1
|
Cumberworth A, Reinhardt A. Models and simulations of structural DNA nanotechnology reveal fundamental principles of self-assembly. Chem Soc Rev 2025; 54:2344-2368. [PMID: 39878142 DOI: 10.1039/d4cs01095g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
DNA is not only a centrally important molecule in biology: the specificity of bonding that allows it to be the primary information storage medium for life has also allowed it to become one of the most promising materials for designing intricate, self-assembling structures at the nanoscale. While the applications of these structures are both broad and highly promising, the self-assembly process itself has attracted interest not only for the practical applications of designing structures with more efficient assembly pathways, but also due to a desire to understand the principles underlying self-assembling systems more generally, of which DNA-based systems provide intriguing and unique examples. Here, we review the fundamental physical principles that underpin the self-assembly process in the field of DNA nanotechnology, with a specific focus on simulation and modelling and what we can learn from them. In particular, we compare and contrast DNA origami and bricks and briefly outline other approaches, with an overview of concepts such as cooperativity, nucleation and hysteresis; we also explain how nucleation barriers can be controlled and why they can be helpful in ensuring error-free assembly. While high-resolution models may be needed to obtain accurate system-specific properties, often very simple coarse-grained models are sufficient to extract the fundamentals of the underlying physics and can enable us to gain deep insight. By combining experimental and simulation approaches to understand the details of the self-assembly process, we can optimise its yields and fidelity, which may in turn facilitate its use in practical applications.
Collapse
Affiliation(s)
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
2
|
Ratajczyk EJ, Šulc P, Turberfield AJ, Doye JPK, Louis AA. Coarse-grained modeling of DNA-RNA hybrids. J Chem Phys 2024; 160:115101. [PMID: 38497475 DOI: 10.1063/5.0199558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 03/19/2024] Open
Abstract
We introduce oxNA, a new model for the simulation of DNA-RNA hybrids that is based on two previously developed coarse-grained models-oxDNA and oxRNA. The model naturally reproduces the physical properties of hybrid duplexes, including their structure, persistence length, and force-extension characteristics. By parameterizing the DNA-RNA hydrogen bonding interaction, we fit the model's thermodynamic properties to experimental data using both average-sequence and sequence-dependent parameters. To demonstrate the model's applicability, we provide three examples of its use-calculating the free energy profiles of hybrid strand displacement reactions, studying the resolution of a short R-loop, and simulating RNA-scaffolded wireframe origami.
Collapse
Affiliation(s)
- Eryk J Ratajczyk
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA
- School of Natural Sciences, Department of Bioscience, Technical University Munich, 85748 Garching, Germany
| | - Andrew J Turberfield
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
3
|
Lu W, Chen T, Xiao D, Qin X, Chen Y, Shi S. Application and prospects of nucleic acid nanomaterials in tumor therapy. RSC Adv 2023; 13:26288-26301. [PMID: 37670995 PMCID: PMC10476027 DOI: 10.1039/d3ra04081j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
Cancer poses a great threat to human life, and current cancer treatments, such as radiotherapy, chemotherapy, and surgery, have significant side effects and limitations that hinder their application. Nucleic acid nanomaterials have specific spatial configurations and can be used as nanocarriers to deliver different therapeutic drugs, thereby enabling various biomedical applications, such as biosensors and cancer therapy. In recent decades, a variety of DNA nanostructures have been synthesized, and they have demonstrated remarkable potential in cancer therapy related applications, such as DNA origami structures, tetrahedral framework nucleic acids, and dynamic DNA nanostructures. Importantly, more attention is also being paid to RNA nanostructures, which play an important role in gene therapy. Therefore, this review introduces the developmental history of nucleic acid nanotechnology, summarizes the applications of DNA and RNA nanostructures for tumor treatment, and discusses the development opportunities for nucleic acid nanomaterials in the future.
Collapse
Affiliation(s)
- Weitong Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Tianyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Xin Qin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yang Chen
- Department of Pediatric Surgery, Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University Chengdu Sichuan 610041 China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| |
Collapse
|
4
|
Mu ZC, Tan YL, Liu J, Zhang BG, Shi YZ. Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding. Molecules 2023; 28:4833. [PMID: 37375388 DOI: 10.3390/molecules28124833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures. This includes molecular dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various coarse-grained models used for DNA structure prediction or folding, along with fragment assembly methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and disadvantages of these methods and highlight their differences.
Collapse
Affiliation(s)
- Zi-Chun Mu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|
5
|
Mu ZC, Tan YL, Zhang BG, Liu J, Shi YZ. Ab initio predictions for 3D structure and stability of single- and double-stranded DNAs in ion solutions. PLoS Comput Biol 2022; 18:e1010501. [PMID: 36260618 PMCID: PMC9621594 DOI: 10.1371/journal.pcbi.1010501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/31/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
The three-dimensional (3D) structure and stability of DNA are essential to understand/control their biological functions and aid the development of novel materials. In this work, we present a coarse-grained (CG) model for DNA based on the RNA CG model proposed by us, to predict 3D structures and stability for both dsDNA and ssDNA from the sequence. Combined with a Monte Carlo simulated annealing algorithm and CG force fields involving the sequence-dependent base-pairing/stacking interactions and an implicit electrostatic potential, the present model successfully folds 20 dsDNAs (≤52nt) and 20 ssDNAs (≤74nt) into the corresponding native-like structures just from their sequences, with an overall mean RMSD of 3.4Å from the experimental structures. For DNAs with various lengths and sequences, the present model can make reliable predictions on stability, e.g., for 27 dsDNAs with/without bulge/internal loops and 24 ssDNAs including pseudoknot, the mean deviation of predicted melting temperatures from the corresponding experimental data is only ~2.0°C. Furthermore, the model also quantificationally predicts the effects of monovalent or divalent ions on the structure stability of ssDNAs/dsDNAs. To determine 3D structures and quantify stability of single- (ss) and double-stranded (ds) DNAs is essential to unveil the mechanisms of their functions and to further guide the production and development of novel materials. Although many DNA models have been proposed to reproduce the basic structural, mechanical, or thermodynamic properties of dsDNAs based on the secondary structure information or preset constraints, there are very few models can be used to investigate the ssDNA folding or dsDNA assembly from the sequence. Furthermore, due to the polyanionic nature of DNAs, metal ions (e.g., Na+ and Mg2+) in solutions can play an essential role in DNA folding and dynamics. Nevertheless, ab initio predictions for DNA folding in ion solutions are still an unresolved problem. In this work, we developed a novel coarse-grained model to predict 3D structures and thermodynamic stabilities for both ssDNAs and dsDNAs in monovalent/divalent ion solutions from their sequences. As compared with the extensive experimental data and available existing models, we showed that the present model can successfully fold simple DNAs into their native-like structures, and can also accurately reproduce the effects of sequence and monovalent/divalent ions on structure stability for ssDNAs including pseudoknot and dsDNAs with/without bulge/internal loops.
Collapse
Affiliation(s)
- Zi-Chun Mu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan, China
- * E-mail:
| |
Collapse
|
6
|
Chiang M, Brackley CA, Marenduzzo D, Gilbert N. Predicting genome organisation and function with mechanistic modelling. Trends Genet 2021; 38:364-378. [PMID: 34857425 DOI: 10.1016/j.tig.2021.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Fitting-free mechanistic models based on polymer simulations predict chromatin folding in 3D by focussing on the underlying biophysical mechanisms. This class of models has been increasingly used in conjunction with experiments to study the spatial organisation of eukaryotic chromosomes. Feedback from experiments to models leads to successive model refinement and has previously led to the discovery of new principles for genome organisation. Here, we review the basis of mechanistic polymer simulations, explain some of the more recent approaches and the contexts in which they have been useful to explain chromosome biology, and speculate on how they might be used in the future.
Collapse
Affiliation(s)
- Michael Chiang
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Chris A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
7
|
Disulfide Dimerization of Neuronal Calcium Sensor-1: Implications for Zinc and Redox Signaling. Int J Mol Sci 2021; 22:ijms222212602. [PMID: 34830487 PMCID: PMC8623652 DOI: 10.3390/ijms222212602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Neuronal calcium sensor-1 (NCS-1) is a four-EF-hand ubiquitous signaling protein modulating neuronal function and survival, which participates in neurodegeneration and carcinogenesis. NCS-1 recognizes specific sites on cellular membranes and regulates numerous targets, including G-protein coupled receptors and their kinases (GRKs). Here, with the use of cellular models and various biophysical and computational techniques, we demonstrate that NCS-1 is a redox-sensitive protein, which responds to oxidizing conditions by the formation of disulfide dimer (dNCS-1), involving its single, highly conservative cysteine C38. The dimer content is unaffected by the elevation of intracellular calcium levels but increases to 10–30% at high free zinc concentrations (characteristic of oxidative stress), which is accompanied by accumulation of the protein in punctual clusters in the perinuclear area. The formation of dNCS-1 represents a specific Zn2+-promoted process, requiring proper folding of the protein and occurring at redox potential values approaching apoptotic levels. The dimer binds Ca2+ only in one EF-hand per monomer, thereby representing a unique state, with decreased α-helicity and thermal stability, increased surface hydrophobicity, and markedly improved inhibitory activity against GRK1 due to 20-fold higher affinity towards the enzyme. Furthermore, dNCS-1 can coordinate zinc and, according to molecular modeling, has an asymmetrical structure and increased conformational flexibility of the subunits, which may underlie their enhanced target-binding properties. In HEK293 cells, dNCS-1 can be reduced by the thioredoxin system, otherwise accumulating as protein aggregates, which are degraded by the proteasome. Interestingly, NCS-1 silencing diminishes the susceptibility of Y79 cancer cells to oxidative stress-induced apoptosis, suggesting that NCS-1 may mediate redox-regulated pathways governing cell death/survival in response to oxidative conditions.
Collapse
|
8
|
Huang CM, Kucinic A, Johnson JA, Su HJ, Castro CE. Integrated computer-aided engineering and design for DNA assemblies. NATURE MATERIALS 2021; 20:1264-1271. [PMID: 33875848 DOI: 10.1038/s41563-021-00978-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 03/04/2021] [Indexed: 05/15/2023]
Abstract
Recently, DNA has been used to make nanodevices for a myriad of applications across fields including medicine, nanomanufacturing, synthetic biology, biosensing and biophysics. However, current DNA nanodevices rely primarily on geometric design, and it remains challenging to rationally design functional properties such as force-response or actuation behaviour. Here we report an iterative design pipeline for DNA assemblies that integrates computer-aided engineering based on coarse-grained molecular dynamics with a versatile computer-aided design approach that combines top-down automation with bottom-up control over geometry. This intuitive framework allows for rapid construction of large, multicomponent assemblies from three-dimensional models with finer control over the geometrical, mechanical and dynamical properties of the DNA structures in an automated manner. This approach expands the scope of structural complexity and enhances mechanical and dynamic design of DNA assemblies.
Collapse
Affiliation(s)
- Chao-Min Huang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
| | - Anjelica Kucinic
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Joshua A Johnson
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Hai-Jun Su
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA.
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA.
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Gravina NM, Gumbart JC, Kim HD. Coarse-Grained Simulations of DNA Reveal Angular Dependence of Sticky-End Binding. J Phys Chem B 2021; 125:4016-4024. [PMID: 33870695 DOI: 10.1021/acs.jpcb.1c00432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Annealing between sticky ends of DNA is an intermediate step in ligation. It can also be utilized to program specific binding sites for DNA tile and origami assembly. This reaction is generally understood as a bimolecular reaction dictated by the local concentration of the sticky ends. Its dependence on the relative orientation between the sticky ends, however, is less understood. Here we report on the interactions between DNA sticky ends using the coarse-grained oxDNA model; specifically, we consider how the orientational alignment of the double-stranded DNA (dsDNA) segments affects the time required for the sticky ends to bind, τb. We specify the orientation of the dsDNA segments with three parameters: θ, which measures the angle between the helical axes, and ϕ1 and ϕ2, which measure rotations of each strand around the helical axis. We find that the binding time depends strongly on both θ and ϕ2: ∼20-fold change with θ and 10-fold change with ϕ2. The binding time is the fastest when the helical axes of duplexes are pointing toward each other and the sticky ends protrude from the farthest two points. Our result is relevant for predicting hybridization efficiency of sticky ends that are rotationally restricted.
Collapse
Affiliation(s)
- Nicholas M Gravina
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
|
11
|
Lee JY, Lee JG, Yun G, Lee C, Kim YJ, Kim KS, Kim TH, Kim DN. Rapid Computational Analysis of DNA Origami Assemblies at Near-Atomic Resolution. ACS NANO 2021; 15:1002-1015. [PMID: 33410664 DOI: 10.1021/acsnano.0c07717] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Structural DNA nanotechnology plays an ever-increasing role in advanced biomolecular applications. Here, we present a computational method to analyze structured DNA assemblies rapidly at near-atomic resolution. Both high computational efficiency and molecular-level accuracy are achieved by developing a multiscale analysis framework. The sequence-dependent relative geometry and mechanical properties of DNA motifs are characterized by the all-atom molecular dynamics simulation and incorporated into the structural finite element model successfully without significant loss of atomic information. The proposed method can predict the three-dimensional shape, equilibrium dynamic properties, and mechanical rigidities of monomeric to hierarchically assembled DNA structures at near-atomic resolution without adjusting any model parameters. The calculation takes less than only 15 min for most origami-scale DNA nanostructures consisting of 7000-8000 base-pairs. Hence, it is expected to be highly utilized in an iterative design-analysis-revision process for structured DNA assemblies.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Jae Gyung Lee
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Giseok Yun
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Chanseok Lee
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Young-Joo Kim
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Kyung Soo Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Tae Hwi Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Do-Nyun Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
12
|
Engel MC, Romano F, Louis AA, Doye JPK. Measuring Internal Forces in Single-Stranded DNA: Application to a DNA Force Clamp. J Chem Theory Comput 2020; 16:7764-7775. [PMID: 33147408 DOI: 10.1021/acs.jctc.0c00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present a new method for calculating internal forces in DNA structures using coarse-grained models and demonstrate its utility with the oxDNA model. The instantaneous forces on individual nucleotides are explored and related to model potentials, and using our framework, internal forces are calculated for two simple DNA systems and for a recently published nanoscopic force clamp. Our results highlight some pitfalls associated with conventional methods for estimating internal forces, which are based on elastic polymer models, and emphasize the importance of carefully considering secondary structure and ionic conditions when modeling the elastic behavior of single-stranded DNA. Beyond its relevance to the DNA nanotechnological community, we expect our approach to be broadly applicable to calculations of internal force in a variety of structures-from DNA to protein-and across other coarse-grained simulation models.
Collapse
Affiliation(s)
- Megan C Engel
- School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States.,Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, U.K
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi, Universitá Ca Foscari di Venezia, Via Torino 155, 30172, Venezia Mestre, Italy
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, U.K
| | - Jonathan P K Doye
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, U.K
| |
Collapse
|
13
|
Maffeo C, Aksimentiev A. MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems. Nucleic Acids Res 2020; 48:5135-5146. [PMID: 32232413 PMCID: PMC7229838 DOI: 10.1093/nar/gkaa200] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Abstract
Although the field of structural DNA nanotechnology has been advancing with an astonishing pace, de novo design of complex 3D nanostructures and functional devices remains a laborious and time-consuming process. One reason for that is the need for multiple cycles of experimental characterization to elucidate the effect of design choices on the actual shape and function of the self-assembled objects. Here, we demonstrate a multi-resolution simulation framework, mrdna, that, in 30 min or less, can produce an atomistic-resolution structure of a self-assembled DNA nanosystem. We demonstrate fidelity of our mrdna framework through direct comparison of the simulation results with the results of cryo-electron microscopy (cryo-EM) reconstruction of multiple 3D DNA origami objects. Furthermore, we show that our approach can characterize an ensemble of conformations adopted by dynamic DNA nanostructures, the equilibrium structure and dynamics of DNA objects constructed using off-lattice self-assembly principles, i.e. wireframe DNA objects, and to study the properties of DNA objects under a variety of environmental conditions, such as applied electric field. Implemented as an open source Python package, our framework can be extended by the community and integrated with DNA design and molecular graphics tools.
Collapse
Affiliation(s)
- Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, IL 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Snodin BEK, Schreck JS, Romano F, Louis AA, Doye JPK. Coarse-grained modelling of the structural properties of DNA origami. Nucleic Acids Res 2019; 47:1585-1597. [PMID: 30605514 PMCID: PMC6379721 DOI: 10.1093/nar/gky1304] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/17/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023] Open
Abstract
We use the oxDNA coarse-grained model to provide a detailed characterization of the fundamental structural properties of DNA origami, focussing on archetypal 2D and 3D origami. The model reproduces well the characteristic pattern of helix bending in a 2D origami, showing that it stems from the intrinsic tendency of anti-parallel four-way junctions to splay apart, a tendency that is enhanced both by less screened electrostatic interactions and by increased thermal motion. We also compare to the structure of a 3D origami whose structure has been determined by cryo-electron microscopy. The oxDNA average structure has a root-mean-square deviation from the experimental structure of 8.4 Å, which is of the order of the experimental resolution. These results illustrate that the oxDNA model is capable of providing detailed and accurate insights into the structure of DNA origami, and has the potential to be used to routinely pre-screen putative origami designs and to investigate the molecular mechanisms that regulate the properties of DNA origami.
Collapse
Affiliation(s)
- Benedict E K Snodin
- Physical, and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - John S Schreck
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi, Universit Ca' Foscari, Via Torino 155, 30172 Venezia Mestre, Italy
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK
| | - Jonathan P K Doye
- Physical, and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
15
|
Machado MR, Zeida A, Darré L, Pantano S. From quantum to subcellular scales: multi-scale simulation approaches and the SIRAH force field. Interface Focus 2019; 9:20180085. [PMID: 31065347 PMCID: PMC6501346 DOI: 10.1098/rsfs.2018.0085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Modern molecular and cellular biology profits from astonishing resolution structural methods, currently even reaching the whole cell level. This is encompassed by the development of computational methods providing a deep view into the structure and dynamics of molecular processes happening at very different scales in time and space. Linking such scales is of paramount importance when aiming at far-reaching biological questions. Computational methods at the interface between classical and coarse-grained resolutions are gaining momentum with several research groups dedicating important efforts to their development and tuning. An overview of such methods is addressed herein, with special emphasis on the SIRAH force field for coarse-grained and multi-scale simulations. Moreover, we provide proof of concept calculations on the implementation of a multi-scale simulation scheme including quantum calculations on a classical fine-grained/coarse-grained representation of double-stranded DNA. This opens the possibility to include the effect of large conformational fluctuations in chromatin segments on, for instance, the reactivity of particular base pairs within the same simulation framework.
Collapse
Affiliation(s)
- Matías R. Machado
- Institut Pasteur de Montevideo, Group of Biomolecular Simulations, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Leonardo Darré
- Institut Pasteur de Montevideo, Group of Biomolecular Simulations, Mataojo 2020, CP 11400 Montevideo, Uruguay
- Institut Pasteur de Montevideo, Functional Genomics Unit, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Group of Biomolecular Simulations, Mataojo 2020, CP 11400 Montevideo, Uruguay
| |
Collapse
|
16
|
Characterization of Hydroxyproline-Containing Hairpin-Like Antimicrobial Peptide EcAMP1-Hyp from Barnyard Grass ( Echinochloa crusgalli L.) Seeds: Structural Identification and Comparative Analysis of Antifungal Activity. Int J Mol Sci 2018; 19:ijms19113449. [PMID: 30400225 PMCID: PMC6274906 DOI: 10.3390/ijms19113449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/04/2022] Open
Abstract
Herein, we describe a modified form of the antimicrobial hairpin-like peptide EcAMP1, isolated from barnyard grass (E. crusgalli) seeds, which is structurally characterized by a combination of high-pressure liquid chromatography, mass spectrometry, and automated Edman sequencing. This derivate has a single amino acid substitution (Pro19Hyp) in the second α-helical region of the molecule, which is critical for the formation of the hydrophobic core and the secondary structure elements. Comparing the antifungal activity of these two peptides, we found that the modified EcAMP1-Hyp had a significantly weaker activity towards the most-sensitive plant pathogenic fungus Fusarium solani. Molecular dynamics simulations and in vitro binding to the commercial polysaccharides allowed us to conclude that the Pro-19 residue is important for binding to carbohydrates located in the spore cell wall and it chiefly exhibits a fungistatic action representing the hyphal growth inhibition. These data are novel and significant for understanding a role of α-hairpinins in plant immunity.
Collapse
|
17
|
Zlobin A, Mokrushina Y, Terekhov S, Zalevsky A, Bobik T, Stepanova A, Aliseychik M, Kartseva O, Panteleev S, Golovin A, Belogurov A, Gabibov A, Smirnov I. QM/MM Description of Newly Selected Catalytic Bioscavengers Against Organophosphorus Compounds Revealed Reactivation Stimulus Mediated by Histidine Residue in the Acyl-Binding Loop. Front Pharmacol 2018; 9:834. [PMID: 30123127 PMCID: PMC6085465 DOI: 10.3389/fphar.2018.00834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/11/2018] [Indexed: 11/14/2022] Open
Abstract
Butyrylcholinesterase (BChE) is considered as an efficient stoichiometric antidote against organophosphorus (OP) poisons. Recently we utilized combination of calculations and ultrahigh-throughput screening (uHTS) to select BChE variants capable of catalytic destruction of OP pesticide paraoxon. The purpose of this study was to elucidate the molecular mechanism underlying enzymatic hydrolysis of paraoxon by BChE variants using hybrid quantum mechanical/molecular mechanical (QM/MM) calculations. Detailed analysis of accomplished QM/MM runs revealed that histidine residues introduced into the acyl-binding loop are always located in close proximity with aspartate residue at position 70. Histidine residue acts as general base thus leading to attacking water molecule activation and subsequent SN2 inline hydrolysis resulting in BChE reactivation. This combination resembles canonical catalytic triad found in active centers of various proteases. Carboxyl group activates histidine residue by altering its pKa, which in turn promotes the activation of water molecule in terms of its nucleophilicity. Observed re-protonation of catalytic serine residue at position 198 from histidine residue at position 438 recovers initial configuration of the enzyme’s active center, facilitating next catalytic cycle. We therefore suggest that utilization of uHTS platform in combination with deciphering of molecular mechanisms by QM/MM calculations may significantly improve our knowledge of enzyme function, propose new strategies for enzyme design and open new horizons in generation of catalytic bioscavengers against OP poisons.
Collapse
Affiliation(s)
- Alexander Zlobin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Yuliana Mokrushina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Stanislav Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Arthur Zalevsky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Bobik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya Stepanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria Aliseychik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Olga Kartseva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Sergey Panteleev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Golovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexey Belogurov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Gabibov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Engel MC, Smith DM, Jobst MA, Sajfutdinow M, Liedl T, Romano F, Rovigatti L, Louis AA, Doye JPK. Force-Induced Unravelling of DNA Origami. ACS NANO 2018; 12:6734-6747. [PMID: 29851456 DOI: 10.1021/acsnano.8b01844] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The mechanical properties of DNA nanostructures are of widespread interest as applications that exploit their stability under constant or intermittent external forces become increasingly common. We explore the force response of DNA origami in comprehensive detail by combining AFM single molecule force spectroscopy experiments with simulations using oxDNA, a coarse-grained model of DNA at the nucleotide level, to study the unravelling of an iconic origami system: the Rothemund tile. We contrast the force-induced melting of the tile with simulations of an origami 10-helix bundle. Finally, we simulate a recently proposed origami biosensor, whose function takes advantage of origami behavior under tension. We observe characteristic stick-slip unfolding dynamics in our force-extension curves for both the Rothemund tile and the helix bundle and reasonable agreement with experimentally observed rupture forces for these systems. Our results highlight the effect of design on force response: we observe regular, modular unfolding for the Rothemund tile that contrasts with strain-softening of the 10-helix bundle which leads to catastropic failure under monotonically increasing force. Further, unravelling occurs straightforwardly from the scaffold ends inward for the Rothemund tile, while the helix bundle unfolds more nonlinearly. The detailed visualization of the yielding events provided by simulation allows preferred pathways through the complex unfolding free-energy landscape to be mapped, as a key factor in determining relative barrier heights is the extensional release per base pair broken. We shed light on two important questions: how stable DNA nanostructures are under external forces and what design principles can be applied to enhance stability.
Collapse
Affiliation(s)
- Megan C Engel
- Rudolf Peierls Centre for Theoretical Physics , University of Oxford , 1 Keble Road , Oxford OX1 3NP , United Kingdom
| | - David M Smith
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Perlickstraβe 1 , 04103 Leipzig , Germany
| | - Markus A Jobst
- Department für Physik , Ludwig-Maximilians-Universität Amalienstrasse 54 80799 München , Germany
| | - Martin Sajfutdinow
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Perlickstraβe 1 , 04103 Leipzig , Germany
| | - Tim Liedl
- Department für Physik , Ludwig-Maximilians-Universität Amalienstrasse 54 80799 München , Germany
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi , Università Ca' Foscari di Venezia , Via Torino 155 , 30172 Venezia Mestre , Italy
| | - Lorenzo Rovigatti
- Rudolf Peierls Centre for Theoretical Physics , University of Oxford , 1 Keble Road , Oxford OX1 3NP , United Kingdom
- CNR-ISC , Uos Sapienza, Piazzale A. Moro 2 , 00185 Roma , Italy
- Dipartimento di Fisica , Sapienza Università di Roma , Piazzale A. Moro 2 , 00185 Roma , Italy
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics , University of Oxford , 1 Keble Road , Oxford OX1 3NP , United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| |
Collapse
|