1
|
Ye N, Shi X, Gao J, Dong R, Wang G, Wang J, Luo L, Zhang T. Exosomes from Intrahepatic Cholestasis of Pregnancy Induce Cell Apoptosis Through the miRNA-6891-5p/YWHAE Pathway. Dig Dis Sci 2024; 69:1253-1262. [PMID: 38361148 DOI: 10.1007/s10620-023-08265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse pregnancy outcomes; however, the underlying mechanisms are not fully understood. AIMS This study aimed to determine the role of exosomal miR-6891-5p in placental trophoblast dysfunction in ICP and identify new biomarkers for ICP diagnosis. METHODS Serum samples were collected from ICP patients and healthy pregnant women, and serum exosomes were extracted and identified. Fluorescent dye labeling of exosomes and cell-verified cell phagocytosis were performed. In vitro experiments were conducted by adding taurocholic acid to simulate the ICP environment. Cell proliferation and apoptosis levels were detected using flow cytometry and the cell counting kit-8 assay. Mimics were constructed to overexpress miR-6891-5p in cells, and the binding site between miR-6891-5p and YWHAE was verified using luciferase reporter genes. RESULTS miR-6891-5p expression was significantly decreased in serum exosomes of ICP patients. Co-culturing with exosomes derived from ICP patients' serum (ICP-Exos) decreased HTR-8/SVeno cell proliferation and increased apoptosis levels. miR-6891-5p upregulation in HTR-8/SVeno cells significantly increased cell viability and reduced cell apoptosis levels, as determined by the cell counting kit-8 assay and flow cytometry. A double luciferase assay confirmed that miR-6891-5p affected the expression of the downstream YWHAE protein. CONCLUSIONS This study indicates that serum exosomes from ICP patients can impact the apoptosis of placental trophoblast HTR-8/SVeno cells through the miR-6891-5P/YWHAE pathway and can serve as specific molecular markers for ICP diagnosis.
Collapse
Affiliation(s)
- Ningzhen Ye
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Xinrui Shi
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jianyi Gao
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Ruirui Dong
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Gaoying Wang
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jing Wang
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Liang Luo
- Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Jiangnan University, Wuxi, 214001, China
| | - Ting Zhang
- Wuxi Maternity and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
| |
Collapse
|
2
|
Coronel-Hernández J, Salgado-García R, Cantú-De León D, Jacobo-Herrera N, Millan-Catalan O, Delgado-Waldo I, Campos-Parra AD, Rodríguez-Morales M, Delgado-Buenrostro NL, Pérez-Plasencia C. Combination of Metformin, Sodium Oxamate and Doxorubicin Induces Apoptosis and Autophagy in Colorectal Cancer Cells via Downregulation HIF-1α. Front Oncol 2021; 11:594200. [PMID: 34123772 PMCID: PMC8187873 DOI: 10.3389/fonc.2021.594200] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/30/2021] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide in both sexes. Current therapies include surgery, chemotherapy, and targeted therapy; however, prolonged exposure to chemical agents induces toxicity in patients and drug resistance. So, we implemented a therapeutic strategy based on the combination of doxorubicin, metformin, and sodium oxamate called triple therapy (Tt). We found that Tt significantly reduced proliferation by inhibiting the mTOR/AKT pathway and promoted apoptosis and autophagy in CRC derived cells compared with doxorubicin. Several autophagy genes were assessed by western blot; ULK1, ATG4, and LC3 II were overexpressed by Tt. Interestingly, ULK1 was the only one autophagy-related protein gradually overexpressed during Tt administration. Thus, we assumed that there was a post-transcriptional mechanism mediating by microRNAs that regulate UKL1 expression during autophagy activation. Through bioinformatics approaches, we ascertained that ULK1 could be targeted by mir-26a, which is overexpressed in advanced stages of CRC. In vitro experiments revealed that overexpression of mir-26a decreased significantly ULK1, mRNA, and protein expression. Contrariwise, the Tt recovered ULK1 expression by mir-26a decrease. Due to triple therapy repressed mir-26a expression, we hypothesized this drug combination could be involved in mir-26a transcription regulation. Consequently, we analyzed the mir-26a promoter sequence and found two HIF-1α transcription factor recognition sites. We developed two different HIF-1α stabilization models. Both showed mir-26a overexpression and ULK1 reduction in hypoxic conditions. Immunoprecipitation experiments were performed and HIF-1α enrichment was observed in mir-26a promoter. Surprisingly, Tt diminished HIF-1α detection and restored ULK1 mRNA expression. These results reveal an important regulation mechanism controlled by the signaling that activates HIF-1α and that in turn regulates mir-26a transcription.
Collapse
Affiliation(s)
- Jossimar Coronel-Hernández
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-Iztacala, UNAM, Tlalnepantla, Mexico,Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
| | | | - David Cantú-De León
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
| | | | | | | | | | | | | | - Carlos Pérez-Plasencia
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-Iztacala, UNAM, Tlalnepantla, Mexico,Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico,*Correspondence: Carlos Pérez-Plasencia,
| |
Collapse
|
3
|
Klinge CM, Piell KM, Tooley CS, Rouchka EC. HNRNPA2/B1 is upregulated in endocrine-resistant LCC9 breast cancer cells and alters the miRNA transcriptome when overexpressed in MCF-7 cells. Sci Rep 2019; 9:9430. [PMID: 31263129 PMCID: PMC6603045 DOI: 10.1038/s41598-019-45636-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are dysregulated in breast cancer. Heterogeneous Nuclear Ribonucleoprotein A2/B1 (HNRNPA2/B1) is a reader of the N(6)-methyladenosine (m6A) mark in primary-miRNAs (pri-miRNAs) and promotes DROSHA processing to precursor-miRNAs (pre-miRNAs). We examined the expression of writers, readers, and erasers of m6A and report that HNRNPA2/B1 expression is higher in tamoxifen-resistant LCC9 breast cancer cells as compared to parental, tamoxifen-sensitive MCF-7 cells. To examine how increased expression of HNRNPA2/B1 affects miRNA expression, HNRNPA2/B1 was transiently overexpressed (~5.4-fold) in MCF-7 cells for whole genome miRNA profiling (miRNA-seq). 148 and 88 miRNAs were up- and down-regulated, respectively, 48 h after transfection and 177 and 172 up- and down-regulated, respectively, 72 h after transfection. MetaCore Enrichment analysis identified progesterone receptor action and transforming growth factor β (TGFβ) signaling via miRNA in breast cancer as pathways downstream of the upregulated miRNAs and TGFβ signaling via SMADs and Notch signaling as pathways of the downregulated miRNAs. GO biological processes for mRNA targets of HNRNPA2/B1-regulated miRNAs included response to estradiol and cell-substrate adhesion. qPCR confirmed HNRNPA2B1 downregulation of miR-29a-3p, miR-29b-3p, and miR-222 and upregulation of miR-1266-5p, miR-1268a, miR-671-3p. Transient overexpression of HNRNPA2/B1 reduced MCF-7 sensitivity to 4-hydroxytamoxifen and fulvestrant, suggesting a role for HNRNPA2/B1 in endocrine-resistance.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Christine Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Eric C Rouchka
- Bioinformatics and Biomedical Computing Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
4
|
Xiong Y, Cao F, Hu L, Yan C, Chen L, Panayi AC, Sun Y, Zhou W, Zhang P, Wu Q, Xue H, Liu M, Liu Y, Liu J, Abududilibaier A, Mi B, Liu G. miRNA-26a-5p Accelerates Healing via Downregulation of PTEN in Fracture Patients with Traumatic Brain Injury. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:223-234. [PMID: 31272072 PMCID: PMC6610686 DOI: 10.1016/j.omtn.2019.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 01/11/2023]
Abstract
Patients who sustain a traumatic brain injury (TBI) are known to have a significantly quicker fracture healing time than patients with isolated fractures, but the underlying mechanism has yet to be identified. In this study, we found that the upregulation of miRNA-26a-5p induced by TBI correlated with a decrease in phosphatase and tensin homolog (PTEN) in callus formation. In vitro, overexpressing miRNA-26a-5p inhibited PTEN expression and accelerated osteoblast differentiation, whereas silencing of miRNA-26a-5p inhibited osteoblast activity. Reduction of PTEN facilitated osteoblast differentiation via the PI3K/AKT signaling pathway. Through luciferase assays, we found evidence that PTEN is a miRNA-26a-5p target gene that negatively regulates the differentiation of osteoblasts. Moreover, the present study confirmed that preinjection of agomiR-26a-5p leads to increased bone formation. Collectively, these results indicate that miRNA-26a-5p overexpression may be a key factor governing the improved fracture healing observed in TBI patients after the downregulation of PTEN and PI3K/AKT signaling. Upregulation of miRNA-26a-5p may therefore be a promising therapeutic strategy for promoting fracture healing.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qipeng Wu
- Department of Orthopaedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengfei Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Abudula Abududilibaier
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Yang L, Yang F, Zhao H, Wang M, Zhang Y. Circular RNA circCHFR Facilitates the Proliferation and Migration of Vascular Smooth Muscle via miR-370/FOXO1/Cyclin D1 Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:434-441. [PMID: 31048182 PMCID: PMC6488807 DOI: 10.1016/j.omtn.2019.02.028] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 12/20/2022]
Abstract
Circular RNA (circRNA) is a novel subgroup of noncoding RNA in the human transcriptome playing a vital role in the atherosclerosis of cerebrovascular disease. However, the in-depth mechanism by which circRNA regulates the vascular smooth muscle proliferation and migration is still elusive. Here, a novel identified circRNA, circCHFR, was validated to be aberrantly overexpressed in the ox-LDL-induced vascular smooth muscle cell (VSMCs). Functionally, the circCHFR silencing by oligonucleotide transfection suppressed the proliferation and migration ability of VSMCs. Mechanically, bioinformatics tools and luciferase reporter assay state that circCHFR acts as a sponge of miR-370, and miR-370 targets the 3' UTR of FOXO1. Furthermore, the transcription factor FOXO1 could bind with the promoter region of CCND1 mRNA and promote Cyclin D1 expression. In summary, this finding states the vital role of the circCHFR/miR-370/FOXO1/Cyclin D1 axis and provides a profound understanding about the circRNA in smooth muscle cells and atherosclerosis.
Collapse
Affiliation(s)
- Lei Yang
- Xi'an Jiao Tong University, Xi'an City, Shanxi Province 710061, P.R. China; Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical College, Xi'an City, Shanxi Province 710038, P.R. China
| | - Fan Yang
- Second Affiliated Hospital of Xi'an Medical College, Xi'an City, Shanxi Province 710038, P.R. China
| | - Haikang Zhao
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical College, Xi'an City, Shanxi Province 710038, P.R. China.
| | - Maode Wang
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an City, Shanxi Province 710061, P.R. China
| | - Yuelin Zhang
- Department of Neurosurgery, Xi'an Medical College, Xi'an City, Shanxi Province 710021, P.R. China
| |
Collapse
|
6
|
Blagden S, Abdel Mouti M, Chettle J. Ancient and modern: hints of a core post-transcriptional network driving chemotherapy resistance in ovarian cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1432. [PMID: 28762650 PMCID: PMC5763387 DOI: 10.1002/wrna.1432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 01/04/2023]
Abstract
RNA-binding proteins (RBPs) and noncoding (nc)RNAs (such as microRNAs, long ncRNAs, and others) cooperate within a post-transcriptional network to regulate the expression of genes required for many aspects of cancer behavior including its sensitivity to chemotherapy. Here, using an RBP-centric approach, we explore the current knowledge surrounding contributers to post-transcriptional gene regulation (PTGR) in ovarian cancer and identify commonalities that hint at the existence of an evolutionarily conserved core PTGR network. This network regulates survival and chemotherapy resistance in the contemporary context of the cancer cell. There is emerging evidence that cancers become dependent on PTGR factors for their survival. Further understanding of this network may identify innovative therapeutic targets as well as yield crucial insights into the hard-wiring of many malignancies, including ovarian cancer. WIREs RNA 2018, 9:e1432. doi: 10.1002/wrna.1432 This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Mechanisms RNA in Disease and Development > RNA in Disease.
Collapse
|
7
|
Abstract
Glioblastoma is the most aggressive brain tumor and, even with the current multimodal therapy, is an invariably lethal cancer with a life expectancy that depends on the tumor subtype but, even in the most favorable cases, rarely exceeds 2 years. Epigenetic factors play an important role in gliomagenesis, are strong predictors of outcome, and are important determinants for the resistance to radio- and chemotherapy. The latest addition to the epigenetic machinery is the noncoding RNA (ncRNA), that is, RNA molecules that are not translated into a protein and that exert their function by base pairing with other nucleic acids in a reversible and nonmutational mode. MicroRNAs (miRNA) are a class of ncRNA of about 22 bp that regulate gene expression by binding to complementary sequences in the mRNA and silence its translation into proteins. MicroRNAs reversibly regulate transcription through nonmutational mechanisms; accordingly, they can be considered as epigenetic effectors. In this review, we will discuss the role of miRNA in glioma focusing on their role in drug resistance and on their potential applications in the therapy of this tumor.
Collapse
|
8
|
MiR-489 suppresses tumor growth and invasion by targeting HDAC7 in colorectal cancer. Clin Transl Oncol 2017; 20:703-712. [PMID: 29071516 DOI: 10.1007/s12094-017-1770-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE The expression of miR-489 is linked to tumor development and progression; nevertheless, its role in tumor growth and invasion of colorectal cancer (CRC) and the underlying mechanism has not been clarified. EXPERIMENTAL DESIGN We used quantitative RT-PCR to measure the expression of mature miR-489 in human colorectal tissues and the corresponding CRCs. Targets of miR-489 were predicted with TargetScan and substantiated by dual-luciferase reporter assay. Furthermore, we did in vitro and in vivo analysis with expression vectors and small interfering RNAs, to elucidate the precise role of miR-489 and its target gene histone deacetylase 7 (HDAC7) on cell proliferation, survival, and invasion. RESULTS Compared to the corresponding non-tumor tissues, miR-489 was frequently downregulated in CRC. By Kaplan-Meier analysis, we found that lower CRC recurrence free survival years in the group with elevated miR-489 expression than those with lower miR-489 expression. In addition, we examined that miR-489 obviously inhibited the migratory and invasive capability in CRC. In further study, we found that miR-489 targets the 3'-UTR of the HDAC7 transcript and downregulates its expression, and HDAC7 expression promoted tumor cell proliferation and invasion. We demonstrated that miR-489 suppresses tumor invasion and metastasis in CRC by targeting HDAC7. CONCLUSIONS We identified that MiR-489 suppresses tumor growth and invasion in CRC by targeting HDAC7. The expression of miR-489 suggests CRC recurrence and metastasis, which shed crucial light on how miR-489 functions in CRC pathogenesis.
Collapse
|
9
|
Molecular genetics and cellular events of K-Ras-driven tumorigenesis. Oncogene 2017; 37:839-846. [PMID: 29059163 PMCID: PMC5817384 DOI: 10.1038/onc.2017.377] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/11/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Cellular transformation and the accumulation of genomic instability are the two key events required for tumorigenesis. K-Ras (Kirsten-rat sarcoma viral oncogene homolog) is a prominent oncogene that has been proven to drive tumorigenesis. K-Ras also modulates numerous genetic regulatory mechanisms and forms a large tumorigenesis network. In this review, we track the genetic aspects of K-Ras signaling networks and assemble the sequence of cellular events that constitute the tumorigenesis process, such as regulation of K-Ras expression (which is influenced by miRNA, small nucleolar RNA and lncRNA), activation of K-Ras (mutations), generation of reactive oxygen species (ROS), induction of DNA damage and apoptosis, induction of DNA damage repair pathways and ROS detoxification systems, cellular transformation after apoptosis by the blebbishield emergency program and the accumulation of genomic/chromosomal instability that leads to tumorigenesis.
Collapse
|