1
|
Fullstone T, Rohm H, Kaltofen T, Hierlmayer S, Reichenbach J, Schweikert S, Knodel F, Loeffler AK, Mayr D, Jeschke U, Mahner S, Kessler M, Trillsch F, Rathert P. Identification of FLYWCH1 as a regulator of platinum-resistance in epithelial ovarian cancer. NAR Cancer 2025; 7:zcaf012. [PMID: 40191655 PMCID: PMC11970373 DOI: 10.1093/narcan/zcaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Platinum-based combination chemotherapy remains the backbone of first-line treatment for patients with advanced epithelial ovarian cancer (EOC). While most patients initially respond well to the treatment, patients with relapse ultimately develop platinum resistance. This study identified FLYWCH-type zinc finger-containing protein 1 (FLYWCH1) as an important regulator in the resistance development process. We showed that the loss of FLYWCH1 promotes platinum resistance in EOC cells, and the low FLYWCH1 expression is correlated with poor prognosis of EOC patients. In platinum-sensitive cells, FLYWCH1 colocalizes with H3K9me3, but this association is significantly reduced when cells acquire resistance. The suppression of FLYWCH1 induces gene expression changes resulting in the deregulation of pathways associated with resistance. In line with its connection to H3K9me3, FLYWCH1 induces gene silencing in a synthetic reporter assay and the suppression of FLYWCH1 alters H3K9me3 at promoter regions and repeat elements. The loss of FLYWCH1 leads to the derepression of LTR and Alu repeats, thereby increasing transcriptional plasticity and driving the resistance development process. Our data highlight the importance of FLYWCH1 in chromatin biology and acquisition of platinum resistance through transcriptional plasticity and propose FLYWCH1 as a potential biomarker for predicting treatment responses in EOC patients.
Collapse
MESH Headings
- Female
- Humans
- Drug Resistance, Neoplasm/genetics
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/drug therapy
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Cell Line, Tumor
- Histones/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Neoplasms, Glandular and Epithelial/metabolism
- Platinum/pharmacology
- Prognosis
- Promoter Regions, Genetic
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Tabea L Fullstone
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Helene Rohm
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Till Kaltofen
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sophia Hierlmayer
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Juliane Reichenbach
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simon Schweikert
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Franziska Knodel
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ann-Kathrin Loeffler
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Doris Mayr
- Institute of Pathology, LMU Munich, 81377 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Obstetrics and Gynaecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynaecology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Philipp Rathert
- Department of Molecular Biochemistry, Institute of Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Xia W, Huang J, Sun C, Shen F, Yang K. MicroRNA‑1224 inhibits cell proliferation by downregulating CBX3 expression in chordoma. Oncol Lett 2024; 27:262. [PMID: 38646496 PMCID: PMC11027112 DOI: 10.3892/ol.2024.14395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
MicroRNAs (miRNAs/miRs) have abnormal expression in numerous tumors and are closely related to tumor development and resistance to radiotherapy and chemotherapy. However, there are few studies assessing the role and mechanism of miRNA in chordoma. The sequencing data of three pairs of chordoma and notochord tissues from the GSE56183 dataset were analyzed in the present study. Cell proliferation was assessed in vitro using Cell Counting Kit-8. Bioinformatics analysis and the dual luciferase reporter assay were used to evaluate the regulatory relationship between miR-1224 and chromobox 3 (CBX3) in chordoma. The results demonstrated that miR-1224 had a significantly lower expression level in chordoma tissues and cell lines. Overexpression of miR-1224 inhibited proliferation in the chordoma cells, while the knockdown of miR-1224 promoted proliferation of the chordoma cells. Bioinformatics analysis and the dual luciferase reporter assay confirmed that CBX3 was a direct target gene of miR-1224 and that miR-1224 induced the proliferation of chordoma cells through the inhibition of CBX3. In summary, miR-1224 reduced the proliferation of chordoma cells through inhibition of CBX3, which provides a theoretical basis for selecting a novel therapeutic target for chordoma.
Collapse
Affiliation(s)
- Wei Xia
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Jihe Huang
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Chunhua Sun
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Fei Shen
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| | - Kejia Yang
- Department of Orthopedics, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu 215128, P.R. China
| |
Collapse
|
3
|
Zhang J, Yue W, Zhou Y, Liao M, Chen X, Hua J. Super enhancers-Functional cores under the 3D genome. Cell Prolif 2021; 54:e12970. [PMID: 33336467 PMCID: PMC7848964 DOI: 10.1111/cpr.12970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Complex biochemical reactions take place in the nucleus all the time. Transcription machines must follow the rules. The chromatin state, especially the three-dimensional structure of the genome, plays an important role in gene regulation and expression. The super enhancers are important for defining cell identity in mammalian developmental processes and human diseases. It has been shown that the major components of transcriptional activation complexes are recruited by super enhancer to form phase-separated condensates. We summarize the current knowledge about super enhancer in the 3D genome. Furthermore, a new related transcriptional regulation model from super enhancer is outlined to explain its role in the mammalian cell progress.
Collapse
Affiliation(s)
- Juqing Zhang
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingChina
| | - Wei Yue
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingChina
| | - Yaqi Zhou
- College of Life ScienceNorthwest A&F UniversityYanglingChina
| | - Mingzhi Liao
- College of Life ScienceNorthwest A&F UniversityYanglingChina
| | - Xingqi Chen
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Jinlian Hua
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
4
|
Cai H, Yu Y, Ni X, Li C, Hu Y, Wang J, Chen F, Xi S, Chen Z. LncRNA LINC00998 inhibits the malignant glioma phenotype via the CBX3-mediated c-Met/Akt/mTOR axis. Cell Death Dis 2020; 11:1032. [PMID: 33268783 PMCID: PMC7710718 DOI: 10.1038/s41419-020-03247-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs (lncRNAs), once considered to be nonfunctional relics of evolution, are emerging as essential genes in tumor progression. However, the function and underlying mechanisms of lncRNAs in glioma remain unclear. This study aimed to investigate the role of LINC00998 in glioma progression. Through screening using TCGA database, we found that LINC00998 was downregulated in glioblastoma tissues and that low expression of LINC00998 was associated with poor prognosis. Overexpression of LINC00998 inhibited glioma cell proliferation in vitro and in vivo and blocked the G1/S cell cycle transition, which exerted a tumor-suppressive effect on glioma progression. Mechanistically, RNA pull-down and mass spectrometry results showed an interaction between LINC00998 and CBX3. IP assays demonstrated that LINC00998 could stabilize CBX3 and prevent its ubiquitination degradation. GSEA indicated that LINC00998 could regulate the c-Met/Akt/mTOR signaling pathway, which was further confirmed by a rescue assay using siRNA-mediated knockdown of CBX3 and the Akt inhibitor MK2206. In addition, dual-luciferase assays showed that miR-34c-5p could directly bind to LINC00998 and downregulate its expression. Our results identified LINC00998 as a novel tumor suppressor in glioma, and LINC00998 could be a novel prognostic biomarker, providing a strategy for precision therapy in glioma patients.
Collapse
Affiliation(s)
- Haiping Cai
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Yanjiao Yu
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Xiangrong Ni
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Cong Li
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Yuanjun Hu
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Jing Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Furong Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China.
| | - Zhongping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, PR China.
| |
Collapse
|
5
|
HP1s modulate the S-Adenosyl Methionine synthesis pathway in liver cancer cells. Biochem J 2020; 477:1033-1047. [PMID: 32091571 DOI: 10.1042/bcj20190621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer in adults. Among the altered pathways leading to HCC, an increasing role is attributed to abnormal epigenetic regulation. Members of the Heterochromatin Protein (HP1) 1 family are key players in chromatin organisation, acting as docking sites for chromatin modifiers. Here, we inactivated HP1α in HepG2 human liver carcinoma cells and showed that HP1α participated in cell proliferation. HP1α-depleted cells have a global decrease in DNA methylation and consequently a perturbed chromatin organisation, as exemplified by the reactivation of transcription at centromeric and pericentromeric regions, eventhough the protein levels of chromatin writers depositing methylation marks, such as EZH2, SETDB1, SUV39H1, G9A and DNMT3A remained unaltered. This decrease was attributed mainly to a low S-Adenosyl Methionine (SAM) level, a cofactor involved in methylation processes. Furthermore, we showed that this decrease was due to a modification in the Methionine adenosyl transferase 2A RNA (MAT2A) level, which modifies the ratio of MAT1A/MAT2A, two enzymes that generate SAM. Importantly, HP1α reintroduction into HP1α-depleted cells restored the MAT2A protein to its initial level. Finally, we demonstrated that this transcriptional deregulation of MAT2A in HP1α-depleted cells relied on a lack of recruitment of HP1β and HP1γ to MAT2A promoter where an improper non-CpG methylation site was promoted in the vicinity of the transcription start site where HP1β and HP1γ bound. Altogether, these results highlight an unanticipated link between HP1 and the SAM synthesis pathway, and emphasise emerging functions of HP1s as sensors of some aspects of liver cell metabolism.
Collapse
|
6
|
Yi SA, Lee DH, Kim GW, Ryu HW, Park JW, Lee J, Han J, Park JH, Oh H, Lee J, Choi J, Kim HS, Kang HG, Kim DH, Chun KH, You JS, Han JW, Kwon SH. HPV-mediated nuclear export of HP1γ drives cervical tumorigenesis by downregulation of p53. Cell Death Differ 2020; 27:2537-2551. [PMID: 32203172 PMCID: PMC7429875 DOI: 10.1038/s41418-020-0520-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
E6 oncoprotein derived from high-risk human papillomavirus (HPV) drives the development of cervical cancer through p53 degradation. Because cervical cancer therapies to inactivate HPV or E6 protein are not available, alternative strategies are required. Here, we show that HPV-mediated nuclear export of human heterochromatin protein 1γ (HP1γ) reduces the stability of p53 through UBE2L3-mediated p53 polyubiquitination during cervical cancer progression. In general, HP1 plays a key role in heterochromatin formation and transcription in the nucleus. However, our immunostaining data showed that the majority of HP1γ is localized in the cytoplasm in HPV-mediated cervical cancer. We found that HPV E6 protein drives unusual nuclear export of HP1γ through the interaction between the NES sequence of HP1γ and exportin-1. The mutation of the NES sequence in HP1γ led to nuclear retention of HP1γ and reduced cervical cancer cell growth and tumor generation. We further discovered that HP1γ directly suppresses the expression of UBE2L3 which drives E6-mediated proteasomal degradation of p53 in cervical cancer. Downregulation of UBE2L3 by overexpression of HP1γ suppressed UBE2L3-dependent p53 degradation-promoting apoptosis of cervical cancer cells. Our findings propose a useful strategy to overcome p53 degradation in cervical cancer through the blockage of nuclear export of HP1γ.
Collapse
Affiliation(s)
- Sang Ah Yi
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dong Hoon Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyun-Wook Ryu
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jong Woo Park
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaecheol Lee
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihoon Han
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jee Hun Park
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hwamok Oh
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jieun Lee
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyeok Gu Kang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Da-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jueng Soo You
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jeung-Whan Han
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
7
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
8
|
Kumar A, Kono H. Heterochromatin protein 1 (HP1): interactions with itself and chromatin components. Biophys Rev 2020; 12:387-400. [PMID: 32144738 PMCID: PMC7242596 DOI: 10.1007/s12551-020-00663-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022] Open
Abstract
Isoforms of heterochromatin protein 1 (HP1) have been known to perform a multitude of functions ranging from gene silencing, gene activation to cell cycle regulation, and cell differentiation. This functional diversity arises from the dissimilarities coded in protein sequence which confers different biophysical and biochemical properties to individual structural elements of HP1 and thereby different behavior and interaction patterns. Hence, an understanding of various interactions of the structural elements of HP1 will be of utmost importance to better elucidate chromatin dynamics in its presence. In this review, we have gathered available information about interactions of HP1 both within and with itself as well as with chromatin elements. Also, the possible implications of these interactions are discussed.
Collapse
Affiliation(s)
- Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa, Kyoto, 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa, Kyoto, 619-0215, Japan.
| |
Collapse
|
9
|
Chen Y, Fang R, Yue C, Chang G, Li P, Guo Q, Wang J, Zhou A, Zhang S, Fuller GN, Shi X, Huang S. Wnt-Induced Stabilization of KDM4C Is Required for Wnt/β-Catenin Target Gene Expression and Glioblastoma Tumorigenesis. Cancer Res 2019; 80:1049-1063. [PMID: 31888886 DOI: 10.1158/0008-5472.can-19-1229] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022]
Abstract
Wnt/β-catenin signaling activates the transcription of target genes to regulate stem cells and cancer development. However, the contribution of epigenetic regulation to this process is unknown. Here, we report that Wnt activation stabilizes the epigenetic regulator KDM4C that promotes tumorigenesis and survival of human glioblastoma cells by epigenetically activating the transcription of Wnt target genes. KDM4C protein expression was upregulated in human glioblastomas, and its expression directly correlated with Wnt activity and Wnt target gene expression. KDM4C was essential for Wnt-induced gene expression and tumorigenesis of glioblastoma cells. In the absence of Wnt3a, protein kinase R phosphorylated KDM4C at Ser918, inducing KDM4C ubiquitination and degradation. Wnt3a stabilized KDM4C through inhibition of GSK3-dependent protein kinase R activity. Stabilized KDM4C accumulated in the nucleus and bound to and demethylated TCF4-associated histone H3K9 by interacting with β-catenin, promoting HP1γ removal and transcriptional activation. These findings reveal that Wnt-KDM4C-β-catenin signaling represents a novel mechanism for the transcription of Wnt target genes and regulation of tumorigenesis, with important clinical implications. SIGNIFICANCE: These findings identify the Wnt-KDM4C-β-catenin signaling axis as a critical mechanism for glioma tumorigenesis that may serve as a new therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Yaohui Chen
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Runping Fang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Human and Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Chen Yue
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guoqiang Chang
- Department of Human and Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Peng Li
- Department of Human and Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Qing Guo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aidong Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sicong Zhang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - Xiaobing Shi
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
- Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Human and Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
10
|
In vivo epigenetic editing of Sema6a promoter reverses transcallosal dysconnectivity caused by C11orf46/Arl14ep risk gene. Nat Commun 2019; 10:4112. [PMID: 31511512 PMCID: PMC6739341 DOI: 10.1038/s41467-019-12013-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Many neuropsychiatric risk genes contribute to epigenetic regulation but little is known about specific chromatin-associated mechanisms governing the formation of neuronal connectivity. Here we show that transcallosal connectivity is critically dependent on C11orf46, a nuclear protein encoded in the chromosome 11p13 WAGR risk locus. C11orf46 haploinsufficiency was associated with hypoplasia of the corpus callosum. C11orf46 knockdown disrupted transcallosal projections and was rescued by wild type C11orf46 but not the C11orf46R236H mutant associated with intellectual disability. Multiple genes encoding key regulators of axonal development, including Sema6a, were hyperexpressed in C11orf46-knockdown neurons. RNA-guided epigenetic editing of Sema6a gene promoters via a dCas9-SunTag system with C11orf46 binding normalized SEMA6A expression and rescued transcallosal dysconnectivity via repressive chromatin remodeling by the SETDB1 repressor complex. Our study demonstrates that interhemispheric communication is sensitive to locus-specific remodeling of neuronal chromatin, revealing the therapeutic potential for shaping the brain's connectome via gene-targeted designer activators and repressor proteins.
Collapse
|
11
|
Sharma AB, Dimitrov S, Hamiche A, Van Dyck E. Centromeric and ectopic assembly of CENP-A chromatin in health and cancer: old marks and new tracks. Nucleic Acids Res 2019; 47:1051-1069. [PMID: 30590707 PMCID: PMC6379705 DOI: 10.1093/nar/gky1298] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
The histone H3 variant CENP-A confers epigenetic identity to the centromere and plays crucial roles in the assembly and function of the kinetochore, thus ensuring proper segregation of our chromosomes. CENP-A containing nucleosomes exhibit unique structural specificities and lack the complex profile of gene expression-associated histone posttranslational modifications found in canonical histone H3 and the H3.3 variant. CENP-A mislocalization into noncentromeric regions resulting from its overexpression leads to chromosomal segregation aberrations and genome instability. Overexpression of CENP-A is a feature of many cancers and is associated with malignant progression and poor outcome. The recent years have seen impressive progress in our understanding of the mechanisms that orchestrate CENP-A deposition at native centromeres and ectopic loci. They have witnessed the description of novel, heterotypic CENP-A/H3.3 nucleosome particles and the exploration of the phenotypes associated with the deregulation of CENP-A and its chaperones in tumor cells. Here, we review the structural specificities of CENP-A nucleosomes, the epigenetic features that characterize the centrochromatin and the mechanisms and factors that orchestrate CENP-A deposition at centromeres. We then review our knowledge of CENP-A ectopic distribution, highlighting experimental strategies that have enabled key discoveries. Finally, we discuss the implications of deregulated CENP-A in cancer.
Collapse
Affiliation(s)
- Abhishek Bharadwaj Sharma
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé-Allée des Alpes, 38700 La Tronche, France.,Izmir Biomedicine and Genome Center, İzmir, Turkey
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS, INSERM, 67404 Illkirch Cedex, France
| | - Eric Van Dyck
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
12
|
Ryan DP, Tremethick DJ. The interplay between H2A.Z and H3K9 methylation in regulating HP1α binding to linker histone-containing chromatin. Nucleic Acids Res 2019; 46:9353-9366. [PMID: 30007360 PMCID: PMC6182156 DOI: 10.1093/nar/gky632] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
One of the most intensively studied chromatin binding factors is HP1α. HP1α is associated with silenced, heterochromatic regions of the genome and binds to H3K9me3. While H3K9me3 is necessary for HP1α recruitment to heterochromatin, it is becoming apparent that it is not sufficient suggesting that additional factors are involved. One candidate proposed as a potential regulator of HP1α recruitment is the linker histone H1.4. Changes to the underlying make-up of chromatin, such as the incorporation of the histone variant H2A.Z, has also been linked with regulating HP1 binding to chromatin. Here, we rigorously dissected the effects of H1.4, H2A.Z and H3K9me3 on the nucleosome binding activity of HP1α in vitro employing arrays, mononucleosomes and nucleosome core particles. Unexpectedly, histone H1.4 impedes the binding of HP1α but strikingly, this inhibition is partially relieved by the incorporation of both H2A.Z and H3K9me3 but only in the context of arrays or nucleosome core particles. Our data suggests that there are two modes of interaction of HP1α with nucleosomes. The first primary mode is through interactions with linker DNA. However, when linker DNA is missing or occluded by linker histones, HP1α directly interacts with the nucleosome core and this interaction is enhanced by H2A.Z with H3K9me3.
Collapse
Affiliation(s)
- Daniel P Ryan
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, ACT 2601, Australia
| | - David J Tremethick
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, ACT 2601, Australia
| |
Collapse
|
13
|
Zhong X, Kan A, Zhang W, Zhou J, Zhang H, Chen J, Tang S. CBX3/HP1γ promotes tumor proliferation and predicts poor survival in hepatocellular carcinoma. Aging (Albany NY) 2019; 11:5483-5497. [PMID: 31375643 PMCID: PMC6710055 DOI: 10.18632/aging.102132] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/26/2019] [Indexed: 02/05/2023]
Abstract
HP1γ, encoded by CBX3, is associated with cancer progression and patient prognosis. However, the prognostic value and functions of CBX3/HP1γ in hepatocellular carcinoma (HCC) remain unclear. Here, we performed a bioinformatics analysis using the Oncomine, TCGA and Human Protein Atlas databases, the Kaplan-Meier plotter, and the UALCAN web-portal to explore the expression and prognostic significance of CBX3/HP1γ in patients with different cancers, including liver cancer. HCC tissues and microarrays containing 354 samples were examined using immunohistochemical staining, quantitative real-time polymerase chain reaction, and Western blotting. CBX3-overexpression HCC cell lines were tested in proliferation assays to determine the function of CBX3/HP1γ. We found that CBX3/HP1γ was upregulated in many cancers and was associated with poor prognosis. Our results also revealed that CBX3/HP1γ is elevated in HCC tissues and is associated with malignant clinicopathological characteristics. Kaplan-Meier and Cox regression analyses verified that high CBX3/HP1γ expression is an independent and significant prognostic factor for reduced overall survival in HCC patients. Moreover, invitro functional assays showed that CBX3/HP1γ overexpression promotes HCC cell proliferation. These findings suggest that CBX3/HP1γ is an important oncogene in HCC that might act as a useful biomarker for prognosis and targeted therapy.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Xiaoping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
| | - Anna Kan
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
| | - Wancong Zhang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Huayong Zhang
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
- Department of Thyroid and Breast Surgery, The Fifth Affiliated Hospital of Sun Yat sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Jiasheng Chen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shijie Tang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
14
|
Wiese M, Bannister AJ, Basu S, Boucher W, Wohlfahrt K, Christophorou MA, Nielsen ML, Klenerman D, Laue ED, Kouzarides T. Citrullination of HP1γ chromodomain affects association with chromatin. Epigenetics Chromatin 2019; 12:21. [PMID: 30940194 PMCID: PMC6444592 DOI: 10.1186/s13072-019-0265-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/19/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Stem cell differentiation involves major chromatin reorganisation, heterochromatin formation and genomic relocalisation of structural proteins, including heterochromatin protein 1 gamma (HP1γ). As the principal reader of the repressive histone marks H3K9me2/3, HP1 plays a key role in numerous processes including heterochromatin formation and maintenance. RESULTS We find that HP1γ is citrullinated in mouse embryonic stem cells (mESCs) and this diminishes when cells differentiate, indicating that it is a dynamically regulated post-translational modification during stem cell differentiation. Peptidylarginine deiminase 4, a known regulator of pluripotency, citrullinates HP1γ in vitro. This requires R38 and R39 within the HP1γ chromodomain, and the catalytic activity is enhanced by trimethylated H3K9 (H3K9me3) peptides. Mutation of R38 and R39, designed to mimic citrullination, affects HP1γ binding to H3K9me3-containing peptides. Using live-cell single-particle tracking, we demonstrate that R38 and R39 are important for HP1γ binding to chromatin in vivo. Furthermore, their mutation reduces the residence time of HP1γ on chromatin in differentiating mESCs. CONCLUSION Citrullination is a novel post-translational modification of the structural heterochromatin protein HP1γ in mESCs that is dynamically regulated during mESC differentiation. The citrullinated residues lie within the HP1γ chromodomain and are important for H3K9me3 binding in vitro and chromatin association in vivo.
Collapse
Affiliation(s)
- Meike Wiese
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
- Max Planck Institute for Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Andrew J. Bannister
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
| | - Srinjan Basu
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 1QR UK
| | - Wayne Boucher
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Kai Wohlfahrt
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Maria A. Christophorou
- Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU UK
| | - Michael L. Nielsen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Tony Kouzarides
- The Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP UK
| |
Collapse
|
15
|
Zheng Q, Xu J, Lin Z, Lu Y, Xin X, Li X, Yang Y, Meng Q, Wang C, Xiong W, Lu D. Inflammatory factor receptor Toll-like receptor 4 controls telomeres through heterochromatin protein 1 isoforms in liver cancer stem cell. J Cell Mol Med 2018; 22:3246-3258. [PMID: 29602239 PMCID: PMC5980149 DOI: 10.1111/jcmm.13606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptor 4 (TLR4) which acts as a receptor for lipopolysaccharide (LPS) has been reported to be involved in carcinogenesis. However, the regulatory mechanism of it has not been elucidated. Herein, we demonstrate that TLR4 promotes the malignant growth of liver cancer stem cells. Mechanistically, TLR4 promotes the expression of histone-lysine N-methyltransferase (SUV39 h2) and increases the formation of trimethyl histone H3 lysine 9-heterochromatin protein 1-telomere repeat binding factor 2 (H3K9me3-HP1-TRF2) complex at the telomeric locus under mediation by long non coding RNA urothelial cancer-associated 1 (CUDR). At the telomeric locus, this complex promotes binding of POT1, pPOT1, Exo1, pExo1, SNM1B and pSNM1B but prevents binding of CST/AAF to telomere, thus controlling telomere and maintaining telomere length. Furthermore, TLR4 enhances interaction between HP1α and DNA methyltransferase (DNMT3b), which limits RNA polymerase II deposition on the telomeric repeat-containing RNA (TERRA) promoter region and its elongation, thus inhibiting transcription of TERRA. Ultimately, TLR4 enhances the telomerase activity by reducing the interplay between telomerase reverse transcriptase catalytic subunit (TERT) and TERRA. More importantly, our results reveal that tri-complexes of HP1 isoforms (α, β and γ) are required for the oncogenic action of TLR4. This study elucidates a novel protection mechanism of TLR4 in liver cancer stem cells and suggests that TLR4 can be used as a novel therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Qidi Zheng
- Research Center for Translational Medicine at Shanghai East HospitalSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Jie Xu
- Research Center for Translational Medicine at Shanghai East HospitalSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Zhuojia Lin
- Research Center for Translational Medicine at Shanghai East HospitalSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Yanan Lu
- Research Center for Translational Medicine at Shanghai East HospitalSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Xiaoru Xin
- Research Center for Translational Medicine at Shanghai East HospitalSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Xiaonan Li
- Research Center for Translational Medicine at Shanghai East HospitalSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Yuxin Yang
- Research Center for Translational Medicine at Shanghai East HospitalSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Qiuyu Meng
- Research Center for Translational Medicine at Shanghai East HospitalSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Chen Wang
- Research Center for Translational Medicine at Shanghai East HospitalSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Wujun Xiong
- Department of HepatologyShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Dongdong Lu
- Research Center for Translational Medicine at Shanghai East HospitalSchool of Life Science and TechnologyTongji UniversityShanghaiChina
| |
Collapse
|
16
|
Watanabe S, Mishima Y, Shimizu M, Suetake I, Takada S. Interactions of HP1 Bound to H3K9me3 Dinucleosome by Molecular Simulations and Biochemical Assays. Biophys J 2018; 114:2336-2351. [PMID: 29685391 PMCID: PMC6129468 DOI: 10.1016/j.bpj.2018.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/27/2018] [Accepted: 03/26/2018] [Indexed: 01/01/2023] Open
Abstract
Heterochromatin protein 1 (HP1), associated with heterochromatin formation, recognizes an epigenetically repressive marker, trimethylated lysine 9 in histone H3 (H3K9me3), and generally contributes to long-term silencing. How HP1 induces heterochromatin is not fully understood. Recent experiments suggested that not one, but two nucleosomes provide a platform for this recognition. Integrating previous and new biochemical assays with computational modeling, we provide near-atomic structural models for HP1 binding to the dinucleosomes. We found that the dimeric HP1α tends to bind two H3K9me3s that are in adjacent nucleosomes, thus bridging two nucleosomes. We identified, to our knowledge, a novel DNA binding motif in the hinge region that is specific to HP1α and is essential for recognizing the H3K9me3 sites of two nucleosomes. An HP1 isoform, HP1γ, does not easily bridge two nucleosomes in extended conformations because of the absence of the above binding motif and its shorter hinge region. We propose a molecular mechanism for chromatin structural changes caused by HP1.
Collapse
Affiliation(s)
- Shuhei Watanabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Japan
| | - Yuichi Mishima
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Masahiro Shimizu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Japan
| | - Isao Suetake
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan; College of Nutrition, Koshien University, Takarazuka, Japan.
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Japan.
| |
Collapse
|
17
|
An J, Wu M, Xin X, Lin Z, Li X, Zheng Q, Gui X, Li T, Pu H, Li H, Lu D. Inflammatory related gene IKKα, IKKβ, IKKγ cooperates to determine liver cancer stem cells progression by altering telomere via heterochromatin protein 1-HOTAIR axis. Oncotarget 2018; 7:50131-50149. [PMID: 27367027 PMCID: PMC5226573 DOI: 10.18632/oncotarget.10321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells are associated with tumor recurrence. IKK is a protein kinase that is composed of IKKα, IKKβ, IKKγ. Herein, we demonstrate that IKKα plus IKKβ promoted and IKKγ inhibited liver cancer stem cell growth in vitro and in vivo. Mechanistically, IKKα plus IKKβ enhanced and IKKγ inhibited the interplay among HP1α, HP1β and HP1γ that competes for the interaction among HP1α, SUZ12, HEZ2. Therefore, IKKα plus IKKβ inhibited and IKKγ enhanced the activity of H3K27 methyltransferase SUZ12 and EZH2, which methylates H3K27 immediately sites on HOTAIR promoter region. Therefore, IKKα plus IKKβ increased and IKKγ decreased the HOTAIR expression. Strikingly, IKKα plus IKKβ decreases and IKKγ increases the HP1α interplays with DNA methyltransferase DNMT3b, which increases or decreases TERRA promoter DNA methylation. Thus IKKα plus IKKβ reduces and IKKγ increases to recruit TRF1 and RNA polymerase II deposition and elongation on the TERRA promoter locus, which increases or decreases TERRA expression. Furthermore, IKKα plus IKKβ decreases/increases and IKKγ increases/decreases the interplay between TERT and TRRRA/between TERT and TREC. Ultimately, IKKα plus IKKβ increases and IKKγ decreases the telomerase activity. On the other hand, at the telomere locus, IKKα plus IKKβ increases/drcreases and IKKγ decreases/increases TRF2, POT1, pPOT1, Exo1, pExo1, SNM1B, pSNM1B/CST-AAF binding, which keep active telomere regulatory genes and poised for telomere length. Strikingly, HOTAIR is required for IKKα plus IKKβ and IKKγ to control telomerase activity and telomere length. These observations suggest that HOTAIR operates the action of IKKα, IKKβ, IKKγ in liver cancer stem cells. This study provides a novel basis to elucidate the oncogenic action of IKKα, IKKβ, IKKγ and prompts that IKKα, IKKβ, IKKγ cooperate to HOTAR to be used as a novel therapeutic targets for liver cancer.
Collapse
Affiliation(s)
- Jiahui An
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Mengying Wu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoru Xin
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Zhuojia Lin
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaonan Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Qidi Zheng
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Haiyan Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
18
|
Bryan LC, Weilandt DR, Bachmann AL, Kilic S, Lechner CC, Odermatt PD, Fantner GE, Georgeon S, Hantschel O, Hatzimanikatis V, Fierz B. Single-molecule kinetic analysis of HP1-chromatin binding reveals a dynamic network of histone modification and DNA interactions. Nucleic Acids Res 2017; 45:10504-10517. [PMID: 28985346 PMCID: PMC5737501 DOI: 10.1093/nar/gkx697] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
Chromatin recruitment of effector proteins involved in gene regulation depends on multivalent interaction with histone post-translational modifications (PTMs) and structural features of the chromatin fiber. Due to the complex interactions involved, it is currently not understood how effectors dynamically sample the chromatin landscape. Here, we dissect the dynamic chromatin interactions of a family of multivalent effectors, heterochromatin protein 1 (HP1) proteins, using single-molecule fluorescence imaging and computational modeling. We show that the three human HP1 isoforms are recruited and retained on chromatin by a dynamic exchange between histone PTM and DNA bound states. These interactions depend on local chromatin structure, the HP1 isoforms as well as on PTMs on HP1 itself. Of the HP1 isoforms, HP1α exhibits the longest residence times and fastest binding rates due to DNA interactions in addition to PTM binding. HP1α phosphorylation further increases chromatin retention through strengthening of multivalency while reducing DNA binding. As DNA binding in combination with specific PTM recognition is found in many chromatin effectors, we propose a general dynamic capture mechanism for effector recruitment. Multiple weak protein and DNA interactions result in a multivalent interaction network that targets effectors to a specific chromatin modification state, where their activity is required.
Collapse
Affiliation(s)
- Louise C Bryan
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Daniel R Weilandt
- Laboratory of Computational Systems Biotechnology, ISIC, EPFL, 1015 Lausanne, Switzerland
| | - Andreas L Bachmann
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sinan Kilic
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Carolin C Lechner
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pascal D Odermatt
- Laboratory for Bio- and Nano instrumentation, Institute of Bioengineering, EPFL, 1015 Lausanne, Switzerland
| | - Georg E Fantner
- Laboratory for Bio- and Nano instrumentation, Institute of Bioengineering, EPFL, 1015 Lausanne, Switzerland
| | - Sandrine Georgeon
- ISREC foundation chair in translational oncology, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Oliver Hantschel
- ISREC foundation chair in translational oncology, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, ISIC, EPFL, 1015 Lausanne, Switzerland
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Velazquez Camacho O, Galan C, Swist-Rosowska K, Ching R, Gamalinda M, Karabiber F, De La Rosa-Velazquez I, Engist B, Koschorz B, Shukeir N, Onishi-Seebacher M, van de Nobelen S, Jenuwein T. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. eLife 2017; 6. [PMID: 28760199 PMCID: PMC5538826 DOI: 10.7554/elife.25293] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022] Open
Abstract
The Suv39h1 and Suv39h2 histone lysine methyltransferases are hallmark enzymes at mammalian heterochromatin. We show here that the mouse Suv39h2 enzyme differs from Suv39h1 by containing an N-terminal basic domain that facilitates retention at mitotic chromatin and provides an additional affinity for major satellite repeat RNA. To analyze an RNA-dependent interaction with chromatin, we purified native nucleosomes from mouse ES cells and detect that Suv39h1 and Suv39h2 exclusively associate with poly-nucleosomes. This association was attenuated upon RNaseH incubation and entirely lost upon RNaseA digestion of native chromatin. Major satellite repeat transcripts remain chromatin-associated and have a secondary structure that favors RNA:DNA hybrid formation. Together, these data reveal an RNA-mediated mechanism for the stable chromatin interaction of the Suv39h KMT and suggest a function for major satellite non-coding RNA in the organization of an RNA-nucleosome scaffold as the underlying structure of mouse heterochromatin.
Collapse
Affiliation(s)
- Oscar Velazquez Camacho
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Carmen Galan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Kalina Swist-Rosowska
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Reagan Ching
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Gamalinda
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | - Bettina Engist
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Birgit Koschorz
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Nicholas Shukeir
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
20
|
Hashimoto JG, Gavin DP, Wiren KM, Crabbe JC, Guizzetti M. Prefrontal cortex expression of chromatin modifier genes in male WSP and WSR mice changes across ethanol dependence, withdrawal, and abstinence. Alcohol 2017; 60:83-94. [PMID: 28433423 PMCID: PMC5497775 DOI: 10.1016/j.alcohol.2017.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/20/2022]
Abstract
Alcohol-use disorder (AUD) is a relapsing disorder associated with excessive ethanol consumption. Recent studies support the involvement of epigenetic mechanisms in the development of AUD. Studies carried out so far have focused on a few specific epigenetic modifications. The goal of this project was to investigate gene expression changes of epigenetic regulators that mediate a broad array of chromatin modifications after chronic alcohol exposure, chronic alcohol exposure followed by 8 h withdrawal, and chronic alcohol exposure followed by 21 days of abstinence in Withdrawal-Resistant (WSR) and Withdrawal Seizure-Prone (WSP) selected mouse lines. We found that chronic vapor exposure to highly intoxicating levels of ethanol alters the expression of several chromatin remodeling genes measured by quantitative PCR array analyses. The identified effects were independent of selected lines, which, however, displayed baseline differences in epigenetic gene expression. We reported dysregulation in the expression of genes involved in histone acetylation, deacetylation, lysine and arginine methylation and ubiquitinationhylation during chronic ethanol exposure and withdrawal, but not after 21 days of abstinence. Ethanol-induced changes are consistent with decreased histone acetylation and with decreased deposition of the permissive ubiquitination mark H2BK120ub, associated with reduced transcription. On the other hand, ethanol-induced changes in the expression of genes involved in histone lysine methylation are consistent with increased transcription. The net result of these modifications on gene expression is likely to depend on the combination of the specific histone tail modifications present at a given time on a given promoter. Since alcohol does not modulate gene expression unidirectionally, it is not surprising that alcohol does not unidirectionally alter chromatin structure toward a closed or open state, as suggested by the results of this study.
Collapse
Affiliation(s)
- Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR, 97239, United States; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, United States
| | - David P Gavin
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL, 60612, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, 60612, United States
| | - Kristine M Wiren
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR, 97239, United States; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, United States
| | - John C Crabbe
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR, 97239, United States; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR, 97239, United States; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, United States.
| |
Collapse
|