq analyses of diverse plant species will be valuable to recognize general and lineage-specific characteristics related to the mitochondrial transcription process.
Collapse
|
12
|
Bentolila S, Gipson AB, Kehl AJ, Hamm LN, Hayes ML, Mulligan RM, Hanson MR. A RanBP2-type zinc finger protein functions in intron splicing in Arabidopsis mitochondria and is involved in the biogenesis of respiratory complex I. Nucleic Acids Res 2021; 49:3490-3506. [PMID: 33660772 PMCID: PMC8034646 DOI: 10.1093/nar/gkab066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
The RanBP2 zinc finger (Znf) domain is a prevalent domain that mediates protein interaction and RNA binding. In Arabidopsis, a clade of four RanBP2 Znf-containing proteins, named the Organelle Zinc (OZ) finger family, are known or predicted to be targeted to either the mitochondria or the plastids. Previously we reported that OZ1 is absolutely required for the editing of 14 sites in chloroplasts. We now have investigated the function of OZ2, whose null mutation is embryo lethal. We rescued the null mutant by expressing wild-type OZ2 under the control of the seed-specific ABSCISIC ACID-INSENSITIVE3 (ABI3) promoter. Rescued mutant plants exhibit severely delayed development and a distinctive morphological phenotype. Genetic and biochemical analyses demonstrated that OZ2 promotes the splicing of transcripts of several mitochondrial nad genes and rps3. The splicing defect of nad transcripts results in the destabilization of complex I, which in turn affects the respiratory ability of oz2 mutants, turning on the alternative respiratory pathway, and impacting the plant development. Protein-protein interaction assays demonstrated binding of OZ2 to several known mitochondrial splicing factors targeting the same splicing events. These findings extend the known functional repertoire of the RanBP2 zinc finger domain in nuclear splicing to include plant organelle splicing.
Collapse
Affiliation(s)
- Stéphane Bentolila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew B Gipson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Alexander J Kehl
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Lauren N Hamm
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael L Hayes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - R Michael Mulligan
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 90032, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Shevtsov-Tal S, Best C, Matan R, Chandran SA, Brown GG, Ostersetzer-Biran O. nMAT3 is an essential maturase splicing factor required for holo-complex I biogenesis and embryo development in Arabidopsis thaliana plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1128-1147. [PMID: 33683754 DOI: 10.1111/tpj.15225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 05/21/2023]
Abstract
Group-II introns are self-splicing mobile genetic elements consisting of catalytic intron-RNA and its related intron-encoded splicing maturase protein cofactor. Group-II sequences are particularly plentiful within the mitochondria of land plants, where they reside within many critical gene loci. During evolution, the plant organellar introns have degenerated, such as they lack regions that are are required for splicing, and also lost their evolutionary related maturase proteins. Instead, for their splicing the organellar introns in plants rely on different host-acting protein cofactors, which may also provide a means to link cellular signals with respiratory functions. The nuclear genome of Arabidopsis thaliana encodes four maturase-related factors. Previously, we showed that three of the maturases, nMAT1, nMAT2 and nMAT4, function in the excision of different group-II introns in Arabidopsis mitochondria. The function of nMAT3 (encoded by the At5g04050 gene locus) was found to be essential during early embryogenesis. Using a modified embryo-rescue method, we show that nMAT3-knockout plants are strongly affected in the splicing of nad1 introns 1, 3 and 4 in Arabidopsis mitochondria, resulting in complex-I biogenesis defects and altered respiratory activities. Functional complementation of nMAT3 restored the organellar defects and embryo-arrested phenotypes associated with the nmat3 mutant line. Notably, nMAT3 and nMA4 were found to act on the same RNA targets but have no redundant functions in the splicing of nad1 transcripts. The two maturases, nMAT3 and nMAT4 are likely to cooperate together in the maturation of nad1 pre-RNAs. Our results provide important insights into the roles of maturases in mitochondria gene expression and the biogenesis of the respiratory system during early plant life.
Collapse
Affiliation(s)
- Sofia Shevtsov-Tal
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Corinne Best
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Roei Matan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Sam A Chandran
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, India
| | - Gregory G Brown
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| |
Collapse
|
14
|
Wang L, Zhang W, Liu S, Tian Y, Liu X, Yan H, Cai Y, Teng X, Dong H, Chen R, Jiang X, Wang Y, Wan J. Rice FLOURY SHRUNKEN ENDOSPERM 5 Encodes a Putative Plant Organelle RNA Recognition Protein that Is Required for cis-Splicing of Mitochondrial nad4 Intron 1. RICE (NEW YORK, N.Y.) 2021; 14:29. [PMID: 33689034 PMCID: PMC7947098 DOI: 10.1186/s12284-021-00463-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The sequences of several important mitochondrion-encoded genes involved in respiration in higher plants are interrupted by introns. Many nuclear-encoded factors are involved in splicing these introns, but the mechanisms underlying this splicing remain unknown. RESULTS We isolated and characterized a rice mutant named floury shrunken endosperm 5 (fse5). In addition to having floury shrunken endosperm, the fse5 seeds either failed to germinate or produced seedlings which grew slowly and died ultimately. Fse5 encodes a putative plant organelle RNA recognition (PORR) protein targeted to mitochondria. Mutation of Fse5 hindered the splicing of the first intron of nad4, which encodes an essential subunit of mitochondrial NADH dehydrogenase complex I. The assembly and NADH dehydrogenase activity of complex I were subsequently disrupted by this mutation, and the structure of the mitochondria was abnormal in the fse5 mutant. The FSE5 protein was shown to interact with mitochondrial intron splicing factor 68 (MISF68), which is also a splicing factor for nad4 intron 1 identified previously via yeast two-hybrid (Y2H) assays. CONCLUSION Fse5 which encodes a PORR domain-containing protein, is essential for the splicing of nad4 intron 1, and loss of Fse5 function affects seed development and seedling growth.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Cai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongbo Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaokang Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
15
|
Marchetti F, Cainzos M, Shevtsov S, Córdoba JP, Sultan LD, Brennicke A, Takenaka M, Pagnussat G, Ostersetzer-Biran O, Zabaleta E. Mitochondrial Pentatricopeptide Repeat Protein, EMB2794, Plays a Pivotal Role in NADH Dehydrogenase Subunit nad2 mRNA Maturation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2020; 61:1080-1094. [PMID: 32163154 PMCID: PMC7295397 DOI: 10.1093/pcp/pcaa028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/08/2020] [Indexed: 05/14/2023]
Abstract
The Arabidopsis genome encodes >450 proteins containing the pentatricopeptide repeat (PPR) motif. The PPR proteins are classified into two groups, termed as P and P Long-Short (PLS) classes. Typically, the PLS subclass proteins are mainly involved in the RNA editing of mitochondrial and chloroplast transcripts, whereas most of the analyzed P subclass proteins have been mainly implicated in RNA metabolism, such as 5' or 3' transcript stabilization and processing, splicing and translation. Mutations of PPR genes often result in embryogenesis and altered seedling developmental defect phenotypes, but only a limited number of ppr mutants have been characterized in detail. In this report, we show that null mutations in the EMB2794 gene result in embryo arrest, due to altered splicing of nad2 transcripts in the Arabidopsis mitochondria. In angiosperms, nad2 has five exons that are transcribed individually from two mitochondrial DNA regions. Biochemical and in vivo analyses further indicate that recombinant or transgenic EMB2794 proteins bind to the nad2 pre-mRNAs in vitro as well as in vivo, suggesting a role for this protein in trans-splicing of nad2 intron 2 and possibly in the stability of the second pre-mRNA of nad2. Homozygous emb2794 lines, showing embryo-defective phenotypes, can be partially rescued by the addition of sucrose to the growth medium. Mitochondria of rescued homozygous mutant plants contain only traces of respiratory complex I, which lack the NADH-dehydrogenase activity.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
| | - Sofía Shevtsov
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 919040 Jerusalem, Israel
| | - Juan Pablo Córdoba
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
| | - Laure Dora Sultan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 919040 Jerusalem, Israel
| | - Axel Brennicke
- Institut für, Molekulare Botanik, Universität Ulm, Ulm 89069, Germany
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 919040 Jerusalem, Israel
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas (IIB)-Universidad Nacional de Mar del Plata (UNMdP)-CONICET, Funes 3250 3er nivel, 7600 Mar del Plata, Argentina
- Corresponding author: E-mail, ; Fax, +54 223 475 30 30
| |
Collapse
|
16
|
Pentatricopeptide repeat protein MID1 modulates nad2 intron 1 splicing and Arabidopsis development. Sci Rep 2020; 10:2008. [PMID: 32029763 PMCID: PMC7005036 DOI: 10.1038/s41598-020-58495-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
As one of the best-studied RNA binding proteins in plant, pentatricopeptide repeats (PPRs) protein are mainly targeted to mitochondria and/or chloroplasts for RNA processing to regulate the biogenesis and function of the organelles, but its molecular mechanism and role in development remain to be further revealed. Here, we identified a mitochondria-localized P-type small PPR protein, MITOCHONDRION-MEDIATED GROWTH DEFECT 1 (MID1) that is crucial for Arabidopsis development. Mutation in MID1 causes retarded embryo development and stunted plant growth with defects in cell expansion and proliferation. Molecular experiments showed that MID1 is required for the splicing of the nad2 intron 1 in mitochondria. Consistently, mid1 plants display significant reduction in the abundance and activity of mitochondrial respiration complex I, accompanied by abnormal mitochondrial morphology and energy metabolism. Furthermore, MID1 is associated with other trans-factors involved in NICOTINAMIDE ADENINE DINUCLEOTIDE HYDROGEN (NADH) DEHYDROGENASE SUBUNIT 2 (nad2) intron 1 splicing, and interacts directly with itself and MITOCHONDRIAL STABILITY FACTOR 1 (MTSF1). This suggests that MID1 most likely functions as a dimer for nad2 intron 1 splicing. Together, we characterized a novel PPR protein MID1 for nad2 intron 1 splicing.
Collapse
|
17
|
Wang C, Aubé F, Quadrado M, Dargel-Graffin C, Mireau H. Three new pentatricopeptide repeat proteins facilitate the splicing of mitochondrial transcripts and complex I biogenesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5131-5140. [PMID: 30053059 PMCID: PMC6184586 DOI: 10.1093/jxb/ery275] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/16/2018] [Indexed: 05/23/2023]
Abstract
Group II introns are common features of most angiosperm mitochondrial genomes. Intron splicing is thus essential for the expression of mitochondrial genes and is facilitated by numerous nuclear-encoded proteins. However, the molecular mechanism and the protein cofactors involved in this complex process have not been fully elucidated. In this study, we characterized three new pentatricopeptide repeat (PPR) genes, called MISF26, MISF68, and MISF74, of Arabidopsis and showed they all function in group II intron splicing and plant development. The three PPR genes encode P-type PPR proteins that localize in the mitochondrion. Transcript analysis revealed that the splicing of a single intron is altered in misf26 mutants, while several mitochondrial intron splicing defects were detected in misf68 and misf74 mutants. To our knowledge, MISF68 and MISF74 are the first two PPR proteins implicated in the splicing of more than one intron in plant mitochondria, suggesting that they may facilitate splicing differently from other previously identified PPR splicing factors. The splicing defects in the misf mutants induce a significant decrease in complex I assembly and activity, and an overexpression of mRNAs of the alternative respiratory pathway. These results therefore reveal that nuclear encoded proteins MISF26, MISF68, and MISF74 are involved in splicing of a cohort of mitochondrial group II introns and thereby required for complex I biogenesis.
Collapse
Affiliation(s)
- Chuande Wang
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
- Paris-Sud University, Université Paris-Saclay, Orsay Cedex, France
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
| | - Martine Quadrado
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
| | - Céline Dargel-Graffin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, France
| |
Collapse
|
18
|
Samach A, Gurevich V, Avivi-Ragolsky N, Levy AA. The effects of AtRad52 over-expression on homologous recombination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:30-40. [PMID: 29667244 DOI: 10.1111/tpj.13927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
AtRad52 homologs are involved in DNA recombination and repair, but their precise functions in different homologous recombination (HR) pathways or in gene-targeting have not been analyzed. In order to facilitate our analyses, we generated an AtRad52-1A variant that had a stronger nuclear localization than the native gene thanks to the removal of the transit peptide for mitochondrial localization and to the addition of a nuclear localization signal. Over-expression of this variant increased HR in the nucleus, compared with the native AtRad52-1A: it increased intra-chromosomal recombination and synthesis-dependent strand-annealing HR repair rates; but conversely, it repressed the single-strand annealing pathway. The effect of AtRad52-1A over-expression on gene-targeting was tested with and without the expression of small RNAs generated from an RNAi construct containing homology to the target and donor sequences. True gene-targeting events at the Arabidopsis Cruciferin locus were obtained only when combining AtRad52-1A over-expression and target/donor-specific RNAi. This suggests that sequence-specific small RNAs might be involved in AtRad52-1A-mediated HR.
Collapse
Affiliation(s)
- Aviva Samach
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Vyacheslav Gurevich
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Avivi-Ragolsky
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Avraham A Levy
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
19
|
Hameed MW, Juszczak I, Bock R, van Dongen JT. Comparison of mitochondrial gene expression and polysome loading in different tobacco tissues. PLANT METHODS 2017; 13:112. [PMID: 29255478 PMCID: PMC5729415 DOI: 10.1186/s13007-017-0257-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND To investigate translational regulation of gene expression in plant mitochondria, a mitochondrial polysome isolation protocol was established for tobacco to investigate polysomal mRNA loading as a proxy for translational activity. Furthermore, we developed an oligonucleotide based microarray platform to determine the level of Nicotiana tabacum and Arabidopsis thaliana mitochondrial mRNA. RESULTS Microarray analysis of free and polysomal mRNAs was used to characterize differences in the levels of free transcripts and ribosome-bound mRNAs in various organs of tobacco plants. We have observed higher mitochondrial transcript levels in young leaves, flowers and floral buds as compared to fully expanded leaves and roots. A similar pattern of abundance was observed for ribosome-bound mitochondrial mRNAs in these tissues. However, the accumulation of the mitochondrial protein COX2 was found to be inversely related to that of its ribosome-bound mRNA. CONCLUSIONS Our results indicate that the association of mitochondrial mRNAs to ribosomes is largely determined by the total transcript level of a gene. However, at least for Cox2, we demonstrated that the level of ribosome-bound mRNA is not reflected by the amount of COX2 protein.
Collapse
Affiliation(s)
- Muhammad Waqar Hameed
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270 Pakistan
| | - Ilona Juszczak
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Molecular Physiology, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Joost Thomas van Dongen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| |
Collapse
|
20
|
Wang C, Aubé F, Planchard N, Quadrado M, Dargel-Graffin C, Nogué F, Mireau H. The pentatricopeptide repeat protein MTSF2 stabilizes a nad1 precursor transcript and defines the 3΄ end of its 5΄-half intron. Nucleic Acids Res 2017; 45:6119-6134. [PMID: 28334831 PMCID: PMC5449624 DOI: 10.1093/nar/gkx162] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/28/2017] [Indexed: 12/14/2022] Open
Abstract
RNA expression in plant mitochondria implies a large number of post-transcriptional events in which transcript processing and stabilization are essential. In this study, we analyzed the function of the Arabidopsis mitochondrial stability factor 2 gene (MTSF2) and show that the encoded pentatricopeptide repeat protein is essential for the accumulation of stable nad1 mRNA. The production of mature nad1 requires the assembly of three independent RNA precursors via two trans-splicing reactions. Genetic analyses revealed that the lack of nad1 in mtsf2 mutants results from the specific destabilization of the nad1 exons 2-3 precursor transcript. We further demonstrated that MTSF2 binds to its 3΄ extremity with high affinity, suggesting a protective action by blocking exoribonuclease progression. By defining the 3΄ end of nad1 exons 2-3 precursor, MTSF2 concomitantly determines the 3΄ extremity of the first half of the trans-intron found at the end of the transcript. Therefore, binding of the MTSF2 protein to nad1 exons 2-3 precursor evolved both to stabilize the transcript and to define a 3΄ extremity compatible with the trans-splicing reaction needed to reconstitute mature nad1. We thus reveal that the range of transcripts stabilized by association with protective protein on their 3΄ end concerns also mitochondrial precursor transcripts.
Collapse
Affiliation(s)
- Chuande Wang
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- Paris-Sud University, Université Paris-Saclay, 91405 Orsay Cedex, France
- These authors contributed equally to the paper as first authors
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- These authors contributed equally to the paper as first authors
| | - Noelya Planchard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- Paris-Sud University, Université Paris-Saclay, 91405 Orsay Cedex, France
- These authors contributed equally to the paper as first authors
| | - Martine Quadrado
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Céline Dargel-Graffin
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
- To whom correspondence should be addressed. Tel: +33 130 833 070; Fax: +33 130 833 319;
| |
Collapse
|
21
|
Cai M, Li S, Sun F, Sun Q, Zhao H, Ren X, Zhao Y, Tan BC, Zhang Z, Qiu F. Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:132-144. [PMID: 28346745 DOI: 10.1111/tpj.13551] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 05/20/2023]
Abstract
In higher plants, many mitochondrial genes contain group II-type introns that are removed from RNAs by splicing to produce mature transcripts that are then translated into functional proteins. However, the factors involved in the splicing of mitochondrial introns and their biological functions are not well understood in maize. Here, we isolated an empty pericarp 10 (emp10) mutant and identified the underlying gene by map-based cloning. Emp10 encodes a P-type mitochondria-targeted pentatricopeptide repeat (PPR) protein with 10 PPR motifs. Loss of Emp10 function results in splicing defect of the first intron of nad2, a gene encoding subunit 2 of NADH dehydrogenase (also called complex I). The emp10 mutant has undetectable activity of complex I and has arrested development of embryo and endosperm, and thus defective seeds with empty pericarp. Additionally, the basal endosperm transfer layer cells were severely affected, indicating the deficiency of cell wall ingrowths in the emp10 kernels. Moreover, the alternative respiratory pathway involving alternative oxidase was significantly induced in the emp10 mutant. These results suggest that EMP10 is specifically required for the cis-splicing of mitochondrial nad2 intron 1, embryogenesis and endosperm development in maize.
Collapse
Affiliation(s)
- Manjun Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuzhen Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Sun
- School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemei Ren
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanxin Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bao-Cai Tan
- School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
22
|
Ngu M, Massel K, Bonen L. Group II introns in wheat mitochondria have degenerate structural features and varied splicing pathways. Int J Biochem Cell Biol 2017; 91:156-167. [PMID: 28495309 DOI: 10.1016/j.biocel.2017.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 11/29/2022]
Abstract
Mitochondrial introns in flowering plant genes are virtually all classified as members of the group II ribozyme family although certain structural features have degenerated to varying degrees over evolutionary time. We are interested in the impact that unconventional intron architecture might have on splicing biochemistry in vivo and we have focused in particular on intronic domains V and VI, which for self-splicing introns provide a key component of the catalytic core and the bulged branchpoint adenosine, respectively. Notably, the two transesterification steps in classical group II splicing are the same as for nuclear spliceosomal introns and release the intron as a lariat. Using RT-PCR and circularized RT-PCR, we had previously demonstrated that several wheat mitochondrial introns which lack a branchpoint adenosine have atypical splicing pathways, and we have now extended this analysis to the full set of wheat introns, namely six trans-splicing and sixteen cis-splicing ones. A number of introns are excised using non-lariat pathways and interestingly, we find that several introns which do have a conventional domain VI also use pathways that appear to exploit other internal or external nucleophiles, with the lariat form being relatively minor. Somewhat surprisingly, several introns with weakly-structured domain V/VI helices still exhibit classical lariat splicing, suggesting that accessory factors aid in restoring a splicing-competent conformation. Our observations illustrate that the loss of conventional group II features during evolution is correlated with altered splicing biochemistry in an intron-distinctive manner.
Collapse
Affiliation(s)
- Matthew Ngu
- Biology Department, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Karen Massel
- Biology Department, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Linda Bonen
- Biology Department, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
23
|
Weißenberger S, Soll J, Carrie C. The PPR protein SLOW GROWTH 4 is involved in editing of nad4 and affects the splicing of nad2 intron 1. PLANT MOLECULAR BIOLOGY 2017; 93:355-368. [PMID: 27942959 DOI: 10.1007/s11103-016-0566-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/21/2016] [Indexed: 05/25/2023]
Abstract
SLO4 is a mitochondrial PPR protein that is involved in editing nad4, possibly required for the efficient splicing of nad2 intron1. Pentatricopeptide repeat (PPR) proteins constitute a large protein family in flowering plants and are thought to be mostly involved in organellar RNA metabolism. The subgroup of PLS-type PPR proteins were found to be the main specificity factors of cytidine to uridine RNA editing. Identifying the targets of PLS-type PPR proteins can help in elucidating the molecular function of proteins encoded in the organellar genomes. In this study, plants lacking the SLOW GROWTH 4 PPR protein were characterized. Slo4 mutants were characterized as having restricted root growth, being late flowering and displaying an overall delayed growth phenotype. Protein levels and activity of mitochondrial complex I were decreased and putative complex I assembly intermediates accumulated in the mutant plants. An editing defect, leading to an amino acid change, in the mitochondrial nad4 transcript, encoding for a complex I subunit, was identified. Furthermore, the splicing efficiency of the first intron of nad2, encoding for another complex I subunit, was also decreased. The change in splicing efficiency could however not be linked to any editing defects in the nad2 transcript.
Collapse
Affiliation(s)
- Stefan Weißenberger
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152, Planegg-Martinsried, Germany
| | - Jürgen Soll
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152, Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science, CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
24
|
Multiple splicing pathways of group II trans-splicing introns in wheat mitochondria. Mitochondrion 2016; 28:23-32. [PMID: 26970277 DOI: 10.1016/j.mito.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 11/23/2022]
Abstract
Trans-splicing of discontinuous introns in plant mitochondria requires the assembly of independently-transcribed precursor RNAs into splicing-competent structures, and they are expected to be excised as Y-branched molecules ("broken lariats") because these introns belong to the group II ribozyme family. We now demonstrate that this is just one of several trans-splicing pathways for wheat mitochondrial nad1 intron 4 and nad5 intron 2; they also use a hydrolytic pathway and the liberated 5'-half-intron linear molecules are unexpectedly abundant in the RNA population. We also observe a third productive splicing pathway for nad5 intron 2 that yields full-length excised introns in which the termini are joined in vivo and possess non-encoded nucleotides. In the case of trans-splicing nad1 intron 1, which has a weakly-structured and poorly-conserved core sequence, excision appears to be solely through a hydrolytic pathway. When wheat embryos are germinated in the cold rather than at room temperature, an increased complexity in trans-splicing products is seen for nad1 intron 4, suggesting that there can be environmental effects on the RNA folding of bipartite introns. Our observations provide insights into intron evolution and the complexity of RNA processing events in plant mitochondria.
Collapse
|