1
|
Sobhy MA, Tehseen M, Takahashi M, Bralić A, De Biasio A, Hamdan SM. Implementing fluorescence enhancement, quenching, and FRET for investigating flap endonuclease 1 enzymatic reaction at the single-molecule level. Comput Struct Biotechnol J 2021; 19:4456-4471. [PMID: 34471492 PMCID: PMC8385120 DOI: 10.1016/j.csbj.2021.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is an important component of the intricate molecular machinery for DNA replication and repair. FEN1 is a structure-specific 5' nuclease that cleaves nascent single-stranded 5' flaps during the maturation of Okazaki fragments. Here, we review our research primarily applying single-molecule fluorescence to resolve important mechanistic aspects of human FEN1 enzymatic reaction. The methodology presented in this review is aimed as a guide for tackling other biomolecular enzymatic reactions by fluorescence enhancement, quenching, and FRET and their combinations. Using these methods, we followed in real-time the structures of the substrate and product and 5' flap cleavage during catalysis. We illustrate that FEN1 actively bends the substrate to verify its features and continues to mold it to induce a protein disorder-to-order transitioning that controls active site assembly. This mechanism suppresses off-target cleavage of non-cognate substrates and promotes their dissociation with an accuracy that was underestimated from bulk assays. We determined that product release in FEN1 after the 5' flap release occurs in two steps; a brief binding to the bent nicked-product followed by longer binding to the unbent nicked-product before dissociation. Based on our cryo-electron microscopy structure of the human lagging strand replicase bound to FEN1, we propose how this two-step product release mechanism may regulate the final steps during the maturation of Okazaki fragments.
Collapse
Affiliation(s)
- Mohamed A Sobhy
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Masateru Takahashi
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Lancaster Rd, Leicester LE1 7HB, UK
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Ambrose B, Baxter JM, Cully J, Willmott M, Steele EM, Bateman BC, Martin-Fernandez ML, Cadby A, Shewring J, Aaldering M, Craggs TD. The smfBox is an open-source platform for single-molecule FRET. Nat Commun 2020; 11:5641. [PMID: 33159061 PMCID: PMC7648814 DOI: 10.1038/s41467-020-19468-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
Single-molecule Förster Resonance Energy Transfer (smFRET) is a powerful technique capable of resolving both relative and absolute distances within and between structurally dynamic biomolecules. High instrument costs, and a lack of open-source hardware and acquisition software have limited smFRET’s broad application by non-specialists. Here, we present the smfBox, a cost-effective confocal smFRET platform, providing detailed build instructions, open-source acquisition software, and full validation, thereby democratising smFRET for the wider scientific community. Broad uptake of smFRET has been hindered by high instrument costs and a lack of open-source hardware and acquisition software. Here, the authors present the smfBox, a cost-effective open-source platform capable of measuring precise FRET efficiencies between dyes on freely diffusing single molecules.
Collapse
Affiliation(s)
- Benjamin Ambrose
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK
| | - James M Baxter
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK
| | - John Cully
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK
| | - Matthew Willmott
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK
| | - Elliot M Steele
- Department of Physics, University of Sheffield, Sheffield, UK
| | - Benji C Bateman
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, UK
| | | | - Ashley Cadby
- Department of Physics, University of Sheffield, Sheffield, UK
| | - Jonathan Shewring
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK
| | - Marleen Aaldering
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK
| | - Timothy D Craggs
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, UK.
| |
Collapse
|
3
|
Donati E, Genna V, De Vivo M. Recruiting Mechanism and Functional Role of a Third Metal Ion in the Enzymatic Activity of 5' Structure-Specific Nucleases. J Am Chem Soc 2020; 142:2823-2834. [PMID: 31939291 PMCID: PMC7993637 DOI: 10.1021/jacs.9b10656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Enzymes of the 5′ structure-specific
nuclease family are crucial for DNA repair, replication, and recombination.
One such enzyme is the human exonuclease 1 (hExo1) metalloenzyme,
which cleaves DNA strands, acting primarily as a processive 5′-3′
exonuclease and secondarily as a 5′-flap endonuclease. Recently,
in crystallo reaction intermediates have elucidated how hExo1 exerts
hydrolysis of DNA phosphodiester bonds. These hExo1 structures show
a third metal ion intermittently bound close to the two-metal-ion
active site, to which recessed ends or 5′-flap substrates bind.
Evidence of this third ion has been observed in several nucleic-acid-processing
metalloenzymes. However, there is still debate over what triggers
the (un)binding of this transient third ion during catalysis and whether
this ion has a catalytic function. Using extended molecular dynamics
and enhanced sampling free-energy simulations, we observed that the
carboxyl side chain of Glu89 (located along the arch motif in hExo1)
flips frequently from the reactant state to the product state. The
conformational flipping of Glu89 allows one metal ion to be recruited
from the bulk and promptly positioned near the catalytic center. This
is in line with the structural evidence. Additionally, our simulations
show that the third metal ion assists the departure, through the mobile
arch, of the nucleotide monophosphate product from the catalytic site.
Structural comparisons of nuclease enzymes suggest that this Glu(Asp)-mediated
mechanism for third ion recruitment and nucleic acid hydrolysis may
be shared by other 5′ structure-specific nucleases.
Collapse
Affiliation(s)
- Elisa Donati
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Vito Genna
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy
| |
Collapse
|
4
|
Thompson MJ, Gotham VJB, Ciani B, Grasby JA. A conserved loop-wedge motif moderates reaction site search and recognition by FEN1. Nucleic Acids Res 2019; 46:7858-7872. [PMID: 29878258 PMCID: PMC6125683 DOI: 10.1093/nar/gky506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/23/2018] [Indexed: 12/24/2022] Open
Abstract
DNA replication and repair frequently involve intermediate two-way junction structures with overhangs, or flaps, that must be promptly removed; a task performed by the essential enzyme flap endonuclease 1 (FEN1). We demonstrate a functional relationship between two intrinsically disordered regions of the FEN1 protein, which recognize opposing sides of the junction and order in response to the requisite substrate. Our results inform a model in which short-range translocation of FEN1 on DNA facilitates search for the annealed 3'-terminus of a primer strand, which is recognized by breaking the terminal base pair to generate a substrate with a single nucleotide 3'-flap. This recognition event allosterically signals hydrolytic removal of the 5'-flap through reaction in the opposing junction duplex, by controlling access of the scissile phosphate diester to the active site. The recognition process relies on a highly-conserved 'wedge' residue located on a mobile loop that orders to bind the newly-unpaired base. The unanticipated 'loop-wedge' mechanism exerts control over substrate selection, rate of reaction and reaction site precision, and shares features with other enzymes that recognize irregular DNA structures. These new findings reveal how FEN1 precisely couples 3'-flap verification to function.
Collapse
Affiliation(s)
- Mark J Thompson
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Victoria J B Gotham
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Barbara Ciani
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Jane A Grasby
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| |
Collapse
|
5
|
Sobhy MA, Bralić A, Raducanu VS, Takahashi M, Tehseen M, Rashid F, Zaher MS, Hamdan SM. Resolution of the Holliday junction recombination intermediate by human GEN1 at the single-molecule level. Nucleic Acids Res 2019; 47:1935-1949. [PMID: 30590761 PMCID: PMC6393306 DOI: 10.1093/nar/gky1280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/19/2018] [Accepted: 12/13/2018] [Indexed: 01/18/2023] Open
Abstract
Human GEN1 is a cytosolic homologous recombination protein that resolves persisting four-way Holliday junctions (HJ) after the dissolution of the nuclear membrane. GEN1 dimerization has been suggested to play key role in the resolution of the HJ, but the kinetic details of its reaction remained elusive. Here, single-molecule FRET shows how human GEN1 binds the HJ and always ensures its resolution within the lifetime of the GEN1-HJ complex. GEN1 monomer generally follows the isomer bias of the HJ in its initial binding and subsequently distorts it for catalysis. GEN1 monomer remains tightly bound with no apparent dissociation until GEN1 dimer is formed and the HJ is fully resolved. Fast on- and slow off-rates of GEN1 dimer and its increased affinity to the singly-cleaved HJ enforce the forward reaction. Furthermore, GEN1 monomer binds singly-cleaved HJ tighter than intact HJ providing a fail-safe mechanism if GEN1 dimer or one of its monomers dissociates after the first cleavage. The tight binding of GEN1 monomer to intact- and singly-cleaved HJ empowers it as the last resort to process HJs that escape the primary mechanisms.
Collapse
Affiliation(s)
- Mohamed A Sobhy
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amer Bralić
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vlad-Stefan Raducanu
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Masateru Takahashi
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fahad Rashid
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Manal S Zaher
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Samir M Hamdan
- Laboratory of DNA Replication and Recombination, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Crowley EL, Rafferty SP. Review of lactose-driven auto-induction expression of isotope-labelled proteins. Protein Expr Purif 2019; 157:70-85. [PMID: 30708035 DOI: 10.1016/j.pep.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
NMR is an important method in the structural and functional characterization of proteins, but such experiments typically require isotopic labelling because of the low natural abundance of the nuclei of interest. Isotope-labelled protein for NMR experiments is typically obtained from IPTG-inducible bacterial expression systems in a minimal media that contains labelled carbon or nitrogen sources. Optimization of expression conditions is crucial yet challenging; large amounts of labelled protein are desired, yet protein yields are lower in minimal media, while the labelled precursors are expensive. Faced with these challenges there is a growing body of literature that apply innovative methods of induction to optimize the yield of isotope-labelled protein. A promising technique is lactose-driven auto-induction as it mitigates user intervention and can lead to higher protein yields. This review assesses the current advances and limitations surrounding the ability of researchers to isotope label proteins using auto-induction, and it identifies key components for optimization.
Collapse
Affiliation(s)
- Erika L Crowley
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| | - Steven P Rafferty
- Department of Chemistry, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| |
Collapse
|
7
|
Algasaier SI, Finger LD, Bennet IA, Grasby JA. Flap Endonuclease 1 Mutations A159V and E160D Cause Genomic Instability by Slowing Reaction on Double-Flap Substrates. Biochemistry 2018; 57:6838-6847. [DOI: 10.1021/acs.biochem.8b00891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sana I. Algasaier
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, U.K
| | - L. David Finger
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, U.K
| | - Ian A. Bennet
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, U.K
| | - Jane A. Grasby
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, U.K
| |
Collapse
|