1
|
Ganguli D, Manjunath KC, Bhat M, Rao DN. Biochemical characterisation of UvrD helicase and RecJ exonuclease from Neisseria gonorrhoeae. Int J Biol Macromol 2025; 306:141530. [PMID: 40032130 DOI: 10.1016/j.ijbiomac.2025.141530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
UvrD helicase and RecJ exonuclease play a critical role in DNA repair and recombination process thereby involved in the maintenance of the genomic integrity. In addition to DNA repair pathways, UvrD helicase plays an important role in phase variation and maintenance of virulence in pathogenic bacteria while RecJ is a single-stranded DNA -specific 5'-3' exonuclease activity responsible for generating a long 3'ssDNA gap for DNA resynthesis by DNA ploymerases in mismatch repair (MMR). In spite of being vital for performing these functions, there have been few reports on the mismatch repair pathway in pathogenic bacteria and particularly the interplay of mismatch repair proteins in methylation independent mismatch repair. Purified UvrD helicase from Neisseria gonorrhoeae (FA1090) (NgoUvrD) exhibits 3'-5' polarity on ssDNA and unwinds blunt end duplex DNA as well as different DNA substrates with overhangs. While NgoUvrD binds to Ni2+, Mg2+. Mn2+, Zn2+ and Ca2+, only Mg2+ and Mn2+ support the helicase activity as well as ATPase activity. Interestingly, Zn2+ inhibits both the helicase as well as ATPase activity. ssDNA binding to NgoUvrD abrogates the inhibition by Zn2+. This study, for the first time reveals a unique role of zinc in regulating UvrD helicase activity in N. gonorrhoeae. RecJ exonuclease from Neisseria gonorrhoeae is a 566 amino acid protein that contains the characteristic motifs conserved among all RecJ homologs. Site-directed mutagenesis in the conserved DHH motif abrogated enzymatic activity in D160A and H161A mutants. Interestingly, substitution of histidine 161 with alanine or serine residues enhanced RecJ exonuclease activity while the corresponding mutation in other bacterial RecJs abrogated the activity. NgoRecJ degrades double-stranded DNA with 2, 4, 6 and 8 nucleotide 5' overhang substrates unlike E. coli RecJ which degrades ssDNA with 6-nts overhang. In the present investigation we have studied the interaction between UvrD helicase and RecJ proteins participating in methylation-independent MMR pathway. Our studies highlight novel properties of NgoUvrD and NgoRecJ proteins and specific interaction between these proteins which could play in genome maintenance, pathogenesis and virulence of Neisseria gonorrhoeae.
Collapse
Affiliation(s)
- Debayan Ganguli
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - K C Manjunath
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Madhuraj Bhat
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
De March M. Crystal structure of the 3'→5' exonuclease from Methanocaldococcus jannaschii. Biochem Biophys Res Commun 2024; 712-713:149893. [PMID: 38657529 DOI: 10.1016/j.bbrc.2024.149893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
RecJ exonucleases are members of the DHH phosphodiesterase family ancestors of eukaryotic Cdc45, the key component of the CMG (Cdc45-MCM-GINS) complex at the replication fork. They are involved in DNA replication and repair, RNA maturation and Okazaki fragment degradation. Bacterial RecJs resect 5'-end ssDNA. Conversely, archaeal RecJs are more versatile being able to hydrolyse in both directions and acting on ssDNA as well as on RNA. In Methanocaldococcus jannaschii two RecJs were previously characterized: RecJ1 is a 5'→3' DNA exonuclease, MjaRecJ2 works only on 3'-end DNA/RNA with a preference for RNA. Here, I present the crystal structure of MjaRecJ2, solved at a resolution of 2.8 Å, compare it with the other RecJ structures, in particular the 5'→3' TkoGAN and the bidirectional PfuRecJ, and discuss its characteristics in light of the more recent knowledge on RecJs. This work adds new structural data that might improve the knowledge of these class of proteins.
Collapse
Affiliation(s)
- Matteo De March
- Structural Biology Laboratory, Elettra Sincrotrone Trieste S.c.p.A., 34149, Trieste, Italy; Department of Environmental and Biological Sciences, University of Nova Gorica, SI-5000, Nova Gorica, Slovenia.
| |
Collapse
|
3
|
Wang WW, Yi GS, Zhou H, Zhao YX, Wang QS, He JH, Yu F, Xiao X, Liu XP. The structure of the archaeal nuclease RecJ2 implicates its catalytic mechanism and inability to interact with GINS. J Biol Chem 2024; 300:107379. [PMID: 38762184 PMCID: PMC11193018 DOI: 10.1016/j.jbc.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to ssDNA; however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.
Collapse
Affiliation(s)
- Wei-Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Gang-Shun Yi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Xuan Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya, China
| | - Qi-Sheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Hua He
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China; The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya, China; Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; SJTU Yazhou Bay Institute of Deepsea Sci-Tech, Sanya, China; Joint International Research Laboratory of Metabolic & Developmental Sciences (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Jia H, Dantuluri S, Margulies S, Smith V, Lever R, Allers T, Koh J, Chen S, Maupin-Furlow JA. RecJ3/4-aRNase J form a Ubl-associated nuclease complex functioning in survival against DNA damage in Haloferax volcanii. mBio 2023; 14:e0085223. [PMID: 37458473 PMCID: PMC10470531 DOI: 10.1128/mbio.00852-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
Nucleases are strictly regulated and often localized in the cell to avoid the uncontrolled degradation of DNA and RNA. Here, a new type of nuclease complex, composed of RecJ3, RecJ4, and aRNase J, was identified through its ATP-dependent association with the ubiquitin-like SAMP1 and AAA-ATPase Cdc48a. The complex was discovered in Haloferax volcanii, an archaeon lacking an RNA exosome. Genetic analysis revealed aRNase J to be essential and RecJ3, RecJ4, and Cdc48a to function in the recovery from DNA damage including genotoxic agents that generate double-strand breaks. The RecJ3:RecJ4:aRNase J complex (isolated in 2:2:1 stoichiometry) functioned primarily as a 3'-5' exonuclease in hydrolyzing RNA and ssDNA, with the mechanism non-processive for ssDNA. aRNase J could also be purified as a homodimer that catalyzed endoribonuclease activity and, thus, was not restricted to the 5'-3' exonuclease activity typical of aRNase J homologs. Moreover, RecJ3 and RecJ4 could be purified as a 560-kDa subcomplex in equimolar subunit ratio with nuclease activities mirroring the full RecJ3/4-aRNase J complex. These findings prompted reconstitution assays that suggested RecJ3/4 could suppress, alter, and/or outcompete the nuclease activities of aRNase J. Based on the phenotypic results, this control mechanism of aRNase J by RecJ3/4 is not necessary for cell growth but instead appears important for DNA repair. IMPORTANCE Nucleases are critical for various cellular processes including DNA replication and repair. Here, a dynamic type of nuclease complex is newly identified in the archaeon Haloferax volcanii, which is missing the canonical RNA exosome. The complex, composed of RecJ3, RecJ4, and aRNase J, functions primarily as a 3'-5' exonuclease and was discovered through its ATP-dependent association with the ubiquitin-like SAMP1 and Cdc48a. aRNase J alone forms a homodimer that has endonuclease function and, thus, is not restricted to 5'-3' exonuclease activity typical of other aRNase J enzymes. RecJ3/4 appears to suppress, alter, and/or outcompete the nuclease activities of aRNase J. While aRNase J is essential for growth, RecJ3/4, Cdc48a, and SAMPs are important for recovery against DNA damage. These biological distinctions may correlate with the regulated nuclease activity of aRNase J in the RecJ3/4-aRNaseJ complex.
Collapse
Affiliation(s)
- Huiyong Jia
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Swathi Dantuluri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Shae Margulies
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Victoria Smith
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca Lever
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, USA
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Zhang L, Lin T, Yin Y, Chen M. Biochemical and functional characterization of a thermostable RecJ exonuclease from Thermococcus gammatolerans. Int J Biol Macromol 2022; 204:617-626. [PMID: 35150781 DOI: 10.1016/j.ijbiomac.2022.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/18/2023]
Abstract
RecJ is ubiquitous in bacteria and Archaea, and play an important role in DNA replication and repair. Currently, our understanding on biochemical function of archaeal RecJ is incomplete due to the limited reports. The genome of the hyperthermophilic and radioresistant euryarchaeon Thermococcus gammatolerans encodes one putative RecJ protein (Tga-RecJ). Herein, we report biochemical characteristics and catalytic mechanism of Tga-RecJ. Tga-RecJ can degrade ssDNA in the 5'-3' direction at high temperature as observed in Thermococcus kodakarensis RecJ and Pyrococcus furiosus RecJ, the two closest homologs of the enzyme. In contrasted to P. furiosus RecJ, Tga-RecJ lacks 3'-5' ssRNA exonuclease activity. Furthermore, maximum activity of Tga-RecJ is observed at 50 °C ~ 70 °C and pH 7.0-9.0 with Mn2+, and the enzyme is the most thermostable among the reported RecJ proteins. Additionally, the rates for hydrolyzing ssDNA by Tga-RecJ were estimated by kinetic analyses at 50 °C ~ 70 °C, thus revealing its activation energy (10.5 ± 0.6 kcal/mol), which is the first report on energy barrier for ssDNA degradation by RecJ. Mutational studies showed that the mutations of residues D36, D83, D105, H106, H107 and D166 in Tga-RecJ to alanine almost completely abolish its activity, thereby suggesting that these residues are essential for catalysis.
Collapse
Affiliation(s)
- Likui Zhang
- Guangling College, Yangzhou University, China; College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China.
| | - Tan Lin
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Youcheng Yin
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Min Chen
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China.
| |
Collapse
|
6
|
Oki K, Nagata M, Yamagami T, Numata T, Ishino S, Oyama T, Ishino Y. Family D DNA polymerase interacts with GINS to promote CMG-helicase in the archaeal replisome. Nucleic Acids Res 2021; 50:3601-3615. [PMID: 34568951 PMCID: PMC9023282 DOI: 10.1093/nar/gkab799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 11/12/2022] Open
Abstract
Genomic DNA replication requires replisome assembly. We show here the molecular mechanism by which CMG (GAN-MCM-GINS)-like helicase cooperates with the family D DNA polymerase (PolD) in Thermococcus kodakarensis. The archaeal GINS contains two Gins51 subunits, the C-terminal domain of which (Gins51C) interacts with GAN. We discovered that Gins51C also interacts with the N-terminal domain of PolD's DP1 subunit (DP1N) to connect two PolDs in GINS. The two replicases in the replisome should be responsible for leading- and lagging-strand synthesis, respectively. Crystal structure analysis of the DP1N-Gins51C-GAN ternary complex was provided to understand the structural basis of the connection between the helicase and DNA polymerase. Site-directed mutagenesis analysis supported the interaction mode obtained from the crystal structure. Furthermore, the assembly of helicase and replicase identified in this study is also conserved in Eukarya. PolD enhances the parental strand unwinding via stimulation of ATPase activity of the CMG-complex. This is the first evidence of the functional connection between replicase and helicase in Archaea. These results suggest that the direct interaction of PolD with CMG-helicase is critical for synchronizing strand unwinding and nascent strand synthesis and possibly provide a functional machinery for the effective progression of the replication fork.
Collapse
Affiliation(s)
- Keisuke Oki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Takuji Oyama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Oki K, Yamagami T, Nagata M, Mayanagi K, Shirai T, Adachi N, Numata T, Ishino S, Ishino Y. DNA polymerase D temporarily connects primase to the CMG-like helicase before interacting with proliferating cell nuclear antigen. Nucleic Acids Res 2021; 49:4599-4612. [PMID: 33849056 PMCID: PMC8096248 DOI: 10.1093/nar/gkab243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
The eukaryotic replisome is comprised of three family-B DNA polymerases (Polα, δ and ϵ). Polα forms a stable complex with primase to synthesize short RNA-DNA primers, which are subsequently elongated by Polδ and Polϵ in concert with proliferating cell nuclear antigen (PCNA). In some species of archaea, family-D DNA polymerase (PolD) is the only DNA polymerase essential for cell viability, raising the question of how it alone conducts the bulk of DNA synthesis. We used a hyperthermophilic archaeon, Thermococcus kodakarensis, to demonstrate that PolD connects primase to the archaeal replisome before interacting with PCNA. Whereas PolD stably connects primase to GINS, a component of CMG helicase, cryo-EM analysis indicated a highly flexible PolD-primase complex. A conserved hydrophobic motif at the C-terminus of the DP2 subunit of PolD, a PIP (PCNA-Interacting Peptide) motif, was critical for the interaction with primase. The dissociation of primase was induced by DNA-dependent binding of PCNA to PolD. Point mutations in the alternative PIP-motif of DP2 abrogated the molecular switching that converts the archaeal replicase from de novo to processive synthesis mode.
Collapse
Affiliation(s)
- Keisuke Oki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka 812-8582, Japan
| | - Tsuyoshi Shirai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Tamura 1266, Nagahama, Shiga 526-0829, Japan
| | - Naruhiko Adachi
- Structure Biology Research Center, Institute of Materials Structural Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Bowerman S, Wereszczynski J, Luger K. Archaeal chromatin 'slinkies' are inherently dynamic complexes with deflected DNA wrapping pathways. eLife 2021; 10:65587. [PMID: 33650488 PMCID: PMC7990501 DOI: 10.7554/elife.65587] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Eukaryotes and many archaea package their DNA with histones. While the four eukaryotic histones wrap ~147 DNA base pairs into nucleosomes, archaeal histones form ‘nucleosome-like’ complexes that continuously wind between 60 and 500 base pairs of DNA (‘archaeasomes’), suggested by crystal contacts and analysis of cellular chromatin. Solution structures of large archaeasomes (>90 DNA base pairs) have never been directly observed. Here, we utilize molecular dynamics simulations, analytical ultracentrifugation, and cryoEM to structurally characterize the solution state of archaeasomes on longer DNA. Simulations reveal dynamics of increased accessibility without disruption of DNA-binding or tetramerization interfaces. Mg2+ concentration influences compaction, and cryoEM densities illustrate that DNA is wrapped in consecutive substates arranged 90o out-of-plane with one another. Without ATP-dependent remodelers, archaea may leverage these inherent dynamics to balance chromatin packing and accessibility. All animals, plants and fungi belong to a group of living organisms called eukaryotes. The two other groups are bacteria and archaea, which include unicellular, microscopic organisms. All three groups have genes, which are typically stored on long strands of DNA. Eukaryotes have so much DNA that they use proteins called histones to help package and organize it inside each cell. Archaea also have simplified histones that help store their DNA, and studying these proteins could reveal how eukaryotic histones first evolved. In eukaryotes, groups of eight histones form a short cylinder that organizes a small section of DNA into a structure called a nucleosome. Each cell needs hundreds of thousands of nucleosomes to arrange its DNA. Eukaryotic cells also contain other proteins that release pieces of DNA from histones so that their genetic information can be used. The histones in Archaea don’t form discrete nucleosomes, instead, they coil DNA into ‘slinky-like’ shapes. It’s still unclear how DNA packing in archaea works and how it differs from eukaryotes. Bowerman, Wereszczynski and Luger used computer simulations, biochemistry and cryo-electron microscopy to study the histones from archaea. The archaeal ‘slinky-like’ histone structures are more flexible than nucleosomes, and can open and close like clamshells. This flexibility allows the information in the genomes of Archaea to be easily accessed, so, unlike in eukaryotes, archaeal cells may not need other proteins to release the DNA from the histones. The ability to package DNA allows cells to contain many more genes, so evolving histones was a vital step in the evolution of eukaryotic life, including the appearance of animals. Archaeal histones may reflect early versions of histones in eukaryotes, and can be used to understand how DNA packing has evolved. Furthermore, a greater understanding of Archaea may help better explain their role in health and global ecosystems, and allow their use in industrial applications.
Collapse
Affiliation(s)
- Samuel Bowerman
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for the Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, United States
| | - Karolin Luger
- Department of Biochemistry and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
9
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
10
|
Abstract
It is now well recognized that the information processing machineries of archaea are far more closely related to those of eukaryotes than to those of their prokaryotic cousins, the bacteria. Extensive studies have been performed on the structure and function of the archaeal DNA replication origins, the proteins that define them, and the macromolecular assemblies that drive DNA unwinding and nascent strand synthesis. The results from various archaeal organisms across the archaeal domain of life show surprising levels of diversity at many levels-ranging from cell cycle organization to chromosome ploidy to replication mode and nature of the replicative polymerases. In the following, we describe recent advances in the field, highlighting conserved features and lineage-specific innovations.
Collapse
Affiliation(s)
- Mark D Greci
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| | - Stephen D Bell
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA; .,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
11
|
Wang W, Ma L, Wang L, Zheng L, Zheng M. RecJ from Bacillus halodurans possesses endonuclease activity at moderate temperature. FEBS Lett 2020; 594:2303-2310. [PMID: 32394489 DOI: 10.1002/1873-3468.13809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 11/11/2022]
Abstract
RecJ homologs, which occur in virtually all prokaryotes and eukaryotes, play key roles in DNA damage repair and recombination. Current evidence shows that RecJ family proteins exhibit exonuclease activity, degrading single-stranded nucleic acids. Here, we report a novel RecJ isolated from Bacillus halodurans, which utilizes double-stranded DNA as a substrate and functions as an endonuclease. Bacillus halodurans RecJ (BhRecJ) cleaves supercoiled plasmids into open circular and linear forms. Besides the typical domains of DHH, DHHA1, and oligonucleotide-binding-fold, BhRecJ possesses a C-terminal domain with unknown function, which might form the core of the endonuclease activity. Using mutational analysis, we mapped several essential residues for BhRecJ endonuclease activity. Our findings suggest that BhRecJ may be involved in biological processes not typically associated with RecJ proteins.
Collapse
Affiliation(s)
- Wen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.,Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Liya Ma
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.,Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Ling Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Li Zheng
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Minggang Zheng
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| |
Collapse
|
12
|
Abstract
Replicative DNA helicases are essential cellular enzymes that unwind duplex DNA in front of the replication fork during chromosomal DNA replication. Replicative helicases were discovered, beginning in the 1970s, in bacteria, bacteriophages, viruses, and eukarya, and, in the mid-1990s, in archaea. This year marks the 20th anniversary of the first report on the archaeal replicative helicase, the minichromosome maintenance (MCM) protein. This minireview summarizes 2 decades of work on the archaeal MCM.
Collapse
|
13
|
ZNF143 Suppresses Cell Apoptosis and Promotes Proliferation in Gastric Cancer via ROS/p53 Axis. DISEASE MARKERS 2020; 2020:5863178. [PMID: 32076462 PMCID: PMC7017572 DOI: 10.1155/2020/5863178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022]
Abstract
Aim This study was aimed at identifying the role of zinc finger protein 143 (ZNF143) in gastric cancer (GC) progression. Methods The impact of ZNF143 on the proliferation ability and apoptosis of GC cells was detected. The expression of ZNF143 and related targeted genes was determined using Western blot analysis. The reactive oxygen species (ROS) level of GC cells was examined using the ROS generation assay. The role of ZNF143 in the proliferation of GC cells in vivo was examined using tumor xenograft assay. Results The ectopic overexpression of ZNF143 promoted the proliferation of GC cells, while its knockdown reduced the effect in vitro. The downregulation of ZNF143 facilitated cell apoptosis. ZNF143 decreased the ROS level in GC cells, resulting in the reduction of cell apoptosis. Transfection with p53 reversed the antiapoptotic effect of ZNF143, while pifithrin-α, a specific inhibitor of p53, reduced the apoptosis in ZNF143-knockdown GC cells. However, p53 had no influence on the ROS level in GC cells. p53 played a key role in inhibiting ROS generation in GC cells, thereby inhibiting apoptosis. The transplanted tumor weight and volume were higher in the ZNF143-overexpressed group than in the ZNF143-knockdown group in vivo was examined using tumor xenograft assay. Conclusion ZNF143, as a tumor oncogene, promoted the proliferation of GC cells both in vitro and in vivo, indicating that ZNF143 might function as a novel target for GC therapy.in vitro. The downregulation of ZNF143 facilitated cell apoptosis. ZNF143 decreased the ROS level in GC cells, resulting in the reduction of cell apoptosis. Transfection with p53 reversed the antiapoptotic effect of ZNF143, while pifithrin-in vivo was examined using tumor xenograft assay.
Collapse
|
14
|
Kushida T, Narumi I, Ishino S, Ishino Y, Fujiwara S, Imanaka T, Higashibata H. Pol B, a Family B DNA Polymerase, in Thermococcus kodakarensis is Important for DNA Repair, but not DNA Replication. Microbes Environ 2019; 34:316-326. [PMID: 31353332 PMCID: PMC6759347 DOI: 10.1264/jsme2.me19075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Thermococcus kodakarensis possesses two DNA polymerases, Pol B and Pol D. We generated a T. kodakarensis strain (DPB1) in which polB was completely deleted and a derivative of DPB1 in which polB was overexpressed; neither of the generated strains exhibited any growth delay, indicating that the lack or overexpression of Pol B in T. kodakarensis did not affect cell growth. We also found that DPB1 showed higher sensitivity to four DNA-damaging agents (ultraviolet C irradiation, γ-ray irradiation, methyl methanesulfonate, and mitomycin C) than the parental strain. The sensitivity of DPB1 was restored to the level of the parent strain by the introduction of a plasmid harboring polB, suggesting that the DNA damage-sensitive phenotype of DPB1 was due to the loss of polB. Collectively, these results indicate that Pol B is involved in DNA repair, but not DNA replication, which, in turn, implies that Pol D is the sole replicative DNA polymerase in Thermococcus species.
Collapse
Affiliation(s)
| | - Issay Narumi
- Graduate School of Life Sciences, Toyo University
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University
| | - Tadayuki Imanaka
- Research Organization of Science and Technology, Ritsumeikan University
| | | |
Collapse
|
15
|
Hizume K, Araki H. Replication fork pausing at protein barriers on chromosomes. FEBS Lett 2019; 593:1449-1458. [PMID: 31199500 DOI: 10.1002/1873-3468.13481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
When a cell divides prior to completion of DNA replication, serious DNA damage may occur. Thus, in addition to accuracy, the processivity of the replication forks is important. DNA synthesis at replication forks should be completed in time, and forks overcome aberrant structures on the template DNA, including damaged sites, using trans-lesion synthesis, occasionally introducing mutations. By contrast, the protein barrier built on the DNA is known to block the progression of replication forks at specific chromosomal loci. Such protein barriers avert any collision of replication and transcription machineries, or control the recombination of specific loci. The components and the mechanisms of action of protein barriers have been revealed mainly using genetic and biochemical techniques. In addition to proteins involved in replication fork pausing, the interaction of the replicative helicase and DNA polymerase is also essential for replication fork pausing. Here, we provide an overview of replication fork pausing at protein barriers.
Collapse
Affiliation(s)
- Kohji Hizume
- Division of RI Laboratory, Biomedical Research Center, Saitama Medical University, Japan
| | - Hiroyuki Araki
- Microbial Genetics Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
16
|
Feng L, Chang CC, Song D, Jiang C, Song Y, Wang CF, Deng W, Zou YJ, Chen HF, Xiao X, Wang FP, Liu XP. The trimeric Hef-associated nuclease HAN is a 3'→5' exonuclease and is probably involved in DNA repair. Nucleic Acids Res 2019; 46:9027-9043. [PMID: 30102394 PMCID: PMC6158738 DOI: 10.1093/nar/gky707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/01/2018] [Indexed: 12/26/2022] Open
Abstract
Nucleases play important roles in nucleic acid metabolism. Some archaea encode a conserved protein known as Hef-associated nuclease (HAN). In addition to its C-terminal DHH nuclease domain, HAN also has three N-terminal domains, including a DnaJ-Zinc-finger, ribosomal protein S1-like, and oligonucleotide/oligosaccharide-binding fold. To further understand HAN’s function, we biochemically characterized the enzymatic properties of HAN from Pyrococcus furiosus (PfuHAN), solved the crystal structure of its DHH nuclease domain, and examined its role in DNA repair. Our results show that PfuHAN is a Mn2+-dependent 3′-exonuclease specific to ssDNA and ssRNA with no activity on blunt and 3′-recessive double-stranded DNA. Domain truncation confirmed that the intrinsic nuclease activity is dependent on the C-terminal DHH nuclease domain. The crystal structure of the DHH nuclease domain adopts a trimeric topology, with each subunit adopting a classical DHH phosphoesterase fold. Yeast two hybrid assay confirmed that the DHH domain interacts with the IDR peptide of Hef nuclease. Knockout of the han gene or its C-terminal DHH nuclease domain in Haloferax volcanii resulted in increased sensitivity to the DNA damage reagent MMS. Our results imply that HAN nuclease might be involved in repairing stalled replication forks in archaea.
Collapse
Affiliation(s)
- Lei Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Chen-Chen Chang
- Institute of Precision Medicine,The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Dong Song
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Chuang Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Yang Song
- Institute of Precision Medicine,The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Chao-Fan Wang
- Institute of Precision Medicine,The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Wei Deng
- Institute of Precision Medicine,The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Ya-Juan Zou
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Feng-Ping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| |
Collapse
|
17
|
Lu S, Zhang X, Chen K, Chen Z, Li Y, Qi Z, Shen Y, Li Z. The small subunit of DNA polymerase D (DP1) associates with GINS-GAN complex of the thermophilic archaea in Thermococcus sp. 4557. Microbiologyopen 2019; 8:e00848. [PMID: 31069963 PMCID: PMC6741145 DOI: 10.1002/mbo3.848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/27/2023] Open
Abstract
The eukaryotic GINS, Cdc45, and minichromosome maintenance proteins form an essential complex that moves with the DNA replication fork. The GINS protein complex has also been reported to associate with DNA polymerase. In archaea, the third domain of life, DNA polymerase D (PolD) is essential for DNA replication, and the genes encoding PolDs exist only in the genomes of archaea. The archaeal GAN (GINS‐associated nuclease) is believed to be a homolog of the eukaryotic Cdc45. In this study, we found that the Thermococcus sp. 4557 DP1 (small subunit of PolD) interacted with GINS15 in vitro, and the 3′–5′ exonuclease activity of DP1 was inhibited by GINS15. We also demonstrated that the GAN, GINS15, and DP1 proteins interact to form a complex adapting a GAN–GINS15–DP1 order. The results of this study imply that the complex constitutes a core of the DNA replisome in archaea.
Collapse
Affiliation(s)
- Shuhong Lu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China.,Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Xuesong Zhang
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Kaiying Chen
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Zimeng Chen
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| | - Yixiang Li
- School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Zhuo Li
- Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, Fujian, China
| |
Collapse
|
18
|
Nagata M, Ishino S, Yamagami T, Ishino Y. Replication protein A complex in Thermococcus kodakarensis interacts with DNA polymerases and helps their effective strand synthesis. Biosci Biotechnol Biochem 2019; 83:695-704. [DOI: 10.1080/09168451.2018.1559722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
Replication protein A (RPA) is an essential component of DNA metabolic processes. RPA binds to single-stranded DNA (ssDNA) and interacts with multiple DNA-binding proteins. In this study, we showed that two DNA polymerases, PolB and PolD, from the hyperthermophilic archaeon Thermococcus kodakarensis interact directly with RPA in vitro. RPA was expected to play a role in resolving the secondary structure, which may stop the DNA synthesis reaction, in the template ssDNA. Our in vitro DNA synthesis assay showed that the pausing was resolved by RPA for both PolB and PolD. These results supported the fact that RPA interacts with DNA polymerases as a member of the replisome and is involved in the normal progression of DNA replication forks.
Collapse
Affiliation(s)
- Mariko Nagata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Yamagami
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
The archaeal RecJ-like proteins: nucleases and ex-nucleases with diverse roles in replication and repair. Emerg Top Life Sci 2018; 2:493-501. [PMID: 33525824 DOI: 10.1042/etls20180017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022]
Abstract
RecJ proteins belong to the DHH superfamily of phosphoesterases that has members in all three domains of life. In bacteria, the archetypal RecJ is a 5' → 3' ssDNA exonuclease that functions in homologous recombination, base excision repair and mismatch repair, while in eukaryotes, the RecJ-like protein Cdc45 (which has lost its nuclease activity) is a key component of the CMG (Cdc45-MCM-GINS) complex, the replicative DNA helicase that unwinds double-stranded DNA at the replication fork. In archaea, database searching identifies genes encoding one or more RecJ family proteins in almost all sequenced genomes. Biochemical analysis has confirmed that some but not all of these proteins are components of archaeal CMG complexes and has revealed a surprising diversity in mode of action and substrate preference. In addition to this, some archaea encode catalytically inactive RecJ-like proteins, and others a mix of active and inactive proteins, with the inactive proteins being confined to structural roles only. Here, I summarise current knowledge of the structure and function of the archaeal RecJ-like proteins, focusing on similarities and differences between proteins from different archaeal species, between proteins within species and between the archaeal proteins and their bacterial and eukaryotic relatives. Models for RecJ-like function are described and key areas for further study highlighted.
Collapse
|
20
|
Zatopek KM, Gardner AF, Kelman Z. Archaeal DNA replication and repair: new genetic, biophysical and molecular tools for discovering and characterizing enzymes, pathways and mechanisms. FEMS Microbiol Rev 2018; 42:477-488. [PMID: 29912309 DOI: 10.1093/femsre/fuy017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/17/2018] [Indexed: 01/03/2023] Open
Abstract
DNA replication and repair are essential biological processes needed for the survival of all organisms. Although these processes are fundamentally conserved in the three domains, archaea, bacteria and eukarya, the proteins and complexes involved differ. The genetic and biophysical tools developed for archaea in the last several years have accelerated the study of DNA replication and repair in this domain. In this review, the current knowledge of DNA replication and repair processes in archaea will be summarized, with emphasis on the contribution of genetics and other recently developed biophysical and molecular tools, including capillary gel electrophoresis, next-generation sequencing and single-molecule approaches. How these new tools will continue to drive archaeal DNA replication and repair research will also be discussed.
Collapse
Affiliation(s)
| | | | - Zvi Kelman
- Biomolecular Labeling Laboratory, Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|
21
|
Takashima N, Ishino S, Oki K, Takafuji M, Yamagami T, Matsuo R, Mayanagi K, Ishino Y. Elucidating functions of DP1 and DP2 subunits from the Thermococcus kodakarensis family D DNA polymerase. Extremophiles 2018; 23:161-172. [PMID: 30506100 DOI: 10.1007/s00792-018-1070-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 11/29/2022]
Abstract
DNA polymerase D (PolD), originally discovered in Pyrococcus furiosus, has no sequence homology with any other DNA polymerase family. Genes encoding PolD are found in most of archaea, except for those archaea in the Crenarchaeota phylum. PolD is composed of two proteins: DP1 and DP2. To date, the 3D structure of the PolD heteromeric complex is yet to be determined. In this study, we established a method that prepared highly purified PolD from Thermococcus kodakarensis, and purified DP1 and DP2 proteins formed a stable complex in solution. An intrinsically disordered region was identified in the N-terminal region of DP1, but the static light scattering analysis provided a reasonable molecular weight of DP1. In addition, PolD forms as a complex of DP1 and DP2 in a 1:1 ratio. Electron microscope single particle analysis supported this composition of PolD. Both proteins play an important role in DNA synthesis activity and in 3'-5' degradation activity. DP1 has extremely low affinity for DNA, while DP2 is mainly responsible for DNA binding. Our work will provide insight and the means to further understand PolD structure and the molecular mechanism of this archaea-specific DNA polymerase.
Collapse
Affiliation(s)
- Natsuki Takashima
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Sonoko Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Keisuke Oki
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Mika Takafuji
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takeshi Yamagami
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ryotaro Matsuo
- Division of Malvern Panalytical, Spectris Co., Ltd, Tokyo, 105-0013, Japan
| | - Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshizumi Ishino
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
22
|
Shen YL, Li HZ, Hu YW, Zheng L, Wang Q. Loss of GINS2 inhibits cell proliferation and tumorigenesis in human gliomas. CNS Neurosci Ther 2018; 25:273-287. [PMID: 30338650 DOI: 10.1111/cns.13064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS In this study, we examined the expression of GINS2 in glioma and determined its role in glioma development. METHODS The protein expression of GINS2 was assessed in 120 human glioma samples via immunohistochemistry. Then, we suppressed the expression of GINS2 in glioma cell strains U87 and U251 using a short hairpin RNA lentiviral vector. In addition, RNA sequencing and bioinformatics analysis were performed on glioma cells before and after GINS2 knockdown. Subsequent co-immunoprecipitation and western blot experiments indicated possible downstream regulatory molecules. RESULTS The present results showed that GINS2 can accelerate the growth of glioma cells, whereas the suppression of GINS2 expression decreased the proliferation and tumorigenicity of glioma cells. Mechanism research experiments proved that GINS2 can block the cell cycle by regulating certain downstream molecules, such as MCM2, ATM, and CHEK2. CONCLUSION GINS2 is closely related to the occurrence and development of glioma, and is likely to become a prognostic marker for glioma patients, as well as a potential therapeutic target in the treatment of glioma.
Collapse
Affiliation(s)
- Yun-Long Shen
- Department of Neurosurgery, The Fifth Affiliated Hospital, South Medical University, Guangzhou, China
| | - He-Zhen Li
- Department of Neurosurgery, The Fifth Affiliated Hospital, South Medical University, Guangzhou, China
| | - Yan-Wei Hu
- Clinical Laboratory Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Clinical Laboratory Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Clinical Laboratory Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Possible function of the second RecJ-like protein in stalled replication fork repair by interacting with Hef. Sci Rep 2017; 7:16949. [PMID: 29209094 PMCID: PMC5717133 DOI: 10.1038/s41598-017-17306-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/20/2017] [Indexed: 01/03/2023] Open
Abstract
RecJ was originally identified in Escherichia coli and plays an important role in the DNA repair and recombination pathways. Thermococcus kodakarensis, a hyperthermophilic archaeon, has two RecJ-like nucleases. These proteins are designated as GAN (GINS-associated nuclease) and HAN (Hef-associated nuclease), based on the protein they interact with. GAN is probably a counterpart of Cdc45 in the eukaryotic CMG replicative helicase complex. HAN is considered mainly to function with Hef for restoration of the stalled replication fork. In this study, we characterized HAN to clarify its functions in Thermococcus cells. HAN showed single-strand specific 3′ to 5′ exonuclease activity, which was stimulated in the presence of Hef. A gene disruption analysis revealed that HAN was non-essential for viability, but the ΔganΔhan double mutant did not grow under optimal conditions at 85 °C. This deficiency was not fully recovered by introducing the mutant han gene, encoding the nuclease-deficient HAN protein, back into the genome. These results suggest that the unstable replicative helicase complex without GAN performs ineffective fork progression, and thus the stalled fork repair system including HAN becomes more important. The nuclease activity of HAN is required for the function of this protein in T. kodakarensis.
Collapse
|