1
|
Ling X, Guo H, Di J, Xie L, Zhu-Salzman K, Ge F, Zhao Z, Sun Y. A complete DNA repair system assembled by two endosymbionts restores heat tolerance of the insect host. Proc Natl Acad Sci U S A 2024; 121:e2415651121. [PMID: 39656210 PMCID: PMC11665910 DOI: 10.1073/pnas.2415651121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/06/2024] [Indexed: 01/15/2025] Open
Abstract
DNA repair systems are essential to maintain genome integrity and stability. Some obligate endosymbionts that experience long-term symbiosis with the insect hosts, however, have lost their key components for DNA repair. It is largely unexplored how the bacterial endosymbionts cope with the increased demand for mismatch repairs under heat stresses. Here, we showed that ibpA, a small heat shock protein encoded by Buchnera aphidicola, directly interacted with the cytoskeletal actin to prevent its aggregation in bacteriocytes, thus reinforcing the stability of bacteriocytes. However, the succession of 11 adenines in the promoter of ibpA is extremely prone to mismatching error, e.g., a single adenine deletion, which impairs the induction of ibpA under heat stress. Coinfection with a facultative endosymbiont Serratia symbiotica remarkably reduced the mutagenesis rate in the Buchnera genome and potentially prevented a single adenine deletion in ibpA promoter, thereby alleviating the heat vulnerability of aphid bacteriocytes. Furthermore, Serratia encoded mutH, a conserved core protein of prokaryotic DNA mismatch repair (MMR), accessed to Buchnera cells, which complemented Buchnera mutL and mutS in constituting an active MMR. Our findings imply that a full complement of a prokaryotic MMR system assembled by two bacterial endosymbionts contributes significantly to the thermostability of aphid bacteriocytes in an ibpA-dependent manner, furnishing a distinct molecular link among tripartite symbioses in shaping resilience and adaptation of their insect hosts to occupy other ecological niches.
Collapse
Affiliation(s)
- Xiaoyu Ling
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jian Di
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Liqiang Xie
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Feng Ge
- Institute of Plant Protection, Shandong Academy of Agriculture Sciences, Jinan250100, China
| | - Zihua Zhao
- College of Plant Protection, China Agricultural University, Beijing100193, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
2
|
Storozhuk O, Bruekner SR, Paul A, Lebbink JHG, Sixma TK, Friedhoff P. MutL Activates UvrD by Interaction Between the MutL C-terminal Domain and the UvrD 2B Domain. J Mol Biol 2024; 436:168589. [PMID: 38677494 DOI: 10.1016/j.jmb.2024.168589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
UvrD is a helicase vital for DNA replication and quality control processes. In its monomeric state, UvrD exhibits limited helicase activity, necessitating either dimerization or assistance from an accessory protein to efficiently unwind DNA. Within the DNA mismatch repair pathway, MutL plays a pivotal role in relaying the repair signal, enabling UvrD to unwind DNA from the strand incision site up to and beyond the mismatch. Although this interdependence is well-established, the precise mechanism of activation and the specific MutL-UvrD interactions that trigger helicase activity remain elusive. To address these questions, we employed site-specific crosslinking techniques using single-cysteine variants of MutL and UvrD followed by functional assays. Our investigation unveils that the C-terminal domain of MutL not only engages with UvrD but also acts as a self-sufficient activator of UvrD helicase activity on DNA substrates with 3'-single-stranded tails. Especially when MutL is covalently attached to the 2B or 1B domain the tail length can be reduced to a minimal substrate of 5 nucleotides without affecting unwinding efficiency.
Collapse
Affiliation(s)
- Olha Storozhuk
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Susanne R Bruekner
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, Amsterdam, the Netherlands
| | - Ankon Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Titia K Sixma
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, Amsterdam, the Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany.
| |
Collapse
|
3
|
Zhou Y, Gao M, Jing Y, Wang X. Pan-cancer analyses reveal IGSF10 as an immunological and prognostic biomarker. Front Genet 2023; 13:1032382. [PMID: 36685968 PMCID: PMC9845414 DOI: 10.3389/fgene.2022.1032382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Background: IGSF10 is a member of the immunoglobulin superfamily. Over the previous decade, growing proof has validated definitive correlations between individuals of the immunoglobulin superfamily and human diseases. However, the function of IGSF10 in pan-cancer stays unclear. We aimed to analyze the immunological and prognostic value of IGSF10 in pan-cancer. Methods: We utilized a vary of bioinformatic ways to inspect the function of IGSF10 in pan-cancer, including its correlation with prognosis, immune cell infiltration, tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), DNA methyltransferases, genetic alteration, drug sensitivity, etc. Results: We noticed low expression of IGSF10 in most cancer types. IGSF10 expression in tumor samples correlates with prognosis in most cancers. In most cancer types, IGSF10 expression was strongly related to immune cells infiltration, immune checkpoints, immune modulators, TMB, MSI, MMR, and DNA methyltransferases, among others. Functional enrichment analyses indicated that IGSF10 expression was involved in lymphocyte differentiation, cell molecules adhesion, etc. Furthermore, low IGSF10 expression could increase the drug sensitivity of many drugs. Conclusion: IGSF10 could serve as a novel prognostic marker and attainable immunotherapy target for several malignancies.
Collapse
Affiliation(s)
- Yongxia Zhou
- Department of Hematology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China,Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China,Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Manzhi Gao
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China,Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yaoyao Jing
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China,Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China,Day Ward of Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xiaofang Wang
- Department of Hematology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China,Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China,Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China,*Correspondence: Xiaofang Wang,
| |
Collapse
|
4
|
Britton BM, London JA, Martin-Lopez J, Jones ND, Liu J, Lee JB, Fishel R. Exploiting the distinctive properties of the bacterial and human MutS homolog sliding clamps on mismatched DNA. J Biol Chem 2022; 298:102505. [PMID: 36126773 PMCID: PMC9597889 DOI: 10.1016/j.jbc.2022.102505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/30/2022] Open
Abstract
MutS homologs (MSHs) are highly conserved core components of DNA mismatch repair. Mismatch recognition provokes ATP-binding by MSH proteins that drives a conformational transition from a short-lived lesion-searching clamp to an extremely stable sliding clamp on the DNA. Here, we have expanded on previous bulk biochemical studies to examine the stability, lifetime, and kinetics of bacterial and human MSH sliding clamps on mismatched DNA using surface plasmon resonance and single-molecule analysis of fluorescently labeled proteins. We found that ATP-bound MSH complexes bound to blocked-end or very long mismatched DNAs were extremely stable over a range of ionic conditions. These observations underpinned the development of a high-throughput Förster resonance energy transfer system that specifically detects the formation of MSH sliding clamps on mismatched DNA. The Förster resonance energy transfer system is capable of distinguishing between HsMSH2-HsMSH3 and HsMSH2-HsMSH6 and appears suitable for chemical inhibitor screens. Taken together, our results provide additional insight into MSH sliding clamps as well as methods to distinguish their functions in mismatch repair.
Collapse
Affiliation(s)
- Brooke M Britton
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - James A London
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Juana Martin-Lopez
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nathan D Jones
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jiaquan Liu
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Korea; Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Korea
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
5
|
Furman CM, Wang TY, Zhao Q, Yugandhar K, Yu H, Alani E. Handcuffing intrinsically disordered regions in Mlh1-Pms1 disrupts mismatch repair. Nucleic Acids Res 2021; 49:9327-9341. [PMID: 34390347 PMCID: PMC8450099 DOI: 10.1093/nar/gkab694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
The DNA mismatch repair (MMR) factor Mlh1–Pms1 contains long intrinsically disordered regions (IDRs) whose exact functions remain elusive. We performed cross-linking mass spectrometry to identify interactions within Mlh1–Pms1 and used this information to insert FRB and FKBP dimerization domains into their IDRs. Baker's yeast strains bearing these constructs were grown with rapamycin to induce dimerization. A strain containing FRB and FKBP domains in the Mlh1 IDR displayed a complete defect in MMR when grown with rapamycin. but removing rapamycin restored MMR functions. Strains in which FRB was inserted into the IDR of one MLH subunit and FKBP into the other subunit were also MMR defective. The MLH complex containing FRB and FKBP domains in the Mlh1 IDR displayed a rapamycin-dependent defect in Mlh1–Pms1 endonuclease activity. In contrast, linking the Mlh1 and Pms1 IDRs through FRB-FKBP dimerization inappropriately activated Mlh1–Pms1 endonuclease activity. We conclude that dynamic and coordinated rearrangements of the MLH IDRs both positively and negatively regulate how the MLH complex acts in MMR. The application of the FRB-FKBP dimerization system to interrogate in vivo functions of a critical repair complex will be useful for probing IDRs in diverse enzymes and to probe transient loss of MMR on demand.
Collapse
Affiliation(s)
- Christopher M Furman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ting-Yi Wang
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Qiuye Zhao
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kumar Yugandhar
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Strand discrimination in DNA mismatch repair. DNA Repair (Amst) 2021; 105:103161. [PMID: 34171627 DOI: 10.1016/j.dnarep.2021.103161] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022]
Abstract
DNA mismatch repair (MMR) corrects non-Watson-Crick basepairs generated by replication errors, recombination intermediates, and some forms of chemical damage to DNA. In MutS and MutL homolog-dependent MMR, damaged bases do not identify the error-containing daughter strand that must be excised and resynthesized. In organisms like Escherichia coli that use methyl-directed MMR, transient undermethylation identifies the daughter strand. For other organisms, growing in vitro and in vivo evidence suggest that strand discrimination is mediated by DNA replication-associated daughter strand nicks that direct asymmetric loading of the replicative clamp (the β-clamp in bacteria and the proliferating cell nuclear antigen, PCNA, in eukaryotes). Structural modeling suggests that replicative clamps mediate strand specificity either through the ability of MutL homologs to recognize the fixed orientation of the daughter strand relative to one face of the replicative clamps or through parental strand-specific diffusion of replicative clamps on DNA, which places the daughter strand in the MutL homolog endonuclease active site. Finally, identification of bacteria that appear to lack strand discrimination mediated by a replicative clamp and a pre-existing nick suggest that other strand discrimination mechanisms exist or that these organisms perform MMR by generating a double-stranded DNA break intermediate, which may be analogous to NucS-mediated MMR.
Collapse
|
7
|
The selection process of licensing a DNA mismatch for repair. Nat Struct Mol Biol 2021; 28:373-381. [PMID: 33820992 DOI: 10.1038/s41594-021-00577-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/19/2021] [Indexed: 01/04/2023]
Abstract
DNA mismatch repair detects and removes mismatches from DNA by a conserved mechanism, reducing the error rate of DNA replication by 100- to 1,000-fold. In this process, MutS homologs scan DNA, recognize mismatches and initiate repair. How the MutS homologs selectively license repair of a mismatch among millions of matched base pairs is not understood. Here we present four cryo-EM structures of Escherichia coli MutS that provide snapshots, from scanning homoduplex DNA to mismatch binding and MutL activation via an intermediate state. During scanning, the homoduplex DNA forms a steric block that prevents MutS from transitioning into the MutL-bound clamp state, which can only be overcome through kinking of the DNA at a mismatch. Structural asymmetry in all four structures indicates a division of labor between the two MutS monomers. Together, these structures reveal how a small conformational change from the homoduplex- to heteroduplex-bound MutS acts as a licensing step that triggers a dramatic conformational change that enables MutL binding and initiation of the repair cascade.
Collapse
|
8
|
Mardenborough YSN, Nitsenko K, Laffeber C, Duboc C, Sahin E, Quessada-Vial A, Winterwerp HHK, Sixma TK, Kanaar R, Friedhoff P, Strick TR, Lebbink JHG. The unstructured linker arms of MutL enable GATC site incision beyond roadblocks during initiation of DNA mismatch repair. Nucleic Acids Res 2020; 47:11667-11680. [PMID: 31598722 PMCID: PMC6902014 DOI: 10.1093/nar/gkz834] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 08/31/2019] [Accepted: 10/04/2019] [Indexed: 12/30/2022] Open
Abstract
DNA mismatch repair (MMR) maintains genome stability through repair of DNA replication errors. In Escherichia coli, initiation of MMR involves recognition of the mismatch by MutS, recruitment of MutL, activation of endonuclease MutH and DNA strand incision at a hemimethylated GATC site. Here, we studied the mechanism of communication that couples mismatch recognition to daughter strand incision. We investigated the effect of catalytically-deficient Cas9 as well as stalled RNA polymerase as roadblocks placed on DNA in between the mismatch and GATC site in ensemble and single molecule nanomanipulation incision assays. The MMR proteins were observed to incise GATC sites beyond a roadblock, albeit with reduced efficiency. This residual incision is completely abolished upon shortening the disordered linker regions of MutL. These results indicate that roadblock bypass can be fully attributed to the long, disordered linker regions in MutL and establish that communication during MMR initiation occurs along the DNA backbone.
Collapse
Affiliation(s)
| | - Katerina Nitsenko
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Charlie Laffeber
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, the Netherlands
| | - Camille Duboc
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Enes Sahin
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Audrey Quessada-Vial
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | | | - Titia K Sixma
- Oncode Institute, the Netherlands.,Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, the Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, Justus-Liebig University, Giessen, Germany
| | - Terence R Strick
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.,Ecole Normale Supérieure, Institut de Biologie de l'Ecole Normale Superieure, CNRS, INSERM, PSL Research University, 75005 Paris, France.,Programme "Equipe Labellisée", Ligue Nationale contre le Cancer
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Probing the DNA-binding center of the MutL protein from the Escherichia coli mismatch repair system via crosslinking and Förster resonance energy transfer. Biochimie 2020; 171-172:43-54. [PMID: 32061805 DOI: 10.1016/j.biochi.2020.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/11/2020] [Indexed: 11/23/2022]
Abstract
As no crystal structure of full-size MutL bound to DNA has been obtained up to date, in the present work we used crosslinking and Förster resonance energy transfer (FRET) assays for probing the putative DNA-binding center of MutL from Escherichia coli. Several single-cysteine MutL variants (scMutL) were used for site-specific crosslinking or fluorophore modification. The crosslinking efficiency between scMutL proteins and mismatched DNA modified with thiol-reactive probes correlated with the distances from the Cys residues to the DNA calculated from a model of MutS-MutL-DNA complex. FRET-based investigation of DNA binding with different scMutL variants clearly showed that the highest signals were detected for the variants MutL(T218C) and MutL(A251C) indicating closeness of the positions 218 and 251 to DNA in the MutL-DNA complex. Indeed, the Cys218 and Cys251 of scMutL were crosslinked to the reactive DNA with the highest yield demonstrating their proximity to DNA in the MutL-DNA complex. The presence of MutS increased the yield of conjugate formation between the MutL variants and the modified DNA due to tighter MutL-DNA interactions caused by MutS binding to MutL.
Collapse
|
10
|
Liu J, Lee R, Britton BM, London JA, Yang K, Hanne J, Lee JB, Fishel R. MutL sliding clamps coordinate exonuclease-independent Escherichia coli mismatch repair. Nat Commun 2019; 10:5294. [PMID: 31757945 PMCID: PMC6876574 DOI: 10.1038/s41467-019-13191-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023] Open
Abstract
A shared paradigm of mismatch repair (MMR) across biology depicts extensive exonuclease-driven strand-specific excision that begins at a distant single-stranded DNA (ssDNA) break and proceeds back past the mismatched nucleotides. Historical reconstitution studies concluded that Escherichia coli (Ec) MMR employed EcMutS, EcMutL, EcMutH, EcUvrD, EcSSB and one of four ssDNA exonucleases to accomplish excision. Recent single-molecule images demonstrated that EcMutS and EcMutL formed cascading sliding clamps on a mismatched DNA that together assisted EcMutH in introducing ssDNA breaks at distant newly replicated GATC sites. Here we visualize the complete strand-specific excision process and find that long-lived EcMutL sliding clamps capture EcUvrD helicase near the ssDNA break, significantly increasing its unwinding processivity. EcSSB modulates the EcMutL–EcUvrD unwinding dynamics, which is rarely accompanied by extensive ssDNA exonuclease digestion. Together these observations are consistent with an exonuclease-independent MMR strand excision mechanism that relies on EcMutL–EcUvrD helicase-driven displacement of ssDNA segments between adjacent EcMutH–GATC incisions. The mechanics of MMR strand specific excision that begins at a distant ssDNA break are not yet clear. Here the authors have used multiple single molecule imaging techniques to visualize the behavior of MMR components on mismatched DNA substrates and reveal an exonuclease-independent mechanism for E.coli MMR.
Collapse
Affiliation(s)
- Jiaquan Liu
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Ryanggeun Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea
| | - Brooke M Britton
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - James A London
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Keunsang Yang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Gyeongbuk, 37673, Korea
| | - Jeungphill Hanne
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea. .,School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Gyeongbuk, 37673, Korea.
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
11
|
Kim Y, Furman CM, Manhart CM, Alani E, Finkelstein I. Intrinsically disordered regions regulate both catalytic and non-catalytic activities of the MutLα mismatch repair complex. Nucleic Acids Res 2019; 47:1823-1835. [PMID: 30541127 PMCID: PMC6393296 DOI: 10.1093/nar/gky1244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Intrinsically disordered regions (IDRs) are present in at least 30% of the eukaryotic proteome and are enriched in chromatin-associated proteins. Using a combination of genetics, biochemistry and single-molecule biophysics, we characterize how IDRs regulate the functions of the yeast MutLα (Mlh1-Pms1) mismatch repair (MMR) complex. Shortening or scrambling the IDRs in both subunits ablates MMR in vivo. Mlh1-Pms1 complexes with shorter IDRs that disrupt MMR retain wild-type DNA binding affinity but are impaired for diffusion on both naked and nucleosome-coated DNA. Moreover, the IDRs also regulate the adenosine triphosphate hydrolysis and nuclease activities that are encoded in the structured N- and C-terminal domains of the complex. This combination of phenotypes underlies the catastrophic MMR defect seen with the mutant MutLα in vivo. More broadly, this work highlights an unanticipated multi-functional role for IDRs in regulating both facilitated diffusion on chromatin and nucleolytic processing of a DNA substrate.
Collapse
Affiliation(s)
- Yoori Kim
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Christopher M Furman
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Carol M Manhart
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Liu J, Lee JB, Fishel R. Stochastic Processes and Component Plasticity Governing DNA Mismatch Repair. J Mol Biol 2018; 430:4456-4468. [PMID: 29864444 PMCID: PMC6461355 DOI: 10.1016/j.jmb.2018.05.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
Abstract
DNA mismatch repair (MMR) is a DNA excision-resynthesis process that principally enhances replication fidelity. Highly conserved MutS (MSH) and MutL (MLH/PMS) homologs initiate MMR and in higher eukaryotes act as DNA damage sensors that can trigger apoptosis. MSH proteins recognize mismatched nucleotides, whereas the MLH/PMS proteins mediate multiple interactions associated with downstream MMR events including strand discrimination and strand-specific excision that are initiated at a significant distance from the mismatch. Remarkably, the biophysical functions of the MLH/PMS proteins have been elusive for decades. Here we consider recent observations that have helped to define the mechanics of MLH/PMS proteins and their role in choreographing MMR. We highlight the stochastic nature of DNA interactions that have been visualized by single-molecule analysis and the plasticity of protein complexes that employ thermal diffusion to complete the progressions of MMR.
Collapse
Affiliation(s)
- Jiaquan Liu
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, 43210, OH, USA
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), 790-784, Pohang, Korea; Interdisciplinary Bioscience and Bioengineering, POSTECH, 790-784, Pohang, Korea.
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, 43210, OH, USA.
| |
Collapse
|
13
|
Adolph MB, Love RP, Chelico L. Biochemical Basis of APOBEC3 Deoxycytidine Deaminase Activity on Diverse DNA Substrates. ACS Infect Dis 2018; 4:224-238. [PMID: 29347817 DOI: 10.1021/acsinfecdis.7b00221] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Apolipoprotein B mRNA editing complex (APOBEC) family of enzymes contains single-stranded polynucleotide cytidine deaminases. These enzymes catalyze the deamination of cytidine in RNA or single-stranded DNA, which forms uracil. From this 11 member enzyme family in humans, the deamination of single-stranded DNA by the seven APOBEC3 family members is considered here. The APOBEC3 family has many roles, such as restricting endogenous and exogenous retrovirus replication and retrotransposon insertion events and reducing DNA-induced inflammation. Similar to other APOBEC family members, the APOBEC3 enzymes are a double-edged sword that can catalyze deamination of cytosine in genomic DNA, which results in potential genomic instability due to the many mutagenic fates of uracil in DNA. Here, we discuss how these enzymes find their single-stranded DNA substrate in different biological contexts such as during human immunodeficiency virus (HIV) proviral DNA synthesis, retrotransposition of the LINE-1 element, and the "off-target" genomic DNA substrate. The enzymes must be able to efficiently deaminate transiently available single-stranded DNA during reverse transcription, replication, or transcription. Specific biochemical characteristics promote deamination in each situation to increase enzyme efficiency through processivity, rapid enzyme cycling between substrates, or oligomerization state. The use of biochemical data to clarify biological functions and alignment with cellular data is discussed. Models to bridge knowledge from biochemical, structural, and single molecule experiments are presented.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine , University of Saskatchewan , 107 Wiggins Road , Saskatoon , Saskatchewan S7N 5E5 , Canada
| |
Collapse
|
14
|
Friedhoff P, Manelyte L, Giron-Monzon L, Winkler I, Groothuizen FS, Sixma TK. Use of Single-Cysteine Variants for Trapping Transient States in DNA Mismatch Repair. Methods Enzymol 2017; 592:77-101. [PMID: 28668131 DOI: 10.1016/bs.mie.2017.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
DNA mismatch repair (MMR) is necessary to prevent incorporation of polymerase errors into the newly synthesized DNA strand, as they would be mutagenic. In humans, errors in MMR cause a predisposition to cancer, called Lynch syndrome. The MMR process is performed by a set of ATPases that transmit, validate, and couple information to identify which DNA strand requires repair. To understand the individual steps in the repair process, it is useful to be able to study these large molecular machines structurally and functionally. However, the steps and states are highly transient; therefore, the methods to capture and enrich them are essential. Here, we describe how single-cysteine variants can be used for specific cross-linking and labeling approaches that allow trapping of relevant transient states. Analysis of these defined states in functional and structural studies is instrumental to elucidate the molecular mechanism of this important DNA MMR process.
Collapse
Affiliation(s)
- Peter Friedhoff
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany.
| | - Laura Manelyte
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Luis Giron-Monzon
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Ines Winkler
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | | | - Titia K Sixma
- Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|