1
|
Odiba AS, Ezechukwu CS, Liao G, Hong Y, Fang W, Jin C, Gartner A, Wang B. SMC-5/6 complex subunit NSE-1 plays a crucial role in meiosis and DNA repair in Caenorhabditis elegans. DNA Repair (Amst) 2024; 137:103669. [PMID: 38507953 DOI: 10.1016/j.dnarep.2024.103669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
The SMC5/6 complex is evolutionarily conserved across all eukaryotes and plays a pivotal role in preserving genomic stability. Mutations in genes encoding SMC5/6 complex subunits have been associated with human lung disease, immunodeficiency, and chromosome breakage syndrome. Despite its critical importance, much about the SMC5/6 complex remains to be elucidated. Various evidences have suggested possible role of a subunit of the SMC5/6 complex, NSE1, in chromosome segregation and DNA repair. Current knowledge regarding the role of NSE1 is primarily derived from single-cell-based analyses in yeasts, Arabidopsis thaliana, and human cell lines. However, our understanding of its function is still limited and requires further investigation. This study delves into the role of nse-1 in Caenorhabditis elegans, revealing its involvement in meiotic recombination and DNA repair. nse-1 mutants display reduced fertility, increased male incidence, and increased sensitivity to genotoxic chemicals due to defects in meiotic chromosome segregation and DNA repair. These defects manifest as increased accumulation of RAD-51 foci, increased chromosome fragmentation, and susceptibility to MMS, cisplatin, and HU. Furthermore, nse-1 mutation exacerbates germ cell death by upregulating ced-13 and egl-1 genes involved in the CEP-1/p53-mediated apoptotic pathway. NSE-1 is essential for the proper localization of NSE-4 and MAGE-1 on the chromosomes. Collectively, these findings firmly establish nse-1 as a crucial factor in maintaining genomic stability.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Guiyan Liao
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Ye Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Wenxia Fang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Cheng Jin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Anton Gartner
- IBS Center for Genomic Integrity, Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
2
|
Odiba AS, Liao G, Ezechukwu CS, Zhang L, Hong Y, Fang W, Jin C, Gartner A, Wang B. Caenorhabditis elegans NSE3 homolog (MAGE-1) is involved in genome stability and acts in inter-sister recombination during meiosis. Genetics 2023; 225:iyad149. [PMID: 37579186 PMCID: PMC10691751 DOI: 10.1093/genetics/iyad149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
Melanoma antigen (MAGE) genes encode for a family of proteins that share a common MAGE homology domain. These genes are conserved in eukaryotes and have been linked to a variety of cellular and developmental processes including ubiquitination and oncogenesis in cancer. Current knowledge on the MAGE family of proteins mainly comes from the analysis of yeast and human cell lines, and their functions have not been reported at an organismal level in animals. Caenorhabditis elegans only encodes 1 known MAGE gene member, mage-1 (NSE3 in yeast), forming part of the SMC-5/6 complex. Here, we characterize the role of mage-1/nse-3 in mitosis and meiosis in C. elegans. mage-1/nse-3 has a role in inter-sister recombination repair during meiotic recombination and for preserving chromosomal integrity upon treatment with a variety of DNA-damaging agents. MAGE-1 directly interacts with NSE-1 and NSE-4. In contrast to smc-5, smc-6, and nse-4 mutants which cause the loss of NSE-1 nuclear localization and strong cytoplasmic accumulation, mage-1/nse-3 mutants have a reduced level of NSE-1::GFP, remnant NSE-1::GFP being partially nuclear but largely cytoplasmic. Our data suggest that MAGE-1 is essential for NSE-1 stability and the proper functioning of the SMC-5/6 complex.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guiyan Liao
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Chiemekam Samuel Ezechukwu
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Lanlan Zhang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ye Hong
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Wenxia Fang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Cheng Jin
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Anton Gartner
- IBS Center for Genomic Integrity, Department for Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Bin Wang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
3
|
Han S, Sims A, Aceto A, Schmidt BF, Bruchez MP, Gurkar AU. A Chemoptogenetic Tool for Spatiotemporal Induction of Oxidative DNA Lesions In Vivo. Genes (Basel) 2023; 14:485. [PMID: 36833412 PMCID: PMC9956269 DOI: 10.3390/genes14020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Oxidative nuclear DNA damage increases in all tissues with age in multiple animal models, as well as in humans. However, the increase in DNA oxidation varies from tissue to tissue, suggesting that certain cells/tissues may be more vulnerable to DNA damage than others. The lack of a tool that can control dosage and spatiotemporal induction of oxidative DNA damage, which accumulates with age, has severely limited our ability to understand how DNA damage drives aging and age-related diseases. To overcome this, here we developed a chemoptogenetic tool that produces 8-oxoguanine (8-oxoG) at DNA in a whole organism, Caenorhabditis elegans. This tool uses di-iodinated malachite green (MG-2I) photosensitizer dye that generates singlet oxygen, 1O2, upon fluorogen activating peptide (FAP) binding and excitation with far-red light. Using our chemoptogenetic tool, we are able to control generation of singlet oxygen ubiquitously or in a tissue-specific manner, including in neurons and muscle cells. To induce oxidative DNA damage, we targeted our chemoptogenetic tool to histone, his-72, that is expressed in all cell types. Our results show that a single exposure to dye and light is able to induce DNA damage, promote embryonic lethality, lead to developmental delay, and significantly reduce lifespan. Our chemoptogenetic tool will now allow us to assess the cell autonomous versus non-cell autonomous role of DNA damage in aging, at an organismal level.
Collapse
Affiliation(s)
- Suhao Han
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA 15219, USA
| | - Austin Sims
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA 15219, USA
| | - Anthony Aceto
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA 15219, USA
| | - Brigitte F. Schmidt
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Marcel P. Bruchez
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Aditi U. Gurkar
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA 15219, USA
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Kaufmann Medical Building Suite 500, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Sun B, Sherrin M, Roy R. Unscheduled epigenetic modifications cause genome instability and sterility through aberrant R-loops following starvation. Nucleic Acids Res 2022; 51:84-98. [PMID: 36504323 PMCID: PMC9841415 DOI: 10.1093/nar/gkac1155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
During starvation, organisms modify both gene expression and metabolism to adjust to the energy stress. We previously reported that Caenorhabditis elegans lacing AMP-activated protein kinase (AMPK) exhibit transgenerational reproductive defects associated with abnormally elevated trimethylated histone H3 at lysine 4 (H3K4me3) levels in the germ line following recovery from acute starvation. Here, we show that these H3K4me3 marks are significantly increased at promoters, driving aberrant transcription elongation resulting in the accumulation of R-loops in starved AMPK mutants. DNA-RNA immunoprecipitation followed by high-throughput sequencing (DRIP-seq) analysis demonstrated that a significant proportion of the genome was affected by R-loop formation. This was most pronounced in the promoter-transcription start site regions of genes, in which the chromatin was modified by H3K4me3. Like H3K4me3, the R-loops were also found to be heritable, likely contributing to the transgenerational reproductive defects typical of these mutants following starvation. Strikingly, AMPK mutant germ lines show considerably more RAD-51 (the RecA recombinase) foci at sites of R-loop formation, potentially sequestering them from their roles at meiotic breaks or at sites of induced DNA damage. Our study reveals a previously unforeseen role of AMPK in maintaining genome stability following starvation. The downstream effects of R-loops on DNA damage sensitivity and germline stem cell integrity may account for inappropriate epigenetic modification that occurs in numerous human disorders, including various cancers.
Collapse
Affiliation(s)
- Bing Sun
- To whom correspondence should be addressed.
| | - McLean Sherrin
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Richard Roy
- Correspondence may also be addressed to Richard Roy. Tel: +1 514 398 6437;
| |
Collapse
|
5
|
Continuous double-strand break induction and their differential processing sustain chiasma formation during Caenorhabditis elegans meiosis. Cell Rep 2022; 40:111403. [PMID: 36170820 DOI: 10.1016/j.celrep.2022.111403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Faithful chromosome segregation into gametes depends on Spo11-induced DNA double-strand breaks (DSBs). These yield single-stranded 3' tails upon resection to promote crossovers (COs). While early Mre11-dependent end resection is the predominant pathway in most organisms, Exo1 or Dna2/BLM can also contribute to the efficient processing of meiotic DSBs. Although its enzymatic activity has been thoroughly dissected, the temporal dynamics underlying Spo11 activity have remained mostly elusive. We show that, in Caenorhabditis elegans, SPO-11-mediated DSB induction takes place throughout early meiotic prophase I until mid-late pachynema. We find that late DSBs are essential for CO formation and are preferentially processed by EXO-1 and DNA-2 in a redundant fashion. Further, EXO-1-DNA-2-mediated resection ensures completion of conservative DSB repair and discourages activation of KU-dependent end joining. Taken together, our data unveil important temporal aspects of DSB induction and identify previously unknown functional implications for EXO-1-DNA-2-mediated resection activity in C. elegans.
Collapse
|
6
|
Shah P, Bao Z, Zaidel-Bar R. Visualizing and quantifying molecular and cellular processes in C. elegans using light microscopy. Genetics 2022; 221:6619563. [PMID: 35766819 DOI: 10.1093/genetics/iyac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
Light microscopes are the cell and developmental biologists' "best friend", providing a means to see structures and follow dynamics from the protein to the organism level. A huge advantage of C. elegans as a model organism is its transparency, which coupled with its small size means that nearly every biological process can be observed and measured with the appropriate probe and light microscope. Continuous improvement in microscope technologies along with novel genome editing techniques to create transgenic probes have facilitated the development and implementation of a dizzying array of methods for imaging worm embryos, larvae and adults. In this review we provide an overview of the molecular and cellular processes that can be visualized in living worms using light microscopy. A partial inventory of fluorescent probes and techniques successfully used in worms to image the dynamics of cells, organelles, DNA, and protein localization and activity is followed by a practical guide to choosing between various imaging modalities, including widefield, confocal, lightsheet, and structured illumination microscopy. Finally, we discuss the available tools and approaches, including machine learning, for quantitative image analysis tasks, such as colocalization, segmentation, object tracking, and lineage tracing. Hopefully, this review will inspire worm researchers who have not yet imaged their worms to begin, and push those who are imaging to go faster, finer, and longer.
Collapse
Affiliation(s)
- Pavak Shah
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles 90095, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Mechanism of mitotic recombination: insights from C. elegans. Curr Opin Genet Dev 2021; 71:10-18. [PMID: 34186335 PMCID: PMC8683258 DOI: 10.1016/j.gde.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
Homologous recombination (HR) plays a critical role in largely error-free repair of mitotic and meiotic DNA double-strand breaks (DSBs). DSBs are one of the most deleterious DNA lesions, which are repaired by non-homologous end joining (NHEJ), homologous recombination (HR) or, if compromised, micro-homology mediated end joining (MMEJ). If left unrepaired, DSBs can lead to cell death or if repaired incorrectly can result in chromosome rearrangements that drive cancer development. Here, we describe recent advances in the field of mitotic HR made using Caenorhabditis elegans roundworm, as a model system.
Collapse
|
8
|
Raices M, Bowman R, Smolikove S, Yanowitz JL. Aging Negatively Impacts DNA Repair and Bivalent Formation in the C. elegans Germ Line. Front Cell Dev Biol 2021; 9:695333. [PMID: 34422819 PMCID: PMC8371636 DOI: 10.3389/fcell.2021.695333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Defects in crossover (CO) formation during meiosis are a leading cause of birth defects, embryonic lethality, and infertility. In a wide range of species, maternal aging increases aneuploidy and decreases oocyte quality. In C. elegans which produce oocytes throughout the first half of adulthood, aging both decreases oocytes quality and increases meiotic errors. Phenotypes of mutations in genes encoding double-strand break (DSB)-associated proteins get more severe with maternal age suggesting that early meiosis reflects a particularly sensitive node during reproductive aging in the worm. We observed that aging has a direct effect on the integrity of C. elegans meiotic CO formation, as observed by an increase of univalent chromosomes and fusions at diakinesis, with a considerable increase starting at 4 days. We also characterize the possible causes for the age-related changes in CO formation by analyzing both steady-state levels and kinetics of the ssDNA binding proteins RPA-1 and RAD-51. Profound reductions in numbers of both RPA-1 and RAD-51 foci suggests that both DSB formation and early meiotic repair are compromised in aging worms. Using laser microirradiation and γ-irradiation to induce exogenous damage, we show specifically that recruitment of these homologous recombination proteins is altered. Repair defects can be seen in two-and-one-half day-old adults making the loss of germline repair capacity among the earliest aging phenotypes in the worm.
Collapse
Affiliation(s)
- Marilina Raices
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Richard Bowman
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | - Sarit Smolikove
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | - Judith L Yanowitz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Developmental Biology, Microbiology and Molecular Genetics, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Harrell K, Day M, Smolikove S. Recruitment of MRE-11 to complex DNA damage is modulated by meiosis-specific chromosome organization. Mutat Res 2021; 822:111743. [PMID: 33975127 DOI: 10.1016/j.mrfmmm.2021.111743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/11/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are one of the most dangerous assaults on the genome, and yet their natural and programmed production are inherent to life. When DSBs arise close together they are particularly deleterious, and their repair may require an altered form of the DNA damage response. Our understanding of how clustered DSBs are repaired in the germline is unknown. Using laser microirradiation, we examine early events in the repair of clustered DSBs in germ cells within Caenorhabditis elegans. We use precise temporal resolution to show how the recruitment of MRE-11 to complex damage is regulated, and that clustered DNA damage can recruit proteins from various repair pathways. Abrogation of non-homologous end joining or COM-1 attenuates the recruitment of MRE-11 through distinct mechanisms. The synaptonemal complex plays both positive and negative regulatory roles in these mutant contexts. These findings indicate that MRE-11 is regulated by modifying its accessibility to chromosomes.
Collapse
Affiliation(s)
- Kailey Harrell
- Department of Biology, University of Iowa, Iowa City, IA, 52241, USA
| | - Madison Day
- Department of Biology, University of Iowa, Iowa City, IA, 52241, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA, 52241, USA.
| |
Collapse
|
10
|
Hefel A, Honda M, Cronin N, Harrell K, Patel P, Spies M, Smolikove S. RPA complexes in Caenorhabditis elegans meiosis; unique roles in replication, meiotic recombination and apoptosis. Nucleic Acids Res 2021; 49:2005-2026. [PMID: 33476370 PMCID: PMC7913698 DOI: 10.1093/nar/gkaa1293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Replication Protein A (RPA) is a critical complex that acts in replication and promotes homologous recombination by allowing recombinase recruitment to processed DSB ends. Most organisms possess three RPA subunits (RPA1, RPA2, RPA3) that form a trimeric complex critical for viability. The Caenorhabditis elegans genome encodes RPA-1, RPA-2 and an RPA-2 paralog RPA-4. In our analysis, we determined that RPA-2 is critical for germline replication and normal repair of meiotic DSBs. Interestingly, RPA-1 but not RPA-2 is essential for somatic replication, in contrast to other organisms that require both subunits. Six different hetero- and homodimeric complexes containing permutations of RPA-1, RPA-2 and RPA-4 can be detected in whole animal extracts. Our in vivo studies indicate that RPA-1/4 dimer is less abundant in the nucleus and its formation is inhibited by RPA-2. While RPA-4 does not participate in replication or recombination, we find that RPA-4 inhibits RAD-51 filament formation and promotes apoptosis of a subset of damaged nuclei. Altogether these findings point to sub-functionalization and antagonistic roles of RPA complexes in C. elegans.
Collapse
Affiliation(s)
- Adam Hefel
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Masayoshi Honda
- Department of Biochemistry, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Nicholas Cronin
- Department of Biochemistry, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kailey Harrell
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Pooja Patel
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Maria Spies
- Department of Biochemistry, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sarit Smolikove
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|
12
|
Vicencio J, Cerón J. A Living Organism in your CRISPR Toolbox: Caenorhabditis elegans Is a Rapid and Efficient Model for Developing CRISPR-Cas Technologies. CRISPR J 2021; 4:32-42. [PMID: 33538637 DOI: 10.1089/crispr.2020.0103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Cas9 nuclease from Streptococcus pyogenes (SpCas9) is the most popular enzyme for CRISPR technologies. However, considering the wide diversity of microorganisms (discovered and still unknown), a massive number of CRISPR effectors are being and will be identified and characterized in the search of optimal Cas variants for each of the many applications of CRISPR. In this context, a versatile and efficient multicellular system for CRISPR editing such as Caenorhabditis elegans would be of great help in the development of these effectors. Here, we highlight the benefits of using C. elegans for the rapid evaluation of new CRISPR effectors, and for optimizing CRISPR efficiency in animals in several ways such as by modulating the balance between repair pathways, modifying chromatin accessibility, or controlling the expression and activity of nucleases and guide RNAs.
Collapse
Affiliation(s)
- Jeremy Vicencio
- Modeling human diseases in C. elegans Group, Genes, Disease and Therapy Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Julián Cerón
- Modeling human diseases in C. elegans Group, Genes, Disease and Therapy Program, Bellvitge Biomedical Research Institute-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
13
|
Li Q, Hariri S, Engebrecht J. Meiotic Double-Strand Break Processing and Crossover Patterning Are Regulated in a Sex-Specific Manner by BRCA1-BARD1 in Caenorhabditis elegans. Genetics 2020; 216:359-379. [PMID: 32796008 PMCID: PMC7536853 DOI: 10.1534/genetics.120.303292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022] Open
Abstract
Meiosis is regulated in a sex-specific manner to produce two distinct gametes, sperm and oocytes, for sexual reproduction. To determine how meiotic recombination is regulated in spermatogenesis, we analyzed the meiotic phenotypes of mutants in the tumor suppressor E3 ubiquitin ligase BRC-1-BRD-1 complex in Caenorhabditis elegans male meiosis. Unlike in mammals, this complex is not required for meiotic sex chromosome inactivation, the process whereby hemizygous sex chromosomes are transcriptionally silenced. Interestingly, brc-1 and brd-1 mutants show meiotic recombination phenotypes that are largely opposing to those previously reported for female meiosis. Fewer meiotic recombination intermediates marked by the recombinase RAD-51 were observed in brc-1 and brd-1 mutants, and the reduction in RAD-51 foci could be suppressed by mutation of nonhomologous-end-joining proteins. Analysis of GFP::RPA-1 revealed fewer foci in the brc-1brd-1 mutant and concentration of BRC-1-BRD-1 to sites of meiotic recombination was dependent on DNA end resection, suggesting that the complex regulates the processing of meiotic double-strand breaks to promote repair by homologous recombination. Further, BRC-1-BRD-1 is important to promote progeny viability when male meiosis is perturbed by mutations that block the pairing and synapsis of different chromosome pairs, although the complex is not required to stabilize the RAD-51 filament as in female meiosis under the same conditions. Analyses of crossover designation and formation revealed that BRC-1-BRD-1 inhibits supernumerary COs when meiosis is perturbed. Together, our findings suggest that BRC-1-BRD-1 regulates different aspects of meiotic recombination in male and female meiosis.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| | - Sara Hariri
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| |
Collapse
|
14
|
Oh S, Bae W, Alfhili MA, Lee MH. Nucleotide Excision Repair, XPA-1, and the Translesion Synthesis Complex, POLZ-1 and REV-1, Are Critical for Interstrand Cross-Link Repair in Caenorhabditis elegans Germ Cells. Biochemistry 2020; 59:3554-3561. [PMID: 32945661 DOI: 10.1021/acs.biochem.0c00719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interstrand cross-links (ICLs) are adducts of covalently linked nucleotides in opposing DNA strands that obstruct replication and prime cells for malignant transformation or premature cell death. ICLs may be caused by alkylating agents or ultraviolet (UV) irradiation. These toxic lesions are removed by diverse repair mechanisms such as the Fanconi anemia (FA) pathway, nucleotide excision repair (NER), translesion synthesis (TLS), and homologous recombination (HR). In mammals, the xeroderma pigmentosum group F (XP-F) protein participates in both the FA pathway and NER, while DNA polymerase ζ (POLZ-1) and REV-1 mediate TLS. Nevertheless, little is known regarding the genetic determinants of these pathways in ICL repair and damage tolerance in germ cells. In this study, we examined the sensitivity of Caenorhabditis elegans germ cells to ICLs generated by trimethylpsoralen/ultraviolet A (TMP/UV-A) combination, and embryonic mortality was employed as a surrogate for DNA damage in germ cells. Our results show that XPA-1, POLZ-1, and REV-1 were more critical than FA pathway mediators in preserving genomic stability in C. elegans germ cells. Notably, mutant worms lacking both XPA-1 and POLZ-1 (or REV-1) were more sensitive to ICLs compared to either single mutant alone. Moreover, knockdown of XPA-1 and REV-1 leads to the retarded disappearance of RPA-1 and RAD-51 foci upon ICL damage. Since DNA repair mechanisms are broadly conserved, our findings may have ramifications for prospective therapeutic interventions in humans.
Collapse
Affiliation(s)
- Sinae Oh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 03772 Seoul, South Korea
| | - Woori Bae
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 03772 Seoul, South Korea
| | - Mohammad A Alfhili
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Myon Hee Lee
- Department of Internal Medicine, Hematology/Oncology Division, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| |
Collapse
|
15
|
Mohseni-Salehi FS, Zare-Mirakabad F, Sadeghi M, Ghafouri-Fard S. A Stochastic Model of DNA Double-Strand Breaks Repair Throughout the Cell Cycle. Bull Math Biol 2020; 82:11. [PMID: 31933029 DOI: 10.1007/s11538-019-00692-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/20/2019] [Indexed: 01/15/2023]
Abstract
Cell cycle phase is a decisive factor in determining the repair pathway of DNA double-strand breaks (DSBs) by non-homologous end joining (NHEJ) or homologous recombination (HR). Recent experimental studies revealed that 53BP1 and BRCA1 are the key mediators of the DNA damage response (DDR) with antagonizing roles in choosing the appropriate DSB repair pathway in G1, S, and G2 phases. Here, we present a stochastic model of biochemical kinetics involved in detecting and repairing DNA DSBs induced by ionizing radiation during the cell cycle progression. A three-dimensional stochastic process is defined to monitor the cell cycle phase and DSBs repair at times after irradiation. To estimate the model parameters, a Metropolis Monte Carlo method is applied to perform maximum likelihood estimation utilizing the kinetics of γ-H2AX and RAD51 foci formation in G1, S, and G2 phases. The recruitment of DSB repair proteins is verified by comparing our model predictions with the corresponding experimental data on human cells after exposure to X and γ-radiation. Furthermore, the interaction between 53BP1 and BRCA1 is simulated for G1 and S/G2 phases determining the competition between NHEJ and HR pathways in repairing induced DSBs throughout the cell cycle. In accordance with recent biological data, the numerical results demonstrate that the maximum proportion of HR occurs in S phase cells and the high level of NHEJ takes place in G1 and G2 phases. Moreover, the stochastic realizations of the total yield of simple and complex DSBs ligation are compared for G1 and S/G2 damaged cells. Finally, the proposed stochastic model is validated when DSBs induced by different particle radiation such as iron, silicon, oxygen, proton, and carbon.
Collapse
Affiliation(s)
- Fazeleh S Mohseni-Salehi
- Mathematics and Computer Science Department, Amirkabir University of Technology (Tehran Polytechinc), Tehran, Iran
| | - Fatemeh Zare-Mirakabad
- Mathematics and Computer Science Department, Amirkabir University of Technology (Tehran Polytechinc), Tehran, Iran.
| | - Mehdi Sadeghi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Alleva B, Clausen S, Koury E, Hefel A, Smolikove S. CRL4 regulates recombination and synaptonemal complex aggregation in the Caenorhabditis elegans germline. PLoS Genet 2019; 15:e1008486. [PMID: 31738749 PMCID: PMC6886871 DOI: 10.1371/journal.pgen.1008486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/02/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023] Open
Abstract
To maintain the integrity of the genome, meiotic DNA double strand breaks (DSBs) need to form by the meiosis-specific nuclease Spo11 and be repaired by homologous recombination. One class of products formed by recombination are crossovers, which are required for proper chromosome segregation in the first meiotic division. The synaptonemal complex (SC) is a protein structure that connects homologous chromosomes during meiotic prophase I. The proper assembly of the SC is important for recombination, crossover formation, and the subsequent chromosome segregation. Here we identify the components of Cullin RING E3 ubiquitin ligase 4 (CRL4) that play a role in SC assembly in Caenorhabditis elegans. Mutants of the CRL4 complex (cul-4, ddb-1, and gad-1) show defects in SC assembly manifested in the formation of polycomplexes (PCs), impaired progression of meiotic recombination, and reduction in crossover numbers. PCs that are formed in cul-4 mutants lack the mobile properties of wild type SC, but are likely not a direct target of ubiquitination. In C. elegans, SC assembly does not require recombination and there is no evidence that PC formation is regulated by recombination as well. However, in one cul-4 mutant PC formation is dependent upon early meiotic recombination, indicating that proper assembly of the SC can be diminished by recombination in some scenarios. Lastly, our studies suggest that CUL-4 deregulation leads to transposition of the Tc3 transposable element, and defects in formation of SPO-11-mediated DSBs. Our studies highlight previously unknown functions of CRL4 in C. elegans meiosis and show that CUL-4 likely plays multiple roles in meiosis that are essential for maintaining genome integrity. Defects in the formation of the structure named the synaptonemal complex (SC) lead to the missegregation of chromosomes in the divisions that generate sperm and egg cells. In humans, this chromosome missegregation is associated with infertility and developmental disabilities of the surviving progeny. Abnormal SC structures composed of misfolded and aggregated SC proteins are associated with an inability to properly repair DNA damage and accurately segregate meiotic chromosomes. How SC proteins assemble such that they do not form misfolded protein aggregates is poorly understood. The germlines of nematodes (Caenorhabditis elegans) that lack protein components of the Cullin 4 E3 Ubiquitin ligase complex (CRL4), have defects in the formation of the SC that can be due to misfolding of SC proteins and their aggregation. CRL4 appears to be involved in other germline functions that directly affect chromosome stability (DNA damage repair and transposition), indicating that CRL4 has a central function in the formation of functional sperm and egg cells.
Collapse
Affiliation(s)
- Benjamin Alleva
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sean Clausen
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Emily Koury
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Adam Hefel
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sarit Smolikove
- The department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
17
|
Torfeh E, Simon M, Muggiolu G, Devès G, Vianna F, Bourret S, Incerti S, Barberet P, Seznec H. Monte-Carlo dosimetry and real-time imaging of targeted irradiation consequences in 2-cell stage Caenorhabditis elegans embryo. Sci Rep 2019; 9:10568. [PMID: 31332255 PMCID: PMC6646656 DOI: 10.1038/s41598-019-47122-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Charged-particle microbeams (CPMs) provide a unique opportunity to investigate the effects of ionizing radiation on living biological specimens with a precise control of the delivered dose, i.e. the number of particles per cell. We describe a methodology to manipulate and micro-irradiate early stage C. elegans embryos at a specific phase of the cell division and with a controlled dose using a CPM. To validate this approach, we observe the radiation-induced damage, such as reduced cell mobility, incomplete cell division and the appearance of chromatin bridges during embryo development, in different strains expressing GFP-tagged proteins in situ after irradiation. In addition, as the dosimetry of such experiments cannot be extrapolated from random irradiations of cell populations, realistic three-dimensional models of 2 cell-stage embryo were imported into the Geant4 Monte-Carlo simulation toolkit. Using this method, we investigate the energy deposit in various chromatin condensation states during the cell division phases. The experimental approach coupled to Monte-Carlo simulations provides a way to selectively irradiate a single cell in a rapidly dividing multicellular model with a reproducible dose. This method opens the way to dose-effect investigations following targeted irradiation.
Collapse
Affiliation(s)
- Eva Torfeh
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Marina Simon
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Giovanna Muggiolu
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Guillaume Devès
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - François Vianna
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,François Vianna: Institut de Radioprotection et de Sûreté Nucléaire, Bat.159, BP3, 13115, St-Paul-Lez-Durance, Cedex, France
| | - Stéphane Bourret
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Sébastien Incerti
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France
| | - Philippe Barberet
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France. .,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.
| | - Hervé Seznec
- Université de Bordeaux, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France. .,CNRS, UMR5797, Centre d'Etudes Nucléaires Bordeaux Gradignan (CENBG), Chemin du Solarium, 33175, Gradignan, France.
| |
Collapse
|
18
|
Tissue-Specific Split sfGFP System for Streamlined Expression of GFP Tagged Proteins in the Caenorhabditis elegans Germline. G3-GENES GENOMES GENETICS 2019; 9:1933-1943. [PMID: 30992318 PMCID: PMC6553534 DOI: 10.1534/g3.119.400162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Identifying protein localization is a useful tool in analyzing protein function. Using GFP-fusion tags, researchers can study the function of endogenous proteins in living tissue. However, these tags are considerably large, making them difficult to insert, and they can potentially affect the normal function of these proteins. To improve on these drawbacks, we have adopted the split sfGFP system for studying the localization of proteins in the Caenorhabditis elegans germline. This system divides the “super folder” GFP into 2 fragments, allowing researchers to use CRISPR/Cas9 to tag proteins more easily with the smaller subunit, while constitutively expressing the larger subunit from another locus. These two parts are able to stably interact, producing a functional GFP when both fragments are in the same cellular compartment. Our data demonstrate that the split sfGFP system can be adapted for use in C. elegans to tag endogenous proteins with relative ease. Strains containing the tags are homozygous viable and fertile. These small subunit tags produce fluorescent signals that matched the localization patterns of the wild-type protein in the gonad. Thus, our study shows that this approach could be used for tissue-specific GFP expression from an endogenous locus.
Collapse
|
19
|
Yang B, Xu X, Russell L, Sullenberger MT, Yanowitz JL, Maine EM. A DNA repair protein and histone methyltransferase interact to promote genome stability in the Caenorhabditis elegans germ line. PLoS Genet 2019; 15:e1007992. [PMID: 30794539 PMCID: PMC6402707 DOI: 10.1371/journal.pgen.1007992] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 03/06/2019] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
Histone modifications regulate gene expression and chromosomal events, yet how histone-modifying enzymes are targeted is poorly understood. Here we report that a conserved DNA repair protein, SMRC-1, associates with MET-2, the C. elegans histone methyltransferase responsible for H3K9me1 and me2 deposition. We used molecular, genetic, and biochemical methods to investigate the biological role of SMRC-1 and to explore its relationship with MET-2. SMRC-1, like its mammalian ortholog SMARCAL1, provides protection from DNA replication stress. SMRC-1 limits accumulation of DNA damage and promotes germline and embryonic viability. MET-2 and SMRC-1 localize to mitotic and meiotic germline nuclei, and SMRC-1 promotes an increase in MET-2 abundance in mitotic germline nuclei upon replication stress. In the absence of SMRC-1, germline H3K9me2 generally decreases after multiple generations at high culture temperature. Genetic data are consistent with MET-2 and SMRC-1 functioning together to limit replication stress in the germ line and in parallel to promote other germline processes. We hypothesize that loss of SMRC-1 activity causes chronic replication stress, in part because of insufficient recruitment of MET-2 to nuclei.
Collapse
Affiliation(s)
- Bing Yang
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Xia Xu
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Logan Russell
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | | | - Judith L. Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Eleanor M. Maine
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
20
|
Li Q, Saito TT, Martinez-Garcia M, Deshong AJ, Nadarajan S, Lawrence KS, Checchi PM, Colaiacovo MP, Engebrecht J. The tumor suppressor BRCA1-BARD1 complex localizes to the synaptonemal complex and regulates recombination under meiotic dysfunction in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007701. [PMID: 30383767 PMCID: PMC6211623 DOI: 10.1371/journal.pgen.1007701] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) and binding partner BRCA1-associated RING domain protein 1 (BARD1) form an essential E3 ubiquitin ligase important for DNA damage repair and homologous recombination. The Caenorhabditis elegans orthologs, BRC-1 and BRD-1, also function in DNA damage repair, homologous recombination, as well as in meiosis. Using functional GFP fusions we show that in mitotically-dividing germ cells BRC-1 and BRD-1 are nucleoplasmic with enrichment at foci that partially overlap with the recombinase RAD-51. Co-localization with RAD-51 is enhanced under replication stress. As cells enter meiosis, BRC-1-BRD-1 remains nucleoplasmic and in foci, and beginning in mid-pachytene the complex co-localizes with the synaptonemal complex. Following establishment of the single asymmetrically positioned crossover on each chromosome pair, BRC-1-BRD-1 concentrates to the short arm of the bivalent. Localization dependencies reveal that BRC-1 and BRD-1 are interdependent and the complex fails to properly localize in both meiotic recombination and chromosome synapsis mutants. Consistent with a role for BRC-1-BRD-1 in meiotic recombination in the context of the synaptonemal complex, inactivation of BRC-1 or BRD-1 enhances the embryonic lethality of mutants defective in chromosome synapsis. Our data suggest that under meiotic dysfunction, BRC-1-BRD-1 stabilizes the RAD-51 filament and alters the recombination landscape; these two functions can be genetically separated from BRC-1-BRD-1's role in the DNA damage response. Together, we propose that BRC-1-BRD-1 serves a checkpoint function at the synaptonemal complex where it monitors and modulates meiotic recombination.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, University of California Davis; Davis CA, United States of America
| | - Takamune T. Saito
- Department of Genetics, Harvard Medical School; Boston, MA, United States of America
| | | | - Alison J. Deshong
- Department of Molecular and Cellular Biology, University of California Davis; Davis CA, United States of America
| | | | - Katherine S. Lawrence
- Department of Molecular and Cellular Biology, University of California Davis; Davis CA, United States of America
| | - Paula M. Checchi
- Department of Molecular and Cellular Biology, University of California Davis; Davis CA, United States of America
| | - Monica P. Colaiacovo
- Department of Genetics, Harvard Medical School; Boston, MA, United States of America
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis; Davis CA, United States of America
- * E-mail:
| |
Collapse
|
21
|
Macaisne N, Kessler Z, Yanowitz JL. Meiotic Double-Strand Break Proteins Influence Repair Pathway Utilization. Genetics 2018; 210:843-856. [PMID: 30242011 PMCID: PMC6218235 DOI: 10.1534/genetics.118.301402] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Double-strand breaks (DSBs) are among the most deleterious lesions DNA can endure. Yet, DSBs are programmed at the onset of meiosis, and are required to facilitate appropriate reduction of ploidy in daughter cells. Repair of these breaks is tightly controlled to favor homologous recombination (HR)-the only repair pathway that can form crossovers. However, little is known about how the activities of alternative repair pathways are regulated at these stages. We discovered an unexpected synthetic interaction between the DSB machinery and strand-exchange proteins. Depleting the Caenorhabditis elegans DSB-promoting factors HIM-5 and DSB-2 suppresses the formation of chromosome fusions that arise in the absence of RAD-51 or other strand-exchange mediators. Our investigations reveal that nonhomologous and theta-mediated end joining (c-NHEJ and TMEJ, respectively) and single strand annealing (SSA) function redundantly to repair DSBs when HR is compromised, and that HIM-5 influences the utilization of TMEJ and SSA.
Collapse
Affiliation(s)
- Nicolas Macaisne
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pennsylvania 15213
| | - Zebulin Kessler
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pennsylvania 15213
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pennsylvania 15213
| |
Collapse
|
22
|
Harrell KE, Koury E, Smolikove S. Microirradiation for Precise, Double-strand Break Induction in vivo in Caenorhabditis elegans. Bio Protoc 2018; 8:e3130. [PMID: 30680294 DOI: 10.21769/bioprotoc.3130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are toxic lesions that every cell must accurately repair in order to survive. The repair of DSBs is an integral part of a cell life cycle and can lead to lethality if repaired incorrectly. Laser microirradiation is an established technique which has been used in yeast, mammalian cell culture, and Drosophila cell culture to study the regulation of DSB repair. Up to our studies, this method has not been adapted for use in a whole, live, multicellular organism to study this repair in vivo. We have recently shown that this system can be used for study of the recruitment of vital repair proteins to microirradiation-induced breaks in the transparent nematode Caenorhabditis elegans. With the integration of microirradiation and imaging technology, we can precisely induce DSBs in target nuclei and study the recruitment of fluorescently tagged repair proteins from the time of damage induction. Whole, live worms are plated and immobilized for targeting of nuclei, and immediately following induction the targeted region can be imaged for up to an hour and a half post-microirradiation. This method is the first that allows for study of DNA repair protein kinetics in vivo in an intact organism, which can be adapted in numerous ways to allow for study of repair kinetics in various aspects of the repair process.
Collapse
Affiliation(s)
| | - Emily Koury
- Department of Biology, University of Iowa, Iowa City, USA
| | | |
Collapse
|