1
|
Kyrouz A, Liu L, Qin L, Tjaden B. Popcorn: prediction of short coding and noncoding genomic sequences in prokaryotes. Bioinformatics 2025; 41:btaf250. [PMID: 40279271 PMCID: PMC12054974 DOI: 10.1093/bioinformatics/btaf250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/06/2025] [Accepted: 04/23/2025] [Indexed: 04/27/2025] Open
Abstract
SUMMARY The most challenging prokaryotic genes to identify often correspond to short ORFs (sORFs) encoding small proteins or to noncoding RNAs. RNA-seq experiments commonly evince small transcripts that do not correspond to annotated genes and are candidates for novel coding sORFs or small regulatory RNAs, but it can be difficult to accurately assess whether the numerous small transcripts are coding or not. We present Popcorn (PrOkaryotic Prediction of Coding OR Noncoding), a novel machine learning method for determining whether prokaryotic sequences are coding or noncoding. We find that Popcorn is effective in distinguishing coding from noncoding sequences, including coding sORFs and noncoding RNAs. AVAILABILITY AND IMPLEMENTATION Freely available for use on the web at https://cs.wellesley.edu/∼btjaden/Popcorn. Source code available at https://github.com/btjaden/Popcorn and https://doi.org/10.5281/zenodo.15120075.
Collapse
Affiliation(s)
- Alison Kyrouz
- Department of Computer Science, Wellesley College, Wellesley, MA 02481, United States
| | - Lian Liu
- Department of Computer Science, Wellesley College, Wellesley, MA 02481, United States
| | - Lixin Qin
- Department of Computer Science, Wellesley College, Wellesley, MA 02481, United States
| | - Brian Tjaden
- Department of Computer Science, Wellesley College, Wellesley, MA 02481, United States
| |
Collapse
|
2
|
Duan Y, Santos-Júnior CD, Schmidt TS, Fullam A, de Almeida BLS, Zhu C, Kuhn M, Zhao XM, Bork P, Coelho LP. A catalog of small proteins from the global microbiome. Nat Commun 2024; 15:7563. [PMID: 39214983 PMCID: PMC11364881 DOI: 10.1038/s41467-024-51894-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Small open reading frames (smORFs) shorter than 100 codons are widespread and perform essential roles in microorganisms, where they encode proteins active in several cell functions, including signal pathways, stress response, and antibacterial activities. However, the ecology, distribution and role of small proteins in the global microbiome remain unknown. Here, we construct a global microbial smORFs catalog (GMSC) derived from 63,410 publicly available metagenomes across 75 distinct habitats and 87,920 high-quality isolate genomes. GMSC contains 965 million non-redundant smORFs with comprehensive annotations. We find that archaea harbor more smORFs proportionally than bacteria. We moreover provide a tool called GMSC-mapper to identify and annotate small proteins from microbial (meta)genomes. Overall, this publicly-available resource demonstrates the immense and underexplored diversity of small proteins.
Collapse
Affiliation(s)
- Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Laboratory of Microbial Processes & Biodiversity - LMPB; Department of Hydrobiology, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo, Brazil
| | - Thomas Sebastian Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- APC Microbiome and School of Medicine, University College Cork, Cork, Ireland
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Breno L S de Almeida
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chengkai Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Lingang Laboratory, Shanghai, 200031, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia.
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Dong X, Lu S, Tian Y, Ma H, Wang Y, Zhang X, Sun G, Luo Y, Sun X. Bavachinin protects the liver in NAFLD by promoting regeneration via targeting PCNA. J Adv Res 2024; 55:131-144. [PMID: 36801384 PMCID: PMC10770097 DOI: 10.1016/j.jare.2023.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/23/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease all over the world, and no drug is approved for the treatment of NAFLD. Bavachinin (BVC) is proven to possess liver-protecting effect against NAFLD, but its mechanism is still blurry. OBJECTIVES With the use of Click Chemistry-Activity-Based Protein Profiling (CC-ABPP) technology, this study aims to identify the target of BVC, and investigate the mechanism by which BVC exerts its liver-protecting effect. METHODS The high fat diet induced hamster NAFLD model is introduced to investigate BVC's lipid-lowering and liver-protecting effects. Then, a small molecular probe ofBVC is designed and synthesized based on theCC-ABPP technology, and BVC's target is fished out. A series of experiments are performed to identify the target, including competitive inhibition assay, surface-plasmon resonance (SPR), cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) assay, and co-immunoprecipitation (Co-IP). Afterward, the pro-regeneration effects of BVC are validated in vitro and in vivo through flow cytometry, immunofluorescence, and the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). RESULT In the hamster NAFLD model, BVC shows lipid-lowing effect and improvement on the histology. PCNA is identified as the target of BVC with the method mentioned above, and BVC facilitates the interaction between PCNA and DNA polymerase delta. BVC promotes HepG2 cells proliferation which is inhibited by T2AA, an inhibitor suppresses the interaction between PCNA and DNA polymerase delta. In NAFLD hamsters, BVC enhances PCNA expression and liver regeneration, reduces hepatocyte apoptosis. CONCLUSION This study suggests that, besides the anti-lipemic effect, BVC binds to the pocket of PCNA facilitating its interaction with DNA polymerase delta and pro-regeneration effect, thereby exerts the protective effect against HFD induced liver injury.
Collapse
Affiliation(s)
- Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Shan Lu
- Beijing Increasepharm Safety and Efficacy Co., Ltd, Beijing, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Han Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yang Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|
4
|
Méheust R, Castelle CJ, Jaffe AL, Banfield JF. Conserved and lineage-specific hypothetical proteins may have played a central role in the rise and diversification of major archaeal groups. BMC Biol 2022; 20:154. [PMID: 35790962 PMCID: PMC9258230 DOI: 10.1186/s12915-022-01348-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Archaea play fundamental roles in the environment, for example by methane production and consumption, ammonia oxidation, protein degradation, carbon compound turnover, and sulfur compound transformations. Recent genomic analyses have profoundly reshaped our understanding of the distribution and functionalities of Archaea and their roles in eukaryotic evolution. RESULTS Here, 1179 representative genomes were selected from 3197 archaeal genomes. The representative genomes clustered based on the content of 10,866 newly defined archaeal protein families (that will serve as a community resource) recapitulates archaeal phylogeny. We identified the co-occurring proteins that distinguish the major lineages. Those with metabolic roles were consistent with experimental data. However, two families specific to Asgard were determined to be new eukaryotic signature proteins. Overall, the blocks of lineage-specific families are dominated by proteins that lack functional predictions. CONCLUSIONS Given that these hypothetical proteins are near ubiquitous within major archaeal groups, we propose that they were important in the origin of most of the major archaeal lineages. Interestingly, although there were clearly phylum-specific co-occurring proteins, no such blocks of protein families were shared across superphyla, suggesting a burst-like origin of new lineages early in archaeal evolution.
Collapse
Affiliation(s)
- Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute, University of California, Berkeley, CA, USA. .,LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, Evry, France.
| | - Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute, University of California, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA. .,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
5
|
Cardano M, Tribioli C, Prosperi E. Targeting Proliferating Cell Nuclear Antigen (PCNA) as an Effective Strategy to Inhibit Tumor Cell Proliferation. Curr Cancer Drug Targets 2020; 20:240-252. [PMID: 31951183 DOI: 10.2174/1568009620666200115162814] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Targeting highly proliferating cells is an important issue for many types of aggressive tumors. Proliferating Cell Nuclear Antigen (PCNA) is an essential protein that participates in a variety of processes of DNA metabolism, including DNA replication and repair, chromatin organization and transcription and sister chromatid cohesion. In addition, PCNA is involved in cell survival, and possibly in pathways of energy metabolism, such as glycolysis. Thus, the possibility of targeting this protein for chemotherapy against highly proliferating malignancies is under active investigation. Currently, approaches to treat cells with agents targeting PCNA rely on the use of small molecules or on peptides that either bind to PCNA, or act as a competitor of interacting partners. Here, we describe the status of the art in the development of agents targeting PCNA and discuss their application in different types of tumor cell lines and in animal model systems.
Collapse
Affiliation(s)
- Miriana Cardano
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| | - Carla Tribioli
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare del C.N.R. "Luca Cavalli-Sforza", Pavia- 27100, Italy
| |
Collapse
|
6
|
An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research. Folia Microbiol (Praha) 2019; 65:67-78. [PMID: 31286382 DOI: 10.1007/s12223-019-00730-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Almost 25 years have passed since the discovery of a planktonic, heterotrophic, hyperthermophilic archaeon named Thermococcus kodakarensis KOD1, previously known as Pyrococcus sp. KOD1, by Imanaka and coworkers. T. kodakarensis is one of the most studied archaeon in terms of metabolic pathways, available genomic resources, established genetic engineering techniques, reporter constructs, in vitro transcription/translation machinery, and gene expression/gene knockout systems. In addition to all these, ease of growth using various carbon sources makes it a facile archaeal model organism. Here, in this review, an attempt is made to reflect what we have learnt from this hyperthermophilic archaeon.
Collapse
|
7
|
ATXR5/6 Forms Alternative Protein Complexes with PCNA and the Nucleosome Core Particle. J Mol Biol 2019; 431:1370-1379. [PMID: 30826376 DOI: 10.1016/j.jmb.2019.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
The proliferating cell nuclear antigen (PCNA) is a sliding clamp associated with DNA polymerases and serves as a binding platform for the recruitment of regulatory proteins linked to DNA damage repair, cell cycle regulation, and epigenetic signaling. The histone H3 lysine-27 (H3K27) mono-methyltransferase Arabidopsis trithorax-related protein 5/6 (ATXR5/6) associates with PCNA, and this interaction has been proposed to act as a key determinant controlling the reestablishment of H3K27 mono-methylation following replication. In this study, we provide biochemical evidence showing that PCNA inhibits ATXR6 enzymatic activity. The structure of the ATXR6 PCNA-interacting peptide (PIP) in complex with PCNA indicates that a trio of hydrophobic residues contributes to the binding of the enzyme to the sliding clamp. Finally, despite the presence of three PIP binding clefts, only two molecules of ATXR6 bind to PCNA likely enabling the recruitment of a third protein to the sliding clamp. Collectively, these results rule out the model wherein PCNA-bound ATXR6 actively reestablishes H3K27 mono-methylation following DNA replication and provides insights into the role of ATXR6 PIP motif in its interaction with PCNA.
Collapse
|
8
|
Zatopek KM, Gardner AF, Kelman Z. Archaeal DNA replication and repair: new genetic, biophysical and molecular tools for discovering and characterizing enzymes, pathways and mechanisms. FEMS Microbiol Rev 2018; 42:477-488. [PMID: 29912309 DOI: 10.1093/femsre/fuy017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/17/2018] [Indexed: 01/03/2023] Open
Abstract
DNA replication and repair are essential biological processes needed for the survival of all organisms. Although these processes are fundamentally conserved in the three domains, archaea, bacteria and eukarya, the proteins and complexes involved differ. The genetic and biophysical tools developed for archaea in the last several years have accelerated the study of DNA replication and repair in this domain. In this review, the current knowledge of DNA replication and repair processes in archaea will be summarized, with emphasis on the contribution of genetics and other recently developed biophysical and molecular tools, including capillary gel electrophoresis, next-generation sequencing and single-molecule approaches. How these new tools will continue to drive archaeal DNA replication and repair research will also be discussed.
Collapse
Affiliation(s)
| | | | - Zvi Kelman
- Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|
9
|
Altieri AS, Kelman Z. DNA Sliding Clamps as Therapeutic Targets. Front Mol Biosci 2018; 5:87. [PMID: 30406112 PMCID: PMC6204406 DOI: 10.3389/fmolb.2018.00087] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023] Open
Abstract
Chromosomal DNA replication is achieved by an assembly of multi-protein complexes at the replication fork. DNA sliding clamps play an important role in this assembly and are essential for cell viability. Inhibitors of bacterial (β-clamp) and eukaryal DNA clamps, proliferating cell nuclear antigen (PCNA), have been explored for use as antibacterial and anti-cancer drugs, respectively. Inhibitors for bacterial β-clamps include modified peptides, small molecule inhibitors, natural products, and modified non-steroidal anti-inflammatory drugs. Targeting eukaryotic PCNA sliding clamp in its role in replication can be complicated by undesired effects on healthy cells. Some success has been seen in the design of peptide inhibitors, however, other research has focused on targeting PCNA molecules that are modified in diseased states. These inhibitors that are targeted to PCNA involved in DNA repair can sensitize cancer cells to existing anti-cancer therapeutics, and a DNA aptamer has also been shown to inhibit PCNA. In this review, studies in the use of both bacterial and eukaryotic sliding clamps as therapeutic targets are summarized.
Collapse
Affiliation(s)
- Amanda S Altieri
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, Rockville, MD, United States
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research, University of Maryland and the National Institute of Standards and Technology, Rockville, MD, United States.,Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, Rockville, MD, United States
| |
Collapse
|
10
|
Prakash A, Moharana K, Wallace SS, Doublié S. Destabilization of the PCNA trimer mediated by its interaction with the NEIL1 DNA glycosylase. Nucleic Acids Res 2017; 45:2897-2909. [PMID: 27994037 PMCID: PMC5389659 DOI: 10.1093/nar/gkw1282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/11/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022] Open
Abstract
The base excision repair (BER) pathway repairs oxidized lesions in the DNA that result from reactive oxygen species generated in cells. If left unrepaired, these damaged DNA bases can disrupt cellular processes such as replication. NEIL1 is one of the 11 human DNA glycosylases that catalyze the first step of the BER pathway, i.e. recognition and excision of DNA lesions. NEIL1 interacts with essential replication proteins such as the ring-shaped homotrimeric proliferating cellular nuclear antigen (PCNA). We isolated a complex formed between NEIL1 and PCNA (±DNA) using size exclusion chromatography (SEC). This interaction was confirmed using native gel electrophoresis and mass spectrometry. Stokes radii measured by SEC hinted that PCNA in complex with NEIL1 (±DNA) was no longer a trimer. Height measurements and images obtained by atomic force microscopy also demonstrated the dissociation of the PCNA homotrimer in the presence of NEIL1 and DNA, while small-angle X-ray scattering analysis confirmed the NEIL1 mediated PCNA trimer dissociation and formation of a 1:1:1 NEIL1-DNA-PCNA(monomer) complex. Furthermore, ab initio shape reconstruction provides insights into the solution structure of this previously unreported complex. Together, these data point to a potential mechanistic switch between replication and BER.
Collapse
Affiliation(s)
- Aishwarya Prakash
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604-1405, USA
| | - Kedar Moharana
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068, USA
| | - Susan S. Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405-0068, USA
| |
Collapse
|