1
|
Jouravleva K, Zamore PD. A guide to the biogenesis and functions of endogenous small non-coding RNAs in animals. Nat Rev Mol Cell Biol 2025; 26:347-370. [PMID: 39856370 DOI: 10.1038/s41580-024-00818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/27/2025]
Abstract
Small non-coding RNAs can be categorized into two main classes: structural RNAs and regulatory RNAs. Structural RNAs, which are abundant and ubiquitously expressed, have essential roles in the maturation of pre-mRNAs, modification of rRNAs and the translation of coding transcripts. By contrast, regulatory RNAs are often expressed in a developmental-specific, tissue-specific or cell-type-specific manner and exert precise control over gene expression. Reductions in cost and improvements in the accuracy of high-throughput RNA sequencing have led to the identification of many new small RNA species. In this Review, we provide a broad discussion of the genomic origins, biogenesis and functions of structural small RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), vault RNAs (vtRNAs) and Y RNAs as well as their derived RNA fragments, and of regulatory small RNAs, such as microRNAs (miRNAs), endogenous small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs), in animals.
Collapse
Affiliation(s)
- Karina Jouravleva
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
| | - Phillip D Zamore
- RNA Therapeutics Institute and Howard Hughes Medical Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Wang C, Gao Y, Liu K, Zhang Y, Sun Z, Huang M, Qu Z, Yu S, Han J, Mei Z, Dou S, Jiang J, Li Y, Li N, Huang C, Dong Y, Yang B, Du W. tiRNA-HAR contributes to ischemic myocardial injury via facilitating HuR-mediated stability of P53. Transl Res 2025:S1931-5244(25)00038-6. [PMID: 40252996 DOI: 10.1016/j.trsl.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/02/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Cardiomyocyte death due to heart occlusion of coronary artery is the main driver to myocardial infarction (MI) and subsequent heart failure progression. tsRNA, a small RNA fragment from tRNA, have been shown to be implicated in many physiological and pathological processes by exerting different biological functions, but the roles of tsRNA in ischemic cardiac injury remained to be determined. The present study identified a hypoxia responsive-tiRNA (tiRNA-HAR) was markedly upregulated in ischemic mouse myocardium and hypoxic cardiomyocytes, respectively. Enforced expression of tiRNA-HAR by transfecting its mimic caused and aggravated, while knockdown of tiRNA-HAR mitigated cardiomyocyte apoptosis upon hypoxia. Cardiac specific knockdown of tiRNA-HAR mediated by AAV9 (adeno-associated virus 9) harboring an antisense oligonucleotide reduced cardiomyocytes apoptosis and improved cardiac function after MI. Mechanistically, tiRNA-HAR directly bound to HuR and enhanced the binding capacity of HuR and P53, thereby increasing the stability of P53. Silencing of HuR partially reversed the aggravative effects of tiRNA-HAR overexpression on cardiomyocyte apoptosis in the context of hypoxia. Collectively, our study reveals tiRNA-HAR play a critical role in regulating cardiomyocytes apoptosis and cardiac injury via targeting HuR/P53 signaling axis after MI, and tiRNA-HAR might be a novel therapeutic target for treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Changhao Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuelin Gao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Kuiwu Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yaozhi Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zhiyong Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Min Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zhezhe Qu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shuting Yu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jiaqi Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zhongting Mei
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shunkang Dou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jianhao Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Ying Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Na Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Chuanhao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuechao Dong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Baofeng Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, China.
| | - Weijie Du
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, Harbin, China.
| |
Collapse
|
3
|
Kim SI, Lyu H, Pujara DS, Bordiya Y, Bhatt PS, Mayorga J, Zogli PK, Kundu P, Chung H, Yan X, Zhang X, Kim J, Louis J, Yu Q, Kang HG. A nuclear tRNA-derived fragment triggers immunity in Arabidopsis. Commun Biol 2025; 8:533. [PMID: 40169869 PMCID: PMC11962134 DOI: 10.1038/s42003-025-07737-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/13/2025] [Indexed: 04/03/2025] Open
Abstract
In Arabidopsis, effector-triggered immunity (ETI) against avirulent Pseudomonas syringae pv. tomato (Pst) correlates with the rapid, Dicer-Like 1 (DCL1)-dependent nuclear accumulation of a 31-nt 5'-tRNA fragment derived from Asp-tRNA (tRF31Asp2). Several tRFs, including tRF31Asp2, are induced at early stages of infection and associate with AGO2 in the nucleus. Infiltrating Arabidopsis leaves with synthetic tRF31Asp2 induces over 500 defense-associated genes, conferring immunity against virulent and avirulent Pst as well as aphids, while tRF31Asp2 depletion compromises resistance to avirulent Pst. The biological activity of tRF31Asp2 requires its 5' sequence and predicted stem-loop structure, and its loading into AGO2 or related clade members may contribute to activating defense responses. Chromatin affinity precipitation-sequencing revealed that tRF31Asp2 binds specific sequences in defense genes and the Gypsy superfamily of LTR retrotransposons, particularly at their primer binding sites (PBS). tRF31Asp2 binding appears to modulate transcriptional reprogramming, inducing neighboring tRF-responsive defense genes while suppressing active retrotransposons. Since Gypsy retrotransposon proliferation is primed by tRNA binding at PBS, tRF31Asp2 may exploit a similar mechanism to coordinate defense responses. Together, these findings reveal a role for DCL1 and tRF31Asp2 in regulating plant immunity and transcriptional dynamics at defense-associated loci and retrotransposons.
Collapse
Affiliation(s)
- Sung-Il Kim
- Department of Biology, Texas State University, San Marcos, USA
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Haomin Lyu
- Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX, USA
- Huazhi Biotechnology, Changsha, Hunan, China
| | - Dinesh S Pujara
- Department of Biology, Texas State University, San Marcos, USA
- School of Integrated Plant Science, Cornell University, Ithaca, NY, USA
| | - Yogendra Bordiya
- Department of Biology, Texas State University, San Marcos, USA
- Biosciences Division, Thermo Fisher Scientific, Austin, TX, USA
| | - Padam S Bhatt
- Department of Biology, Texas State University, San Marcos, USA
| | - José Mayorga
- Department of Biology, Texas State University, San Marcos, USA
| | - Prince K Zogli
- Department of Entomology & Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
- GALY.CO, Boston, MA, USA
| | - Pritha Kundu
- Department of Entomology & Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | - Haewon Chung
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
- Synthetic biology, Asimov, Boston, MA, USA
| | - Xingxing Yan
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Xiuren Zhang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Joe Louis
- Department of Entomology & Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | - Qingyi Yu
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA Agricultural Research Service, Hilo, HI, USA
| | - Hong-Gu Kang
- Department of Biology, Texas State University, San Marcos, USA.
| |
Collapse
|
4
|
Swain SP, Bisht N, Kumar S. Comprehensive study of tRNA-derived fragments in plants for biotic stress responses. Funct Integr Genomics 2025; 25:70. [PMID: 40131555 DOI: 10.1007/s10142-025-01576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Plant growth and development are often disrupted by biological stressors as they interfere with the regulatory pathways. Among the key regulators, transfer-RNA-derived fragments (tRFs) have emerged as key players in plant defense mechanisms. While tRF-mediated responses to abiotic stress have been well studied, their role in biotic stress remains less understood, as various stressors may elicit different regulatory systems. In this study, tRF-mediated biotic responses in three species, viz. Arabidopsis thaliana, Oryza sativa, and Solanum lycopersicum are investigated using in-silico approaches. Analysis of predicted tRFs across various biotic stress conditions reveals specific interactions with mRNA targets, microRNAs (miRNAs), and transposable elements (TEs), highlighting their regulatory significance in plant adaptation mechanisms. These findings provide new insights into tRF-mediated stress responses and establish a computational framework for further functional studies. The study's database is publicly available at http://www.nipgr.ac.in/PbtRFdb .
Collapse
Affiliation(s)
- Supriya P Swain
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niyati Bisht
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Ma L, Zhao F, Zhao Z, Zhang L, Yao J, Ma Q, Deng X, Wang J, Gu Y, Zhang J, Darwish HYA. Differential expression of tRNA-derived small RNAs in Juvenile and adult sheep skin: implications for developmental and immune regulation. BMC Genomics 2025; 26:144. [PMID: 39953408 PMCID: PMC11829391 DOI: 10.1186/s12864-025-11345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND tRNA fragments (tRFs) are small non-coding RNAs generated from cleaved tRNA molecules, playing key roles in gene regulation and cellular processes. Produced by ribonucleases like angiogenin and Dicer, tRFs vary in length and function in gene silencing and stress responses. They interact with Argonaute proteins and affect mRNA levels, and are emerging as potential diagnostic and therapeutic targets for diseases such as cancer and neurodegenerative disorders. Given that the skin is the largest organ in mammals, it serves as an ideal model for studying development and various diseases. Therefore, this study investigates tRF expression in sheep skin tissues to understand their regulatory roles during growth and development. RESULTS This study analyzed skin tissue from five 1-month-old lambs and five 24-month-old adult Tan sheep using small RNA sequencing and proteomics. Raw sequencing data were filtered and aligned to identify various tsRNAs, while proteomic data were assessed for differential expression. Principal Component Analysis (PCA) revealed distinct separation between juvenile and adult samples based on tsRNA expression patterns, indicating intra-group similarity and inter-group differences. Differentially expressed tsRNAs were identified, with 19 highly expressed tsRNAs at 1 month of age. Proteomic screening identified 932 highly expressed and 835 lowly expressed proteins in the 1-month-old group, with functional enrichment highlighting immunity and inflammation pathways. Predictive analysis of tsRNA target genes intersected with 20 differentially expressed proteins involved in mitochondrial metabolism and stress response. CONCLUSION This study reveals that tsRNAs significantly influence developmental and immune processes in sheep, with distinct expression patterns between juveniles and adults. Future research should validate these findings and further elucidate the functional mechanisms of tsRNA regulation.
Collapse
Affiliation(s)
- Lina Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Fengru Zhao
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Zhengwei Zhao
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Letian Zhang
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Jiajie Yao
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xuemei Deng
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
| | - Jiankui Wang
- Beijing Key Laboratory for Animal Genetic Improvement & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, China.
| | - Hesham Y A Darwish
- Department of Applied Biotechnology, Molecular Biology Researches & Studies Institute, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
6
|
Chen Y, Shao Z, Wu S. Research progress on the tsRNA biogenesis, function, and application in lung cancer. Noncoding RNA Res 2025; 10:63-69. [PMID: 39309197 PMCID: PMC11414277 DOI: 10.1016/j.ncrna.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/18/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
In recent years, there has been a mounting occurrence of lung cancer, which stands as one of the most prevalent malignancies globally. This rise in incidence poses a significant hazard to human health, making lung cancer a matter of grave concern. It has been shown that tRNA-derived small non-coding RNA (tsRNA) is involved in the development of tumors, especially lung cancer, through mechanisms such as regulating mRNA stability, influencing protein translation, and acting as epigenetic regulators. Recent studies have shown that tsRNA is abnormally expressed in the plasma and tissues of lung cancer patients, and its expression level is closely related to the malignancy degree and postoperative recurrence of lung cancer. Therefore, for lung cancer patients, tsRNA represents a promising non-invasive biomarker, exhibiting significant potential for facilitating early diagnosis and prognostic evaluation, and for achieving precision treatment of lung cancer by regulating its expression. This article focuses on the biogenesis of tsRNA and its ability to promote lung cancer cell proliferation and invasion. In addition, the specific clinical significance of tsRNA in lung cancer was discussed. Finally, we discuss the need for further improvement of small RNA sequencing technology, and the future research directions and strategies of tsRNA in lung cancer and tumor diseases were summarized.
Collapse
Affiliation(s)
- Yu Chen
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhuowei Shao
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Shibo Wu
- Department of Respiratory Medicine, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Jia H, Zhang L. tRNA-derived small RNAs in disease immunity. Theranostics 2025; 15:245-257. [PMID: 39744232 PMCID: PMC11667222 DOI: 10.7150/thno.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
Recently, members of a unique species of non-coding RNA, known as transfer RNA-derived small RNAs (tsRNAs) have been reported to serve multiple molecular functions, including in cells that mediate immunity. Because of their low molecular weights, tsRNAs were previously difficult to detect and were thus overlooked, until now. In this review, we delve into the biogenesis of tsRNAs and their diverse biological functions, ranging from transcriptional regulation to modulation of mRNA translation. We highlight the current evidence demonstrating their involvement in the immune response, as well as how tsRNAs modulate immunity to influence tumor growth and spread, autoimmune disease pathology and infection by pathogens. We surmise that tsRNAs are likely informative as diagnostic markers of cellular homeostasis and disease, and that therapeutic targeting of tsRNAs could be beneficial for a range of human diseases. Improved knowledge on the functions for tsRNAs in the mammalian immune system will enable us to leverage tsRNAs for their effective clinical use as treatments for human health challenges.
Collapse
Affiliation(s)
- Hongyuan Jia
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Linling Zhang
- Department of Respiratory and Critical Care, Chengdu Third People's Hospital, Chengdu, China
| |
Collapse
|
8
|
Berrissou C, Drouard L. In vitro functional analysis of plant tDRs. Methods Enzymol 2024; 711:203-221. [PMID: 39952706 DOI: 10.1016/bs.mie.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
In the world of small non-coding RNAs, tRNA-derived RNAs (tDRs) have emerged in recent years as being involved in a wide range of biological functions in every domain of life. In plants, our knowledge of the roles of tDRs is still very sparse. Nevertheless, the data produced to date demonstrate their importance in regulating gene expression at the transcriptional and post-transcriptional levels, during development, or in response to biotic and abiotic stresses. Studying the functions of plant tDRs in vivo is not an easy task, and in vitro studies offer an interesting alternative. Here we describe two in vitro approaches aimed at deciphering molecular mechanisms involving plant tDRs. On the one hand, we describe how to identify tDRs capable of inhibiting protein synthesis in vitro, and on the other, we explain how to use protoplast transfection to study the localization of tDRs and determine their protein interactome.
Collapse
Affiliation(s)
- Christina Berrissou
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg, France
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg, France.
| |
Collapse
|
9
|
Oberbauer V, Drino A, Schaefer MR. Determining small RNA-interacting proteomes using endogenously modified tRNA-derived RNAs. Methods Enzymol 2024; 711:356-380. [PMID: 39952715 DOI: 10.1016/bs.mie.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
tRNA-derived RNAs (tDRs), resulting from enzyme-mediated hydrolysis of tRNAs, have been implicated as active small RNAs in various molecular processes. While the molecular modes of action for these small RNAs remain unclear, attempts to decipher the mechanistic details of tDR functionality have mostly used synthetic tDR sequences. Since parental tRNAs are extensively post-transcriptionally modified, tDR functionality is likely affected by chemical modifications. To help approach the biological function of endogenously modified tDRs, this contribution details a protocol that allows purifying specific tDRs carrying post-transcriptional modifications from both in vivo and in vitro sources. Purified tDRs can be used for various downstream applications including differential affinity capture of tDR-binding proteins, the details of which are also described in this contribution.
Collapse
Affiliation(s)
- Vera Oberbauer
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse, Vienna, Austria
| | - Aleksej Drino
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse, Vienna, Austria
| | - Matthias R Schaefer
- Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse, Vienna, Austria.
| |
Collapse
|
10
|
Gong L, Hu Y, Pan L, Cheng Y. tRNA-derived small RNAs (tsRNAs): establishing their dominance in the regulation of human cancer. Front Genet 2024; 15:1466213. [PMID: 39659673 PMCID: PMC11628509 DOI: 10.3389/fgene.2024.1466213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
The main function of transfer RNAs (tRNAs) is to carry amino acids into the ribosome and synthesize proteins under the guidance of messenger RNAs (mRNAs). In addition to this, it has been observed that tRNAs undergo precise cleavage at specific loci, giving rise to an extensive array of distinct small RNAs, termed tRNA-derived small RNAs (tsRNAs). Existing studies have shown that tsRNAs are widely present across various organisms and comprehensively regulate gene expression, aberrant expression of tsRNAs is inextricably linked to tumorigenesis and development, thus, a systematic understanding of tsRNAs is necessary. This review aims to comprehensively delineate the genesis and expression patterns of tsRNAs, elucidate their diverse functions and emphasize their prospective clinical application as biomarkers and targets for therapy. It is noteworthy that we innovatively address the roles played by tsRNAs in human cancers at the level of the hallmarks of tumorigenesis proposed by Hanahan in anticipation of a broad understanding of tsRNAs and to guide the treatment of tumors.
Collapse
Affiliation(s)
- Li Gong
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Yajie Hu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Ling Pan
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Jin H, Yeom JH, Shin E, Ha Y, Liu H, Kim D, Joo M, Kim YH, Kim HK, Ryu M, Kim HM, Kim J, Kim KP, Hahn Y, Bae J, Lee K. 5'-tRNA Gly(GCC) halves generated by IRE1α are linked to the ER stress response. Nat Commun 2024; 15:9273. [PMID: 39468069 PMCID: PMC11519470 DOI: 10.1038/s41467-024-53624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Transfer RNA halves (tRHs) have various biological functions. However, the biogenesis of specific 5'-tRHs under certain conditions remains unknown. Here, we report that inositol-requiring enzyme 1α (IRE1α) cleaves the anticodon stem-loop region of tRNAGly(GCC) to produce 5'-tRHs (5'-tRH-GlyGCC) with highly selective target discrimination upon endoplasmic reticulum (ER) stress. Levels of 5'-tRH-GlyGCC positively affect cancer cell proliferation and modulate mRNA isoform biogenesis both in vitro and in vivo; these effects require co-expression of two nuclear ribonucleoproteins, HNRNPM and HNRNPH2, which we identify as binding proteins of 5'-tRH-GlyGCC. In addition, under ER stress in vivo, we observe simultaneous induction of IRE1α and 5'-tRH-GlyGCC expression in mouse organs and a distantly related organism, Cryptococcus neoformans. Thus, collectively, our findings indicate an evolutionarily conserved function for IRE1α-generated 5'-tRH-GlyGCC in cellular adaptation upon ER stress.
Collapse
Affiliation(s)
- Hanyong Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea
| | - Eunkyoung Shin
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
- Department of Microbiology, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Yoonjie Ha
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Haifeng Liu
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Daeyoung Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minju Joo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minkyung Ryu
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea
| | - Hong-Man Kim
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Keun P Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea.
| |
Collapse
|
12
|
Wang M, Guo J, Chen W, Wang H, Hou X. Emerging roles of tRNA-derived small RNAs in injuries. PeerJ 2024; 12:e18348. [PMID: 39465146 PMCID: PMC11512806 DOI: 10.7717/peerj.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are a novel class of small noncoding RNAs, precisely cleaved from tRNA, functioning as regulatory molecules. The topic of tsRNAs in injuries has not been extensively discussed, and studies on tsRNAs are entering a new era. Here, we provide a fresh perspective on this topic. We systematically reviewed the classification, generation, and biological functions of tsRNAs in response to stress, as well as their potential as biomarkers and therapeutic targets in various injuries, including lung injury, liver injury, renal injury, cardiac injury, neuronal injury, vascular injury, skeletal muscle injury, and skin injury. We also provided a fresh perspective on the association between stress-induced tsRNAs and organ injury from a clinical perspective.
Collapse
Affiliation(s)
- Mengjun Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junfeng Guo
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaotong Hou
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Wu D, Li X, Khan FA, Yuan C, Pandupuspitasari NS, Huang C, Sun F, Guan K. tRNA modifications and tRNA-derived small RNAs: new insights of tRNA in human disease. Cell Biol Toxicol 2024; 40:76. [PMID: 39276283 PMCID: PMC11401796 DOI: 10.1007/s10565-024-09919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
tRNAs are codon decoders that convert the transcriptome into the proteome. The field of tRNA research is excited by the increasing discovery of specific tRNA modifications that are installed at specific, evolutionarily conserved positions by a set of specialized tRNA-modifying enzymes and the biogenesis of tRNA-derived regulatory fragments (tsRNAs) which exhibit copious activities through multiple mechanisms. Dysregulation of tRNA modification usually has pathological consequences, a phenomenon referred to as "tRNA modopathy". Current evidence suggests that certain tRNA-modifying enzymes and tsRNAs may serve as promising diagnostic biomarkers and therapeutic targets, particularly for chemoresistant cancers. In this review, we discuss the latest discoveries that elucidate the molecular mechanisms underlying the functions of clinically relevant tRNA modifications and tsRNAs, with a focus on malignancies. We also discuss the therapeutic potential of tRNA/tsRNA-based therapies, aiming to provide insights for the development of innovative therapeutic strategies. Further efforts to unravel the complexities inherent in tRNA biology hold the promise of yielding better biomarkers for the diagnosis and prognosis of diseases, thereby advancing the development of precision medicine for health improvement.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | | | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Liu S, Holmes AD, Katzman S, Sharma U. A sperm-enriched 5'fragment of tRNA-Valine regulates preimplantation embryonic transcriptome and development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607197. [PMID: 39211093 PMCID: PMC11361008 DOI: 10.1101/2024.08.08.607197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sperm small RNAs have been implicated in intergenerational epigenetic inheritance of paternal environmental effects; however, their biogenesis and functions remain poorly understood. We previously identified a 5' fragment of tRNA-Valine-CAC-2 (tRFValCAC) as one of the most abundant small RNA in mature sperm. tRFValCAC is specifically enriched in sperm during post-testicular maturation in the epididymis, and we found that it is delivered to sperm from epididymis epithelial cells via extracellular vesicles. Here, we investigated the mechanistic basis of tRFValCAC delivery to sperm and its functions in the early embryo. We show that tRFValCAC interacts with an RNA binding protein, heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB), in the epididymis, and this interaction regulates the sorting and packing of tRFValCAC into extracellular vesicles. In the embryo, we found that tRFValCAC regulates early embryonic mRNA processing and splicing. Inhibition of tRFValCAC in preimplantation embryos altered the transcript abundance of genes involved in RNA splicing and mRNA processing. Importantly, tRFValCAC-inhibited embryos showed altered mRNA splicing, including alternative splicing of various splicing factors and genes important for proper preimplantation embryonic development. Finally, we find that inhibition of tRFValCAC in zygotes delayed preimplantation embryonic development. Together, our results reveal a novel function of a sperm-enriched tRF in regulating alternating splicing and preimplantation embryonic development and shed light on the mechanism of sperm small RNA-mediated epigenetic inheritance.
Collapse
Affiliation(s)
- Simeiyun Liu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Andrew D. Holmes
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Sol Katzman
- Genomics Institute, University of California, Santa Cruz, California, 95064
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| |
Collapse
|
15
|
Muthukumar S, Li CT, Liu RJ, Bellodi C. Roles and regulation of tRNA-derived small RNAs in animals. Nat Rev Mol Cell Biol 2024; 25:359-378. [PMID: 38182846 DOI: 10.1038/s41580-023-00690-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
A growing class of small RNAs, known as tRNA-derived RNAs (tdRs), tRNA-derived small RNAs or tRNA-derived fragments, have long been considered mere intermediates of tRNA degradation. These small RNAs have recently been implicated in an evolutionarily conserved repertoire of biological processes. In this Review, we discuss the biogenesis and molecular functions of tdRs in mammals, including tdR-mediated gene regulation in cell metabolism, immune responses, transgenerational inheritance, development and cancer. We also discuss the accumulation of tRNA-derived stress-induced RNAs as a distinct adaptive cellular response to pathophysiological conditions. Furthermore, we highlight new conceptual advances linking RNA modifications with tdR activities and discuss challenges in studying tdR biology in health and disease.
Collapse
Affiliation(s)
- Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
16
|
Mabry ME, Abrahams RS, Al-Shehbaz IA, Baker WJ, Barak S, Barker MS, Barrett RL, Beric A, Bhattacharya S, Carey SB, Conant GC, Conran JG, Dassanayake M, Edger PP, Hall JC, Hao Y, Hendriks KP, Hibberd JM, King GJ, Kliebenstein DJ, Koch MA, Leitch IJ, Lens F, Lysak MA, McAlvay AC, McKibben MTW, Mercati F, Moore RC, Mummenhoff K, Murphy DJ, Nikolov LA, Pisias M, Roalson EH, Schranz ME, Thomas SK, Yu Q, Yocca A, Pires JC, Harkess AE. Complementing model species with model clades. THE PLANT CELL 2024; 36:1205-1226. [PMID: 37824826 PMCID: PMC11062466 DOI: 10.1093/plcell/koad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant tree of life continues to improve. The intersection of these 2 research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade." These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - R Shawn Abrahams
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | | | | | - Simon Barak
- Ben-Gurion University of the Negev, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Midreshet Ben-Gurion, 8499000, Israel
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, NSW 2567, Australia
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Samik Bhattacharya
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gavin C Conant
- Department of Biological Sciences, Bioinformatics Research Center, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - John G Conran
- ACEBB and SGC, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48864, USA
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yue Hao
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Kasper P Hendriks
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | | | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Frederic Lens
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
- Institute of Biology Leiden, Plant Sciences, Leiden University, 2333 BE Leiden, the Netherlands
| | - Martin A Lysak
- CEITEC, and NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, The Bronx, NY 10458, USA
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Francesco Mercati
- National Research Council (CNR), Institute of Biosciences and Bioresource (IBBR), Palermo 90129, Italy
| | | | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne, VIC 3004, Australia
| | | | - Michael Pisias
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Shawn K Thomas
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO 65211, USA
| | - Qingyi Yu
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Hilo, HI 96720, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA
| | - Alex E Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
17
|
Chen Q, Li D, Jiang L, Wu Y, Yuan H, Shi G, Liu F, Wu P, Jiang K. Biological functions and clinical significance of tRNA-derived small fragment (tsRNA) in tumors: Current state and future perspectives. Cancer Lett 2024; 587:216701. [PMID: 38369004 DOI: 10.1016/j.canlet.2024.216701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
A new class of noncoding RNAs, tsRNAs are not only abundant in humans but also have high tissue specificity. Recently, an increasing number of studies have explored the correlations between tsRNAs and tumors, showing that tsRNAs can affect biological behaviors of tumor cells, such as proliferation, apoptosis and metastasis, by modulating protein translation, RNA transcription or posttranscriptional regulation. In addition, tsRNAs are widely distributed and stably expressed, which endows them with broad application prospects in diagnosing and predicting the prognosis of tumors, and they are expected to become new biomarkers. However, notably, the current research on tsRNAs still faces problems that need to be solved. In this review, we describe the characteristics of tsRNAs as well as their unique features and functions in tumors. Moreover, we also discuss the potential opportunities and challenges in clinical applications and research of tsRNAs.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Danrui Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luyang Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Yuan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guodong Shi
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyuan Liu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Chery M, Berrissou C, Humbert N, Hummel G, Mely Y, Salinas-Giegé T, Drouard L. The Arabidopsis tDR Ala forms G-quadruplex structures that can be unwound by the DExH1 DEA(D/H)-box RNA helicase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:124-140. [PMID: 38113339 DOI: 10.1111/tpj.16596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/05/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
As in many other organisms, tRNA-derived RNAs (tDRs) exist in plants and likely have multiple functions. We previously showed that tDRs are present in Arabidopsis under normal growth conditions, and that the ones originating from alanine tRNAs are the most abundant in leaves. We also showed that tDRs Ala of 20 nt produced from mature tRNAAla (AGC) can block in vitro protein translation. Here, we report that first, these tDRs Ala (AGC) can be found within peculiar foci in the cell that are neither P-bodies nor stress granules and, second, that they assemble into intermolecular RNA G-quadruplex (rG4) structures. Such tDR Ala rG4 structures can specifically interact with an Arabidopsis DEA(D/H) RNA helicase, the DExH1 protein, and unwind them. The rG4-DExH1 protein interaction relies on a glycine-arginine domain with RGG/RG/GR/GRR motifs present at the N-terminal extremity of the protein. Mutations on the four guanine residues located at the 5' extremity of the tDR Ala abolish its rG4 structure assembly, association with the DExH1 protein, and foci formation, but they do not prevent protein translation inhibition in vitro. Our data suggest that the sequestration of tDRs Ala into rG4 complexes might represent a way to modulate accessible and functional tDRs for translation inhibition within the plant cell via the activity of a specific RNA helicase, DExH1.
Collapse
Affiliation(s)
- Marjorie Chery
- Institut de Biologie Moléculaire des Plantes - CNRS, Université de Strasbourg, 12 rue du général Zimmer, F-67084, Strasbourg, France
| | - Christina Berrissou
- Institut de Biologie Moléculaire des Plantes - CNRS, Université de Strasbourg, 12 rue du général Zimmer, F-67084, Strasbourg, France
| | - Nicolas Humbert
- Laboratoire de Bioimagerie et Pathologies - CNRS, UMR 7021, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| | - Guillaume Hummel
- Institut de Biologie Moléculaire des Plantes - CNRS, Université de Strasbourg, 12 rue du général Zimmer, F-67084, Strasbourg, France
| | - Yves Mely
- Laboratoire de Bioimagerie et Pathologies - CNRS, UMR 7021, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| | - Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes - CNRS, Université de Strasbourg, 12 rue du général Zimmer, F-67084, Strasbourg, France
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes - CNRS, Université de Strasbourg, 12 rue du général Zimmer, F-67084, Strasbourg, France
| |
Collapse
|
19
|
Zhang Q, Zhao X, Sun M, Dong D. Novel insights into transfer RNA-derived small RNA (tsRNA) in cardio-metabolic diseases. Life Sci 2024; 341:122475. [PMID: 38309576 DOI: 10.1016/j.lfs.2024.122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Cardio-metabolic diseases, including a cluster of metabolic disorders and their secondary affections on cardiovascular physiology, are gradually brought to the forefront by researchers due to their high prevalence and mortality, as well as an unidentified pathogenesis. tRNA-derived small RNAs (tsRNAs), cleaved by several specific enzymes and once considered as some "metabolic junks" in the past, have been proved to possess numerous functions in human bodies. More interestingly, such a potential also seems to influence the progression of cardio-metabolic diseases to some extent. In this review, the biogenesis, classification and mechanisms of tsRNAs will be discussed based on some latest studies, and their relations with several cardio-metabolic diseases will be highlighted in sequence. Lastly, some future prospects, such as their clinical applications as biomarkers and therapeutic targets will also be mentioned, in order to provide researchers with a comprehensive understanding of the research status of tsRNAs as well as its association with cardio-metabolic diseases, thus presenting as a beacon to indicate directions for the next stage of study.
Collapse
Affiliation(s)
- Qingya Zhang
- Innovation Institute, China Medical University, Shenyang 110122, Liaoning, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
20
|
Ipas H, Gouws EB, Abell NS, Chiou PC, Devanathan SK, Hervé S, Lee S, Mercado M, Reinsborough C, Halabelian L, Arrowsmith CH, Xhemalçe B. ChemRAP uncovers specific mRNA translation regulation via RNA 5' phospho-methylation. EMBO Rep 2024; 25:1570-1588. [PMID: 38263329 PMCID: PMC10933402 DOI: 10.1038/s44319-024-00059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
5'-end modifications play key roles in determining RNA fates. Phospho-methylation is a noncanonical cap occurring on either 5'-PPP or 5'-P ends. We used ChemRAP, in which affinity purification of cellular proteins with chemically synthesized modified RNAs is coupled to quantitative proteomics, to identify 5'-Pme "readers". We show that 5'-Pme is directly recognized by EPRS, the central subunit of the multisynthetase complex (MSC), through its linker domain, which has previously been involved in key noncanonical EPRS and MSC functions. We further determine that the 5'-Pme writer BCDIN3D regulates the binding of EPRS to specific mRNAs, either at coding regions rich in MSC codons, or around start codons. In the case of LRPPRC (leucine-rich pentatricopeptide repeat containing), a nuclear-encoded mitochondrial protein associated with the French Canadian Leigh syndrome, BCDIN3D deficiency abolishes binding of EPRS around its mRNA start codon, increases its translation but ultimately results in LRPPRC mislocalization. Overall, our results suggest that BCDIN3D may regulate the translation of specific mRNA via RNA-5'-Pme.
Collapse
Affiliation(s)
- Hélène Ipas
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Ellen B Gouws
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Nathan S Abell
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Po-Chin Chiou
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Sravan K Devanathan
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Solène Hervé
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Sidae Lee
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Marvin Mercado
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Calder Reinsborough
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA
| | - Levon Halabelian
- Structural Genomics Consortium, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Blerta Xhemalçe
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, 78712, Austin, TX, USA.
| |
Collapse
|
21
|
Zhang Y, Gu X, Li Y, Huang Y, Ju S. Multiple regulatory roles of the transfer RNA-derived small RNAs in cancers. Genes Dis 2024; 11:597-613. [PMID: 37692525 PMCID: PMC10491922 DOI: 10.1016/j.gendis.2023.02.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 09/12/2023] Open
Abstract
With the development of sequencing technology, transfer RNA (tRNA)-derived small RNAs (tsRNAs) have received extensive attention as a new type of small noncoding RNAs. Based on the differences in the cleavage sites of nucleases on tRNAs, tsRNAs can be divided into two categories, tRNA halves (tiRNAs) and tRNA-derived fragments (tRFs), each with specific subcellular localizations. Additionally, the biogenesis of tsRNAs is tissue-specific and can be regulated by tRNA modifications. In this review, we first elaborated on the classification and biogenesis of tsRNAs. After summarizing the latest mechanisms of tsRNAs, including transcriptional gene silencing, post-transcriptional gene silencing, nascent RNA silencing, translation regulation, rRNA regulation, and reverse transcription regulation, we explored the representative biological functions of tsRNAs in tumors. Furthermore, this review summarized the clinical value of tsRNAs in cancers, thus providing theoretical support for their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yang Li
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
22
|
Xie L, Zhao Z, Xia H, Su S, He L, Huang Z, Li Y, Gao M, Chen J, Peng J, Ruan Y. A novel tsRNA-5008a promotes ferroptosis in cardiomyocytes that causes atrial structural remodeling predisposed to atrial fibrillation. Exp Cell Res 2024; 435:113923. [PMID: 38190870 DOI: 10.1016/j.yexcr.2024.113923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Atrial fibrillation (AF) is an extremely common clinical arrhythmia disease, but whether its mechanism is associated with ferroptosis remains unclear. The tRNA-derived small RNAs (tsRNAs) are involved in a variety of cardiovascular diseases, however, their role and mechanism in atrial remodeling in AF have not been studied. We aimed to explore whether tsRNAs mediate ferroptosis in AF progression. The AF models were constructed to detect ferroptosis-related indicators, and Ferrostatin-1 (Fer-1) was introduced to clarify the relationship between ferroptosis and AF. Atrial myocardial tissue was used for small RNA sequencing to screen potential tsRNAs. tsRNA functioned on ferroptosis and AF was explored. Atrial fibrosis and changes in the cellular structures and arrangement were observed in AF mice model, and these alterations were accompanied by ferroptosis occurrence, exhibited by the accumulation of Fe2+ and MDA levels and the decrease of expression of FTH1, GPX4, and SLC7A11. Blocking above ferroptosis activation with Fer-1 resulted in a significant improvement for AF. A total of 7 tsRNAs were upregulated (including tsRNA-5008a) and 2 tsRNAs were downregulated in atrial myocardial tissue in the AF group compared with the sham group. We constructed a tsRNA-mRNA regulated network, which showed tsRNA-5008a targeted 16 ferroptosis-related genes. Knockdown of tsRNA-5008a significantly suppressed ferroptosis through targeting SLC7A11 and diminished myocardial fibrosis both in vitro and in vivo. On the contrary, tsRNA-5008a mimics promoted ferroptosis in cardiomyocytes. Collectively, tsRNA-5008a involved in AF through ferroptosis. Our study provides novel insights into the role of tsRNA-5008a mediated ferroptosis in AF progression.
Collapse
Affiliation(s)
- Liangzhen Xie
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zewei Zhao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Xia
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuang Su
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liwei He
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohui Huang
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongchun Li
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingjian Gao
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jun Chen
- Department of Cardiology, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, China
| | - Jian Peng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Yunjun Ruan
- Department of Geriatrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Yadav A, Mathan J, Dubey AK, Singh A. The Emerging Role of Non-Coding RNAs (ncRNAs) in Plant Growth, Development, and Stress Response Signaling. Noncoding RNA 2024; 10:13. [PMID: 38392968 PMCID: PMC10893181 DOI: 10.3390/ncrna10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Plant species utilize a variety of regulatory mechanisms to ensure sustainable productivity. Within this intricate framework, numerous non-coding RNAs (ncRNAs) play a crucial regulatory role in plant biology, surpassing the essential functions of RNA molecules as messengers, ribosomal, and transfer RNAs. ncRNAs represent an emerging class of regulators, operating directly in the form of small interfering RNAs (siRNAs), microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). These ncRNAs exert control at various levels, including transcription, post-transcription, translation, and epigenetic. Furthermore, they interact with each other, contributing to a variety of biological processes and mechanisms associated with stress resilience. This review primarily concentrates on the recent advancements in plant ncRNAs, delineating their functions in growth and development across various organs such as root, leaf, seed/endosperm, and seed nutrient development. Additionally, this review broadens its scope by examining the role of ncRNAs in response to environmental stresses such as drought, salt, flood, heat, and cold in plants. This compilation offers updated information and insights to guide the characterization of the potential functions of ncRNAs in plant growth, development, and stress resilience in future research.
Collapse
Affiliation(s)
- Amit Yadav
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| | - Jyotirmaya Mathan
- Sashi Bhusan Rath Government Autonomous Women’s College, Brahmapur 760001, India;
| | - Arvind Kumar Dubey
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Anuradha Singh
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
24
|
Yang N, Li R, Liu R, Yang S, Zhao Y, Xiong W, Qiu L. The Emerging Function and Promise of tRNA-Derived Small RNAs in Cancer. J Cancer 2024; 15:1642-1656. [PMID: 38370372 PMCID: PMC10869971 DOI: 10.7150/jca.89219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/01/2024] [Indexed: 02/20/2024] Open
Abstract
Fragments derived from tRNA, called tRNA-derived small RNAs (tsRNAs), have attracted widespread attention in the past decade. tsRNAs are widespread in prokaryotic and eukaryotic transcriptome, which contains two main types, tRNA-derived fragments (tRFs) and tRNA-derived stress-inducing RNA (tiRNAs), derived from the precursor tRNAs or mature tRNAs. According to differences in the cleavage position, tRFs can be divided into tRF-1, tRF-2, tRF-3, tRF-5, and i-tRF, whereas tiRNAs can be divided into 5'-tiRNA and 3'-tiRNA. Studies have found that tRFs and tiRNAs are abnormally expressed in a variety of human malignant tumors, promote or inhibit the proliferation and apoptosis of cancer cells by regulating the expression of oncogene, and play an important role in the aggressive metastasis and progression of tumors. This article reviews the biological origins of various tsRNAs, introduces their functions and new concepts of related mechanisms, and focuses on the molecular mechanisms of tsRNAs in cancer, including breast cancer, prostate cancer, colorectal cancer, lung cancer, b-cell lymphoma, and chronic lymphoma cell leukemia. Lastly, this article puts forward some unresolved problems and future research prospects.
Collapse
Affiliation(s)
- Na Yang
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
- College of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Ruijun Li
- College of Foreign Languages, Chuxiong Normal University, Chuxiong 675000, China
| | - Ruai Liu
- College of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Shengjie Yang
- The People's Hospital of ChuXiong Yi Autonomous Prefecture, Chuxiong 675000, China
| | - Yi Zhao
- The People's Hospital of ChuXiong Yi Autonomous Prefecture, Chuxiong 675000, China
| | - Wei Xiong
- College of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Lu Qiu
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, China
| |
Collapse
|
25
|
Chen Y, Liu X, Chen W, Zhu L. RNS2 is required for the biogenesis of a wounding responsive 16 nts tsRNA in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 114:6. [PMID: 38265739 DOI: 10.1007/s11103-023-01399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024]
Abstract
tRNA-derived small RNAs (tsRNAs), a new category of regulatory small non-coding RNA existing in almost all branches of life, have recently attracted broad attention. Increasing evidence has shown that tsRNAs are not random degradation debris of tRNAs, but products cleaved by specific endoribonucleases, with versatile functions in response to various developmental and environmental cues. However, it is still unclear about the diversity, biogenesis and function of tsRNAs in plants. In this study, we comprehensively profiled 10-60 nts small RNAs in Arabidopsis thaliana leaf with or without wounding stress and identified four 16 nts tiny tRFs (tRNA-derived fragments) sharply increased after wounding, namely tRF5'Ala. Notably, genetic, biochemical and bioinformatic data indicated that RNS2, a member of class II RNase T2 enzymes, was the main endoribonuclease responsible for the biogenesis of tRF5'Ala. Moreover, tRF5'Ala was highly abundant and conserved in Arabidopsis and rice pollen. However, tRF5'Ala did not associate with AGO 1 in vivo or display any inhibitory effect on the translation of a luciferase mRNA in vitro. Altogether, our study highlights the discovery of a novel class of tiny tsRNAs drastically increased under wounding stress as well as their generation by RNS2, which provides a new insight into tsRNAs research in plants.
Collapse
Affiliation(s)
- Yan Chen
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Waihuanxi Road, Guangzhou, 510006, China
| | - Xiaobin Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Waihuanxi Road, Guangzhou, 510006, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi, 830000, China.
| | - Lei Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 6100041, China.
| |
Collapse
|
26
|
Panstruga R, Spanu P. Transfer RNA and ribosomal RNA fragments - emerging players in plant-microbe interactions. THE NEW PHYTOLOGIST 2024; 241:567-577. [PMID: 37985402 DOI: 10.1111/nph.19409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
According to current textbooks, the principal task of transfer and ribosomal RNAs (tRNAs and rRNAs, respectively) is synthesizing proteins. During the last decade, additional cellular roles for precisely processed tRNA and rRNAs fragments have become evident in all kingdoms of life. These RNA fragments were originally overlooked in transcriptome datasets or regarded as unspecific degradation products. Upon closer inspection, they were found to engage in a variety of cellular processes, in particular the modulation of translation and the regulation of gene expression by sequence complementarity- and Argonaute protein-dependent gene silencing. More recently, the presence of tRNA and rRNA fragments has also been recognized in the context of plant-microbe interactions, both on the plant and the microbial side. While most of these fragments are likely to affect endogenous processes, there is increasing evidence for their transfer across kingdoms in the course of such interactions; these processes may involve mutual exchange in association with extracellular vesicles. Here, we summarize the state-of-the-art understanding of tRNA and rRNA fragment's roles in the context of plant-microbe interactions, their potential biogenesis, presumed delivery routes, and presumptive modes of action.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Worringerweg 1, Aachen, 52056, Germany
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| |
Collapse
|
27
|
Vashisht I, Dhaka N, Jain R, Sood A, Sharma N, Sharma MK, Sharma R. Non-coding RNAs-mediated environmental surveillance determines male fertility in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108030. [PMID: 37708711 DOI: 10.1016/j.plaphy.2023.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Plants are continuously exposed to environmental stresses leading to significant yield losses. With the changing climatic conditions, the intensity and duration of these stresses are expected to increase, posing a severe threat to crop productivity worldwide. Male gametogenesis is one of the most sensitive developmental stages. Exposure to environmental stresses during this stage leads to male sterility and yield loss. Elucidating the underlying molecular mechanism of environment-affected male sterility is essential to address this challenge. High-throughput RNA sequencing studies, loss-of-function phenotypes of sRNA biogenesis genes and functional genomics studies with non-coding RNAs have started to unveil the roles of small RNAs, long non-coding RNAs and the complex regulatory interactions between them in regulating male fertility under different growth regimes. Here, we discuss the current understanding of the non-coding RNA-mediated environmental stress surveillance and regulation of male fertility in plants. The candidate ncRNAs emerging from these studies can be leveraged to generate environment-sensitive male sterile lines for hybrid breeding or mitigate the impact of climate change on male fertility, as the situation demands.
Collapse
Affiliation(s)
- Ira Vashisht
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Namrata Dhaka
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rubi Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Akanksha Sood
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Niharika Sharma
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, 2800, Australia
| | - Manoj K Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
28
|
Li Y, Gao J, Wang Y, Cai J, Wu D, Wang L, Pu W, Yu F, Zhu S. The functions of a 5' tRNA-Ala-derived fragment in gene expression. PLANT PHYSIOLOGY 2023; 193:1126-1141. [PMID: 37350495 DOI: 10.1093/plphys/kiad361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023]
Abstract
Transfer RNA (tRNA) can produce smaller RNA fragments called tRNA-derived fragments (tRFs). tRFs play critical roles in multiple cellular programs, although the functional mechanisms of tRFs remain largely unknown in plants. In this study, we examined the phenotype associated with 5' tRF-Ala (tRF-Ala, produced from tRNA-Ala) overexpression and knockdown lines (tDR-Ala-OE and tDR-Ala-kd, respectively) and the mechanisms by which tRF-Ala affects mRNA levels in Arabidopsis (Arabidopsis thaliana). We investigated the candidate proteins associated with tRF-Ala by quantitative proteomics and confirmed the direct interaction between tRF-Ala and the splicing factor SERINE-ARGININE RICH PROTEIN 34 (SR34). A transcriptome sequencing analysis showed that 318 genes among all the genes (786) with substantial alternative splicing (AS) variance in tDR-Ala-OE lines are targets of SR34. tRF-Ala diminished the binding affinity between SR34 and its targets by direct competition for interaction with SR34. These findings reveal the critical roles of tRF-Ala in regulating mRNA levels and splicing.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Junping Gao
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Ying Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Jun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Dousheng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| |
Collapse
|
29
|
Cao W, Dai S, Ruan W, Long T, Zeng Z, Lei S. Pancreatic stellate cell-derived exosomal tRF-19-PNR8YPJZ promotes proliferation and mobility of pancreatic cancer through AXIN2. J Cell Mol Med 2023; 27:2533-2546. [PMID: 37488774 PMCID: PMC10468654 DOI: 10.1111/jcmm.17852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/26/2023] Open
Abstract
The pancreatic stellate cells (PSCs) play an important role in the development of pancreatic cancer (PC) through mechanisms that remain unclear. Exosomes secreted from PSCs act as mediators for communication in PC. This study aimed to explore the role of PSC-derived exosomal small RNAs derived from tRNAs (tDRs) in PC cells. Exosomes from PSCs were extracted and used to detect their effects on PC cell proliferation, migration and invasion. Exosomal tDRs profiling was performed to identify PSC-derived exosomal tDRs. ISH and qRT-PCR were used to examine the tRF-19-PNR8YPJZ levels and clinical value in clinical samples. The biological function of exosomal tRF-19-PNR8YPJZ was determined using the CCK-8, clone formation, wound healing and transwell assays, subcutaneous tumour formation and lung metastatic models. The relationship between the selected exosomal tRF-19-PNR8YPJZ and AXIN2 was determined by RNA sequencing, luciferase reporter assay. PSC-derived exosomes promoted the proliferation, migration, and invasion of PC cells. Novel and abundant tDRs are found to be differentially expressed in PANC-1 cells after treatment with PSC-derived exosomes, such as tRF-19-PNR8YPJZ. PC tissue samples showed markedly higher levels of tRF-19-PNR8YPJZ than normal controls. Patients with PC exhibiting high tRF-19-PNR8YPJZ expression had a highly lymph node invasion, metastasis, perineural invasion, advanced clinical stage and poor overall survival. Exosomal tRF-19-PNR8YPJZ from PSCs targeted AXIN2 in PC cells and decreased its expression, thus activating the Wnt pathway and promoting proliferation and metastasis. Exosomal tRF-19-PNR8YPJZ from PSCs promoted proliferation and metastasis in PC cells via AXIN2.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Shisi Dai
- Department of Anatomy, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
- Department of Anatomy, School of Basic MedicineGuizhou Nursing Vocational collegeGuiyangChina
| | - Wanyuan Ruan
- School of Clinical MedicineGuizhou Medical UniversityGuiyangChina
| | - Tingting Long
- Department of Anatomy, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Zhirui Zeng
- Department of Physiology, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| | - Shan Lei
- Department of Physiology, School of Basic MedicineGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
30
|
Bakirbas A, Castro-Rodriguez R, Walker EL. The Small RNA Component of Arabidopsis thaliana Phloem Sap and Its Response to Iron Deficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:2782. [PMID: 37570935 PMCID: PMC10421156 DOI: 10.3390/plants12152782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
In order to discover sRNA that might function during iron deficiency stress, RNA was prepared from phloem exudates of Arabidopsis thaliana, and used for RNA-seq. Bioanalyzer results indicate that abundant RNA from phloem is small in size-less than 200 nt. Moreover, typical rRNA bands were not observed. Sequencing of eight independent phloem RNA samples indicated that tRNA-derived fragments, specifically 5' tRFs and 5' tRNA halves, are highly abundant in phloem sap, comprising about 46% of all reads. In addition, a set of miRNAs that are present in phloem sap was defined, and several miRNAs and sRNAs were identified that are differentially expressed during iron deficiency.
Collapse
Affiliation(s)
- Ahmet Bakirbas
- Biology Department and Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA;
| | | | - Elsbeth L. Walker
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
31
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
32
|
Kusch S, Singh M, Thieron H, Spanu PD, Panstruga R. Site-specific analysis reveals candidate cross-kingdom small RNAs, tRNA and rRNA fragments, and signs of fungal RNA phasing in the barley-powdery mildew interaction. MOLECULAR PLANT PATHOLOGY 2023; 24:570-587. [PMID: 36917011 DOI: 10.1111/mpp.13324] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
The establishment of host-microbe interactions requires molecular communication between both partners, which may involve the mutual transfer of noncoding small RNAs. Previous evidence suggests that this is also true for powdery mildew disease in barley, which is caused by the fungal pathogen Blumeria hordei. However, previous studies lacked spatial resolution regarding the accumulation of small RNAs upon host infection by B. hordei. Here, we analysed site-specific small RNA repertoires in the context of the barley-B. hordei interaction. To this end, we dissected infected leaves into separate fractions representing different sites that are key to the pathogenic process: epiphytic fungal mycelium, infected plant epidermis, isolated haustoria, a vesicle-enriched fraction from infected epidermis, and extracellular vesicles. Unexpectedly, we discovered enrichment of specific 31-33-base 5'-terminal fragments of barley 5.8S ribosomal RNA in extracellular vesicles and infected epidermis, as well as particular B. hordei transfer RNA fragments in haustoria. We describe canonical small RNAs from both the plant host and the fungal pathogen that may confer cross-kingdom RNA interference activity. Interestingly, we found first evidence of phased small interfering RNAs in B. hordei, a feature usually attributed to plants, which may be associated with the posttranscriptional control of fungal coding genes, pseudogenes, and transposable elements. Our data suggest a key and possibly site-specific role for cross-kingdom RNA interference and noncoding RNA fragments in the host-pathogen communication between B. hordei and its host barley.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Mansi Singh
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Hannah Thieron
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Pietro D Spanu
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
33
|
Assmann SM, Chou HL, Bevilacqua PC. Rock, scissors, paper: How RNA structure informs function. THE PLANT CELL 2023; 35:1671-1707. [PMID: 36747354 PMCID: PMC10226581 DOI: 10.1093/plcell/koad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 05/30/2023]
Abstract
RNA can fold back on itself to adopt a wide range of structures. These range from relatively simple hairpins to intricate 3D folds and can be accompanied by regulatory interactions with both metabolites and macromolecules. The last 50 yr have witnessed elucidation of an astonishing array of RNA structures including transfer RNAs, ribozymes, riboswitches, the ribosome, the spliceosome, and most recently entire RNA structuromes. These advances in RNA structural biology have deepened insight into fundamental biological processes including gene editing, transcription, translation, and structure-based detection and response to temperature and other environmental signals. These discoveries reveal that RNA can be relatively static, like a rock; that it can have catalytic functions of cutting bonds, like scissors; and that it can adopt myriad functional shapes, like paper. We relate these extraordinary discoveries in the biology of RNA structure to the plant way of life. We trace plant-specific discovery of ribozymes and riboswitches, alternative splicing, organellar ribosomes, thermometers, whole-transcriptome structuromes and pan-structuromes, and conclude that plants have a special set of RNA structures that confer unique types of gene regulation. We finish with a consideration of future directions for the RNA structure-function field.
Collapse
Affiliation(s)
- Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Li Chou
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
34
|
Yushkova E, Moskalev A. Transposable elements and their role in aging. Ageing Res Rev 2023; 86:101881. [PMID: 36773759 DOI: 10.1016/j.arr.2023.101881] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Transposable elements (TEs) are an important part of eukaryotic genomes. The role of somatic transposition in aging, carcinogenesis, and other age-related diseases has been determined. This review discusses the fundamental properties of TEs and their complex interactions with cellular processes, which are crucial for understanding the diverse effects of their activity on the genetics and epigenetics of the organism. The interactions of TEs with recombination, replication, repair, and chromosomal regulation; the ability of TEs to maintain a balance between their own activity and repression, the involvement of TEs in the creation of new or alternative genes, the expression of coding/non-coding RNA, and the role in DNA damage and modification of regulatory networks are reviewed. The contribution of the derepressed TEs to age-dependent effects in individual cells/tissues in different organisms was assessed. Conflicting information about TE activity under stress as well as theories of aging mechanisms related to TEs is discussed. On the one hand, transposition activity in response to stressors can lead to organisms acquiring adaptive innovations of great importance for evolution at the population level. On the other hand, the TE expression can cause decreased longevity and stress tolerance at the individual level. The specific features of TE effects on aging processes in germline and soma and the ways of their regulation in cells are highlighted. Recent results considering somatic mutations in normal human and animal tissues are indicated, with the emphasis on their possible functional consequences. In the context of aging, the correlation between somatic TE activation and age-related changes in the number of proteins required for heterochromatin maintenance and longevity regulation was analyzed. One of the original features of this review is a discussion of not only effects based on the TEs insertions and the associated consequences for the germline cell dynamics and somatic genome, but also the differences between transposon- and retrotransposon-mediated structural genome changes and possible phenotypic characteristics associated with aging and various age-related pathologies. Based on the analysis of published data, a hypothesis about the influence of the species-specific features of number, composition, and distribution of TEs on aging dynamics of different animal genomes was formulated.
Collapse
Affiliation(s)
- Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russian Federation; Laboratory of Genetics and Epigenetics of Aging, Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Moscow 129226, Russian Federation; Longaevus Technologies, London, UK.
| |
Collapse
|
35
|
U A, Viswam P, Kattupalli D, Eppurathu Vasudevan S. Elucidation of transfer RNAs as stress regulating agents and the experimental strategies to conceive the functional role of tRNA-derived fragments in plants. Crit Rev Biotechnol 2023; 43:275-292. [PMID: 35382663 DOI: 10.1080/07388551.2022.2026288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In plants, the transfer RNAs (tRNAs) exhibit their profound influence in orchestrating diverse physiological activities like cell growth, development, and response to several surrounding stimuli. The tRNAs, which were known to restrict their function solely in deciphering the codons, are now emerging as frontline defenders in stress biology. The plants that are constantly confronted with a huge panoply of stresses rely on tRNA-mediated stress regulation by altering the tRNA abundance, curbing the transport of tRNAs, fragmenting the mature tRNAs during stress. Among them, the studies on the generation of transfer RNA-derived fragments (tRFs) and their biological implication in stress response have attained huge interest. In plants, the tRFs hold stable expression patterns and regulate biological functions under diverse environmental conditions. In this review, we discuss the fate of plant tRNAs upon stress and thereafter how the tRFs are metamorphosed into sharp ammunition to wrestle with stress. We also address the various methods developed to date for uncovering the role of tRFs and their function in plants.
Collapse
Affiliation(s)
- Aswathi U
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Pooja Viswam
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Divya Kattupalli
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | | |
Collapse
|
36
|
Fu M, Gu J, Wang M, Zhang J, Chen Y, Jiang P, Zhu T, Zhang X. Emerging roles of tRNA-derived fragments in cancer. Mol Cancer 2023; 22:30. [PMID: 36782290 PMCID: PMC9926655 DOI: 10.1186/s12943-023-01739-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
tRNA-derived fragments (tRFs) are an emerging category of small non-coding RNAs that are generated from cleavage of mature tRNAs or tRNA precursors. The advance in high-throughput sequencing has contributed to the identification of increasing number of tRFs with critical functions in distinct physiological and pathophysiological processes. tRFs can regulate cell viability, differentiation, and homeostasis through multiple mechanisms and are thus considered as critical regulators of human diseases including cancer. In addition, increasing evidence suggest the extracellular tRFs may be utilized as promising diagnostic and prognostic biomarkers for cancer liquid biopsy. In this review, we focus on the biogenesis, classification and modification of tRFs, and summarize the multifaceted functions of tRFs with an emphasis on the current research status and perspectives of tRFs in cancer.
Collapse
Affiliation(s)
- Min Fu
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China ,grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jianmei Gu
- grid.260483.b0000 0000 9530 8833Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226361 Jiangsu China
| | - Maoye Wang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jiahui Zhang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yanke Chen
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Pengcheng Jiang
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, Jiangsu, China.
| | - Xu Zhang
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
37
|
Wang C, Chen W, Aili M, Zhu L, Chen Y. tRNA-derived small RNAs in plant response to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1131977. [PMID: 36798699 PMCID: PMC9928184 DOI: 10.3389/fpls.2023.1131977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
tRNA-derived small RNAs (tsRNAs) represent a novel category of small non-coding RNAs and serve as a new regulator of gene expression at both transcriptional and post-transcriptional levels. Growing evidence indicates that tsRNAs can be induced by diverse stimuli and regulate stress-responsive target genes, allowing plants to adapt to unfavorable environments. Here, we discuss the latest developments about the biogenesis and classification of tsRNAs and highlight the expression regulation and potential function of tsRNAs in plant biotic and abiotic stress responses. Of note, we also collect useful bioinformatics tools and resources for tsRNAs study in plants. Finally, we propose current limitations and future directions for plant tsRNAs research. These recent discoveries have refined our understanding of whether and how tsRNAs enhance plant stress tolerance.
Collapse
Affiliation(s)
- Chaojun Wang
- Institute of Education Science, Leshan Normal University, Leshan, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Maimaiti Aili
- Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Lei Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Chen
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
38
|
Goldkamp AK, Li Y, Rivera RM, Hagen DE. Differentially expressed tRNA-derived fragments in bovine fetuses with assisted reproduction induced congenital overgrowth syndrome. Front Genet 2022; 13:1055343. [PMID: 36457750 PMCID: PMC9705782 DOI: 10.3389/fgene.2022.1055343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Background: As couples struggle with infertility and livestock producers wish to rapidly improve genetic merit in their herd, assisted reproductive technologies (ART) have become increasingly popular in human medicine as well as the livestock industry. Utilizing ART can cause an increased risk of congenital overgrowth syndromes, such as Large Offspring Syndrome (LOS) in ruminants. A dysregulation of transcripts has been observed in bovine fetuses with LOS, which is suggested to be a cause of the phenotype. Our recent study identified variations in tRNA expression in LOS individuals, leading us to hypothesize that variations in tRNA expression can influence the availability of their processed regulatory products, tRNA-derived fragments (tRFs). Due to their resemblance in size to microRNAs, studies suggest that tRFs target mRNA transcripts and regulate gene expression. Thus, we have sequenced small RNA isolated from skeletal muscle and liver of day 105 bovine fetuses to elucidate the mechanisms contributing to LOS. Moreover, we have utilized our previously generated tRNA sequencing data to analyze the contribution of tRNA availability to tRF abundance. Results: 22,289 and 7,737 unique tRFs were predicted in the liver and muscle tissue respectively. The greatest number of reads originated from 5' tRFs in muscle and 5' halves in liver. In addition, mitochondrial (MT) and nuclear derived tRF expression was tissue-specific with most MT-tRFs and nuclear tRFs derived from LysUUU and iMetCAU in muscle, and AsnGUU and GlyGCC in liver. Despite variation in tRF abundance within treatment groups, we identified differentially expressed (DE) tRFs across Control-AI, ART-Normal, and ART-LOS groups with the most DE tRFs between ART-Normal and ART-LOS groups. Many DE tRFs target transcripts enriched in pathways related to growth and development in the muscle and tumor development in the liver. Finally, we found positive correlation coefficients between tRNA availability and tRF expression in muscle (R = 0.47) and liver (0.6). Conclusion: Our results highlight the dysregulation of tRF expression and its regulatory roles in LOS. These tRFs were found to target both imprinted and non-imprinted genes in muscle as well as genes linked to tumor development in the liver. Furthermore, we found that tRNA transcription is a highly modulated event that plays a part in the biogenesis of tRFs. This study is the first to investigate the relationship between tRNA and tRF expression in combination with ART-induced LOS.
Collapse
Affiliation(s)
- Anna K. Goldkamp
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Yahan Li
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Rocio M. Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Darren E. Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
39
|
George S, Rafi M, Aldarmaki M, ElSiddig M, Al Nuaimi M, Amiri KMA. tRNA derived small RNAs—Small players with big roles. Front Genet 2022; 13:997780. [PMID: 36199575 PMCID: PMC9527309 DOI: 10.3389/fgene.2022.997780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In the past 2 decades, small non-coding RNAs derived from tRNA (tsRNAs or tRNA derived fragments; tRFs) have emerged as new powerful players in the field of small RNA mediated regulation of gene expression, translation, and epigenetic control. tRFs have been identified from evolutionarily divergent organisms from Archaea, the higher plants, to humans. Recent studies have confirmed their roles in cancers and other metabolic disorders in humans and experimental models. They have been implicated in biotic and abiotic stress responses in plants as well. In this review, we summarize the current knowledge on tRFs including types of tRFs, their biogenesis, and mechanisms of action. The review also highlights recent studies involving differential expression profiling of tRFs and elucidation of specific functions of individual tRFs from various species. We also discuss potential considerations while designing experiments involving tRFs identification and characterization and list the available bioinformatics tools for this purpose.
Collapse
Affiliation(s)
- Suja George
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maitha Aldarmaki
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed ElSiddig
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mariam Al Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Khaled M. A. Amiri,
| |
Collapse
|
40
|
Roganović J, Petrović N. Clinical Perspectives of Non-Coding RNA in Oral Inflammatory Diseases and Neuropathic Pain: A Narrative Review. Int J Mol Sci 2022; 23:8278. [PMID: 35955417 PMCID: PMC9368403 DOI: 10.3390/ijms23158278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) represent a research hotspot by playing a key role in epigenetic and transcriptional regulation of diverse biological functions and due to their involvement in different diseases, including oral inflammatory diseases. Based on ncRNAs' suitability for salivary biomarkers and their involvement in neuropathic pain and tissue regeneration signaling pathways, the present narrative review aims to highlight the potential clinical applications of ncRNAs in oral inflammatory diseases, with an emphasis on salivary diagnostics, regenerative dentistry, and precision medicine for neuropathic orofacial pain.
Collapse
Affiliation(s)
- Jelena Roganović
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nina Petrović
- Department of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
- Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| |
Collapse
|
41
|
Zhang M, Zheng S, Liang JQ. Transcriptional and reverse transcriptional regulation of host genes by human endogenous retroviruses in cancers. Front Microbiol 2022; 13:946296. [PMID: 35928153 PMCID: PMC9343867 DOI: 10.3389/fmicb.2022.946296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs) originated from ancient retroviral infections of germline cells millions of years ago and have evolved as part of the host genome. HERVs not only retain the capacity as retroelements but also regulate host genes. The expansion of HERVs involves transcription by RNA polymerase II, reverse transcription, and re-integration into the host genome. Fast progress in deep sequencing and functional analysis has revealed the importance of domesticated copies of HERVs, including their regulatory sequences, transcripts, and proteins in normal cells. However, evidence also suggests the involvement of HERVs in the development and progression of many types of cancer. Here we summarize the current state of knowledge about the expression of HERVs, transcriptional regulation of host genes by HERVs, and the functions of HERVs in reverse transcription and gene editing with their reverse transcriptase.
Collapse
Affiliation(s)
- Mengwen Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shu Zheng,
| | - Jessie Qiaoyi Liang
- Department of Medicine and Therapeutics, Faculty of Medicine, Center for Gut Microbiota Research, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Jessie Qiaoyi Liang,
| |
Collapse
|
42
|
Zhao JZ, Li QY, Lin JJ, Yang LY, Du MY, Wang Y, Liu KX, Jiang ZA, Li HH, Wang SF, Sun B, Mu SQ, Li B, Liu K, Gong M, Sun SG. Integrated analysis of tRNA-derived small RNAs in proliferative human aortic smooth muscle cells. Cell Mol Biol Lett 2022; 27:47. [PMID: 35705912 PMCID: PMC9199163 DOI: 10.1186/s11658-022-00346-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Background Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to vascular remodeling diseases. Recently, it has been discovered that tRNA-derived small RNAs (tsRNAs), a new type of noncoding RNAs, are related to the proliferation and migration of VSMCs. tsRNAs regulate target gene expression through miRNA-like functions. This study aims to explore the potential of tsRNAs in human aortic smooth muscle cell (HASMC) proliferation. Methods High-throughput sequencing was performed to analyze the tsRNA expression profile of proliferative and quiescent HASMCs. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the sequence results and subcellular distribution of AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076. Based on the microRNA-like functions of tsRNAs, we predicted target promoters and mRNAs and constructed tsRNA–promoter and tsRNA–mRNA interaction networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to reveal the function of target genes. EdU incorporation assay, Western blot, and dual-luciferase reporter gene assay were utilized to detect the effects of tsRNAs on HASMC proliferation. Results Compared with quiescent HASMCs, there were 1838 differentially expressed tsRNAs in proliferative HASMCs, including 887 with increased expression (fold change > 2, p < 0.05) and 951 with decreased expression (fold change < ½, p < 0.05). AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076 were increased in proliferative HASMCs and were mainly located in the nucleus. Bioinformatics analysis suggested that the four tsRNAs involved a variety of GO terms and pathways related to VSMC proliferation. AS-tDR-000067 promoted HASMC proliferation by suppressing p53 transcription in a promoter-targeted manner. AS-tDR-000076 accelerated HASMC proliferation by attenuating mitofusin 2 (MFN2) levels in a 3′-untranslated region (UTR)-targeted manner. Conclusions During HASMC proliferation, the expression levels of many tsRNAs are altered. AS-tDR-000067 and AS-tDR-000076 act as new factors promoting VSMC proliferation. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00346-4.
Collapse
Affiliation(s)
- Jian-Zhi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China.,Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi-Yao Li
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jia-Jie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Mei-Yang Du
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Ke-Xin Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Ze-An Jiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Huan-Huan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Bo Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Miao Gong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
43
|
Kretschmer M, Gapp K. Deciphering the RNA universe in sperm in its role as a vertical information carrier. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac011. [PMID: 35633894 PMCID: PMC9134061 DOI: 10.1093/eep/dvac011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/11/2022] [Accepted: 04/13/2022] [Indexed: 05/21/2023]
Abstract
The inheritance of neurophysiologic and neuropsychologic complex diseases can only partly be explained by the Mendelian concept of genetic inheritance. Previous research showed that both psychological disorders like post-traumatic stress disorder and metabolic diseases are more prevalent in the progeny of affected parents. This could suggest an epigenetic mode of transmission. Human studies give first insight into the scope of intergenerational influence of stressors but are limited in exploring the underlying mechanisms. Animal models have elucidated the mechanistic underpinnings of epigenetic transmission. In this review, we summarize progress on the mechanisms of paternal intergenerational transmission by means of sperm RNA in mouse models. We discuss relevant details for the modelling of RNA-mediated transmission, point towards currently unanswered questions and propose experimental considerations for tackling these questions.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Department of Health Sciences and Technology, ETH Zurich, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Neuroscience Centre Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Katharina Gapp
- Department of Health Sciences and Technology, ETH Zurich, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Neuroscience Centre Zurich, ETH Zurich and University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
44
|
Antitumor Activities of tRNA-Derived Fragments and tRNA Halves from Non-pathogenic Escherichia coli Strains on Colorectal Cancer and Their Structure-Activity Relationship. mSystems 2022; 7:e0016422. [PMID: 35400173 PMCID: PMC9040620 DOI: 10.1128/msystems.00164-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
tRNAs purified from non-pathogenic Escherichia coli strains (NPECSs) possess cytotoxic properties on colorectal cancer cells. In the present study, the bioactivity of tRNA halves and tRNA fragments (tRFs) derived from NPECSs are investigated for their anticancer potential. Both the tRNA halves and tRF mimics studied exhibited significant cytotoxicity on colorectal cancer cells, with the latter being more effective, suggesting that tRFs may be important contributors to the bioactivities of tRNAs derived from the gut microbiota. Through high-throughput screening, the EC83 mimic, a double-strand RNA with a 22-nucleotide (nt) 5′-tRF derived from tRNA-Leu(CAA) as an antisense chain, was identified as the one with the highest potency (50% inhibitory concentration [IC50] = 52 nM). Structure-activity investigations revealed that 2′-O-methylation of the ribose of guanosine (Gm) may enhance the cytotoxic effects of the EC83 mimic via increasing the stability of its tertiary structure, which is consistent with the results of in vivo investigations showing that the EC83-M2 mimic (Gm modified) exhibited stronger antitumor activity against both HCT-8 and LoVo xenografts. Consistently, 4-thiouridine modification does not. This provides the first evidence that the bioactivity of tRF mimics would be impacted by chemical modifications. Furthermore, the present study provides the first evidence to suggest that novel tRNA fragments derived from the gut microbiota may possess anticancer properties and have the potential to be potent and selective therapeutic molecules. IMPORTANCE While the gut microbiota has been increasingly recognized to be of vital importance for human health and disease, the current literature shows that there is a lack of attention given to non-pathogenic Escherichia coli strains. Moreover, the biological activities of tRNA fragments (tRFs) derived from bacteria have rarely been investigated. The findings from this study revealed tRFs as a new class of bioactive constituents derived from gut microorganisms, suggesting that studies on biological functional molecules in the intestinal microbiota should not neglect tRFs. Research on tRFs would play an important role in the biological research of gut microorganisms, including bacterium-bacterium interactions, the gut-brain axis, and the gut-liver axis, etc. Furthermore, the guidance on the rational design of tRF therapeutics provided in this study indicates that further investigations should pay more attention to these therapeutics from probiotics. The innovative drug research of tRFs as potent druggable RNA molecules derived from intestinal microorganisms would open a new area in biomedical sciences.
Collapse
|
45
|
A hypothesis: Retrotransposons as a relay of epigenetic marks in intergenerational epigenetic inheritance. Gene 2022; 817:146229. [PMID: 35063571 DOI: 10.1016/j.gene.2022.146229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Epigenetic marks in gametes, which both respond to the parental environmental factors and shape offspring phenotypes, are usually positioned to mediate intergenerational or transgenerational epigenetic inheritance. Nonetheless, the mechanisms through which gametic epigenetic signatures encode parental acquired phenotypes, and further initiate a cascade of molecular events to affect offspring phenotypes during early embryonic development, remain unclear. Retrotransposons are mobile DNA elements that could resist to genomic epigenetic reprogramming at specific loci and rewire the core regulatory networks of embryogenesis. Increasing evidences show that retrotransposons in the embryonic genome could interact with gametic epigenetic marks, which provides a tentative possibility that retrotransposons may serve as a relay of gametic epigenetic marks to transmit parental acquired traits. Here, we summarize the recent progress in exploring the crosstalk between gametic epigenetic marks and retrotransposons, and the regulation of gene expression and early embryonic development by retrotransposons. Accordingly, deciphering the mystery of interactions between gametic epigenetic marks and retrotransposons during early embryonic development will provide valuable insights into the intergenerational or transgenerational transmission of acquired traits.
Collapse
|
46
|
Sex-Specific Expression of Non-Coding RNA Fragments in Frontal Cortex, Hippocampus and Cerebellum of Rats. EPIGENOMES 2022; 6:epigenomes6020011. [PMID: 35466186 PMCID: PMC9036230 DOI: 10.3390/epigenomes6020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Non-coding RNA fragments (ncRFs) are processed from various non-coding RNAs (ncRNAs), with the most abundant being those produced from tRNAs. ncRFs were reported in many animal and plant species. Many ncRFs exhibit tissue specificity or/and are affected by stress. There is, however, only a handful of reports that describe differential expression of ncRFs in the brain regions. In this work, we analyzed the abundance of ncRFs processed from four major ncRNAs, including tRNA (tRFs), snoRNA (snoRFs), snRNA (snRFs), and rRNA (rRFs) in the frontal cortex (FC), hippocampus (HIP), and cerebellum (CER) of male and female rats. We found brain-specific and sex-specific differences. Reads mapping to lincRNAs were significantly larger in CER as compared to HIP and CER, while those mapping to snRNAs and tRNA were smaller in HIP than in FC and CER. tRF reads were the most abundant among all ncRF reads, and FC had more reads than HIP and CER. Reads mapping to antisense ncRNAs were significantly larger in females than in males in FC. Additionally, males consistently had more tRF, snRF, and snoRF reads in all brain regions. rRFs were more abundant in males in FC and females in HIP. Several tRFs were significantly underrepresented, including tRF-ValCAC, tRF-ValACC, and tRF-LysCTT in all brain regions. We also found brain- and sex-specific differences in the number of brain function-related mRNA targets. To summarize, we found sex-specific differences in the expression of several ncRNA fragments in various brain regions of healthy rats.
Collapse
|
47
|
Shi J, Zhou T, Chen Q. Exploring the expanding universe of small RNAs. Nat Cell Biol 2022; 24:415-423. [PMID: 35414016 PMCID: PMC9035129 DOI: 10.1038/s41556-022-00880-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
The world of small noncoding RNAs (sncRNAs) is ever-expanding, from small interfering RNA, microRNA and Piwi-interacting RNA to the recently emerging non-canonical sncRNAs derived from longer structured RNAs (for example, transfer, ribosomal, Y, small nucleolar, small nuclear and vault RNAs), showing distinct biogenesis and functional principles. Here we discuss recent tools for sncRNA identification, caveats in sncRNA expression analysis and emerging methods for direct sequencing of sncRNAs and systematic mapping of RNA modifications that are integral to their function.
Collapse
Affiliation(s)
- Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
| |
Collapse
|
48
|
Luo K, Li S, Zheng Z, Lai X, Ju M, Li C, Wan X. tsRNAs及其对植物响应非生物胁迫时基因表达的调控. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Qin C, Chen ZH, Cao R, Shi MJ, Tian Y. Differential Expression Profiles and Bioinformatics Analysis of tRNA-Derived Small RNAs in Muscle-Invasive Bladder Cancer in a Chinese Population. Genes (Basel) 2022; 13:genes13040601. [PMID: 35456407 PMCID: PMC9030102 DOI: 10.3390/genes13040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Muscle-invasive bladder cancer (MIBC) leads to a large societal burden. Recently, tRNA-derived small RNAs (tsRNAs), a novel type of noncoding RNA (ncRNAs), have been identified. However, the expression patterns and functions of tsRNAs in MIBC have not yet been identified. Here, RNA sequencing, bioinformatics, and quantitative reverse transcription- polymerase chain reaction (qRT-PCR) were used to screen the expression profiles and predict the potential roles of tsRNAs in MIBC. Of 406 tsRNAs differentially expressed in MIBC tissues, 91 tsRNAs were significantly differentially expressed. Then, four candidate tsRNAs, tiRNA-1:34-Val-CAC-2, tiRNA-1:33-Gly-GCC-1, tRF-1:32-Gly-GCC-1, and tRF-+1:T20-Ser-TGA-1, were selected. Next, a bioinformatics analysis showed the potential target genes and tsRNA–mRNA network. The most significant and meaningful terms of gene ontology were the positive regulation of the phosphate metabolic process, lamellipodium, and protein-cysteine S-acyltransferase activity in the biological process, cellular component, and molecular function, respectively. In addition, the top four pathways were predicted by the Kyoto Encyclopedia of Genes and Genomes database (KEGG). Finally, qRT-PCR demonstrated a similar expression pattern compared to sequencing data for the candidate tsRNAs. In short, we find differential expression profiles and predict that tiRNA-1:33-Gly-GCC-1, tRF-1:32-Gly-GCC-1, and tRF-+1:T20-Ser-TGA-1 are very likely to engage in the pathophysiological process of MIBC via regulating the target genes in the key pathways.
Collapse
Affiliation(s)
| | | | | | | | - Ye Tian
- Correspondence: ; Tel.: +86-010-63138377
| |
Collapse
|
50
|
The methyl phosphate capping enzyme Bmc1/Bin3 is a stable component of the fission yeast telomerase holoenzyme. Nat Commun 2022; 13:1277. [PMID: 35277511 PMCID: PMC8917221 DOI: 10.1038/s41467-022-28985-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
The telomerase holoenzyme is critical for maintaining eukaryotic genome integrity. In addition to a reverse transcriptase and an RNA template, telomerase contains additional proteins that protect the telomerase RNA and promote holoenzyme assembly. Here we report that the methyl phosphate capping enzyme (MePCE) Bmc1/Bin3 is a stable component of the S. pombe telomerase holoenzyme. Bmc1 associates with the telomerase holoenzyme and U6 snRNA through an interaction with the recently described LARP7 family member Pof8, and we demonstrate that these two factors are evolutionarily linked in fungi. Our data suggest that the association of Bmc1 with telomerase is independent of its methyltransferase activity, but rather that Bmc1 functions in telomerase holoenzyme assembly by promoting TER1 accumulation and Pof8 recruitment to TER1. Taken together, this work yields new insight into the composition, assembly, and regulation of the telomerase holoenzyme in fission yeast as well as the breadth of its evolutionary conservation.
Collapse
|