1
|
Xiong D, Li Z, Qi W, Wang S, Huang J, Zhang N, Zhang Z, Huang L. Archaeal replicative primase mediates DNA double-strand break repair. Nucleic Acids Res 2025; 53:gkaf322. [PMID: 40272359 PMCID: PMC12019639 DOI: 10.1093/nar/gkaf322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Archaea, often thriving in extreme habitats, are believed to have evolved efficient DNA repair pathways to cope with constant insults to their genomes. However, how these organisms repair DNA double-strand breaks (DSBs), the most lethal DNA lesions, remains unclear. Here, we show that replicative primase consisting of the catalytic subunit PriS and the noncatalytic subunits PriL and PriX from the hyperthermophilic archaeon Saccharolobus islandicus is involved in DSB repair. We show that the overproduction or knockdown of PriL increases or decreases, respectively, the rate of survival and mutation frequency of S. islandicus cells following treatment with a DNA damaging agent. The increase in mutation is attributed primarily to an increase in small insertions or deletions. Further, overproduction of PriL enhances the repair of CRISPR-generated DSBs in vivo. These results are consistent with the extraordinary ability of PriSL to promote annealing between DNA strands sharing microhomology in addition to the activity of the heterodimer in terminal transfer and primer extension. The primase-mediated DSB repair is cell-cycle dependent since PriL is barely detectable during the S/G2 transition. Our data demonstrate that replicative primase is involved in DSB repair through microhomology-mediated end joining in Archaea.
Collapse
Affiliation(s)
- Daijiang Xiong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhimeng Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou 511458, China
| | - Wen Qi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Shaoying Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Junkai Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou 511458, China
| | - Ningning Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou 511458, China
| |
Collapse
|
2
|
Wu P, Zhang M, Kou Y, Liang S, Ni J, Huang Q, Shen Y. Identification of novel components of the Ced and Ups systems in Saccharolobus islandicus REY15A. MLIFE 2025; 4:17-28. [PMID: 40026581 PMCID: PMC11868833 DOI: 10.1002/mlf2.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
In Sulfolobales cells, transcription of the Ups (UV-inducible pili of Sulfolobus) and Ced (Crenarchaeal system for exchange of DNA) genes is highly induced by DNA damage, and the two systems play key roles in pili-mediated cell aggregation and chromosomal DNA import, respectively. Ups is composed of UpsA, UpsB, UpsE, and UpsF, while Ced is composed of CedA, CedA1, CedA2, and CedB. So far, how DNA is transported by these systems is far from clear. Here, we report three novel components of the Ced and Ups systems in Saccharolobus islandicus REY15A, CedD (SiRe_1715) and CedE (SiRe_2100), paralogs of CedB and CedA, and UpsC (SiRe_1957), a paralog of UpsA/UpsB. We developed a DNA import and export assay method, by which we revealed that CedD, CedE, and UpsC are essential for DNA import, while CedE and UpsC are also involved in DNA export together with CedA1 and Ups. Microscopic analysis revealed that upsC is involved in cell aggregation like other Ups genes. In addition, we found that cedB and cedD co-occur in the Crenarchaeal genomes that lack virB4, an essential component of type IV secretion system. Interestingly, CedB and CedD share homology to different parts of VirB4 N-terminal domain and form stable homo-oligomers in vitro. Collectively, our results indicate that CedD, CedE, and UpsC are integral components of the Ced and Ups systems in Sulfolobales.
Collapse
Affiliation(s)
- Pengju Wu
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Mengqi Zhang
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Yanlu Kou
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Shikuan Liang
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Jinfeng Ni
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Qihong Huang
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| | - Yulong Shen
- State Key Laboratory of Microbial TechnologyCRISPR and Archaea Biology Research Center, Microbial Technology Institute, Shandong UniversityQingdaoChina
| |
Collapse
|
3
|
Timinskas K, Timinskas A, Venclovas Č. Common themes in architecture and interactions of prokaryotic PolB2 and Pol V mutasomes inferred from in silico studies. Comput Struct Biotechnol J 2025; 27:401-410. [PMID: 39906160 PMCID: PMC11791011 DOI: 10.1016/j.csbj.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Translesion DNA synthesis (TLS) is typically performed by inherently error-prone Y-family DNA polymerases. Extensively studied Escherichia coli Pol V mutasome, composed of UmuC, an UmuD' dimer and RecA is an example of a multimeric Y-family TLS polymerase. Less commonly TLS is performed by DNA polymerases of other families. One of the most intriguing such cases in B-family is represented by archaeal PolB2 and its bacterial homologs. Previously thought to be catalytically inactive, PolB2 was recently shown to be absolutely required for targeted mutagenesis in Sulfolobus islandicus. However, the composition and structure of the PolB2 holoenzyme remain unknown. We used highly accurate AlphaFold structural models, coupled with protein sequence and genome context analysis to comprehensively characterize PolB2 and its associated proteins, PPB2, a small helical protein, and iRadA, a catalytically inactive Rad51 homolog. We showed that these three proteins can form a heteropentameric PolB2 complex featuring high confidence modeling scores. Unexpectedly, we found that PolB2 binds iRadA through a structural motif reminiscent of RadA/Rad51 oligomerization motif. In some mutasomes we identified clamp binding motifs, present in either iRadA or PolB2, but rarely in both. We also used AlphaFold to derive a three-dimensional structure of Pol V, for which the experimental structure remains unsolved thus precluding comprehensive understanding of its molecular mechanism. Our analysis showed that the structural features of Pol V explain many of the puzzling previous experimental results. Even though models of PolB2 and Pol V mutasomes are structurally different, we found striking similarities in their architectural organization and interactions.
Collapse
Affiliation(s)
- Kęstutis Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Albertas Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
4
|
Zhang X, Wu P, Bai R, Gan Q, Yang Y, Li H, Ni J, Huang Q, Shen Y. PerR functions as a redox-sensing transcription factor regulating metal homeostasis in the thermoacidophilic archaeon Saccharolobus islandicus REY15A. Nucleic Acids Res 2025; 53:gkae1263. [PMID: 39727184 PMCID: PMC11724291 DOI: 10.1093/nar/gkae1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Thermoacidophilic archaea thrive in environments with high temperatures and low pH where cells are prone to severe oxidative stress due to elevated levels of reactive oxygen species (ROS). While the oxidative stress responses have been extensively studied in bacteria and eukaryotes, the mechanisms in archaea remain largely unexplored. Here, using a multidisciplinary approach, we reveal that SisPerR, the homolog of bacterial PerR in Saccharolobus islandicus REY15A, is responsible for ROS response of transcriptional regulation. We show that with H2O2 treatment and sisperR deletion, expression of genes encoding proteins predicted to be involved in cellular metal ion homeostasis regulation, Dps, NirD, VIT1/CCC1 and MntH, is significantly upregulated, while expression of ROS-scavenging enzymes remains unaffected. Conversely, the expression of these genes is repressed when SisPerR is overexpressed. Notably, the genes coding for Dps, NirD and MntH are direct targets of SisPerR. Moreover, we identified three novel residues critical for ferrous ion binding and one novel residue for zinc ion binding. In summary, this study has established that SisPerR is a repressive redox-sensing transcription factor regulating intracellular metal ion homeostasis in Sa. islandicus for oxidative stress defense. These findings have shed new light on our understanding of microbial adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Xuemei Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Ruining Bai
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qi Gan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yunfeng Yang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Haodun Li
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| |
Collapse
|
5
|
Cui J, Liu X, Shang Q, Sun S, Chen S, Dong J, Zhu Y, Liu L, Xia Y, Wang Y, Xiang L, Fan B, Zhan J, Zhou Y, Chen P, Zhao R, Liu X, Xing N, Wu D, Shi B, Zou Y. Deubiquitination of CDC6 by OTUD6A promotes tumour progression and chemoresistance. Mol Cancer 2024; 23:86. [PMID: 38685067 PMCID: PMC11057083 DOI: 10.1186/s12943-024-01996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND CDC6 is an oncogenic protein whose expression level fluctuates during the cell cycle. Although several E3 ubiquitin ligases responsible for the ubiquitin-mediated proteolysis of CDC6 have been identified, the deubiquitination pathway for CDC6 has not been investigated. METHODS The proteome-wide deubiquitinase (DUB) screening was used to identify the potential regulator of CDC6. Immunofluorescence, protein half-life and deubiquitination assays were performed to determine the protein stability of CDC6. Gain- and loss-of-function experiments were implemented to analyse the impacts of OUTD6A-CDC6 axis on tumour growth and chemosensitivity in vitro. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced conditional Otud6a knockout (CKO) mouse model and tumour xenograft model were performed to analyse the role of OTUD6A-CDC6 axis in vivo. Tissue specimens were used to determine the association between OTUD6A and CDC6. RESULTS OTUD6A interacts with, depolyubiquitinates and stabilizes CDC6 by removing K6-, K33-, and K48-linked polyubiquitination. Moreover, OTUD6A promotes cell proliferation and decreases sensitivity to chemotherapy by upregulating CDC6. CKO mice are less prone to BCa tumorigenesis induced by BBN, and knockdown of OTUD6A inhibits tumour progression in vivo. Furthermore, OTUD6A protein level has a positive correlation with CDC6 protein level, and high protein levels of OTUD6A and CDC6 are associated with poor prognosis in patients with bladder cancer. CONCLUSIONS We reveal an important yet missing piece of novel DUB governing CDC6 stability. In addition, our findings propose a model for the OTUD6A-CDC6 axis that provides novel insights into cell cycle and chemosensitivity regulation, which may become a potential biomarker and promising drug target for cancer treatment.
Collapse
Affiliation(s)
- Jianfeng Cui
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaochen Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
- Department of Clinical laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Qinghong Shang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jianping Dong
- Department of Urology, Shouguang People's Hospital, Weifang, Shandong, 262750, China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Liu
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yong Wang
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lu Xiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Bowen Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Jiafeng Zhan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yadi Zhou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Renchang Zhao
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaofei Liu
- Departement of Breast and Thyroid Surgery, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
6
|
Feng X, Xu R, Liao J, Zhao J, Zhang B, Xu X, Zhao P, Wang X, Yao J, Wang P, Wang X, Han W, She Q. Flexible TAM requirement of TnpB enables efficient single-nucleotide editing with expanded targeting scope. Nat Commun 2024; 15:3464. [PMID: 38658536 PMCID: PMC11043419 DOI: 10.1038/s41467-024-47697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
TnpBs encoded by the IS200/IS605 family transposon are among the most abundant prokaryotic proteins from which type V CRISPR-Cas nucleases may have evolved. Since bacterial TnpBs can be programmed for RNA-guided dsDNA cleavage in the presence of a transposon-adjacent motif (TAM), these nucleases hold immense promise for genome editing. However, the activity and targeting specificity of TnpB in homology-directed gene editing remain unknown. Here we report that a thermophilic archaeal TnpB enables efficient gene editing in the natural host. Interestingly, the TnpB has different TAM requirements for eliciting cell death and for facilitating gene editing. By systematically characterizing TAM variants, we reveal that the TnpB recognizes a broad range of TAM sequences for gene editing including those that do not elicit apparent cell death. Importantly, TnpB shows a very high targeting specificity on targets flanked by a weak TAM. Taking advantage of this feature, we successfully leverage TnpB for efficient single-nucleotide editing with templated repair. The use of different weak TAM sequences not only facilitates more flexible gene editing with increased cell survival, but also greatly expands targeting scopes, and this strategy is probably applicable to diverse CRISPR-Cas systems.
Collapse
Affiliation(s)
- Xu Feng
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ruyi Xu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jianglan Liao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jingyu Zhao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Baochang Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoxiao Xu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Pengpeng Zhao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiaoning Wang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
7
|
Zhao P, Bi X, Wang X, Feng X, Shen Y, Yuan G, She Q. Rational design of unrestricted pRN1 derivatives and their application in the construction of a dual plasmid vector system for Saccharolobus islandicus. MLIFE 2024; 3:119-128. [PMID: 38827506 PMCID: PMC11139203 DOI: 10.1002/mlf2.12107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/25/2023] [Indexed: 06/04/2024]
Abstract
Saccharolobus islandicus REY15A represents one of the very few archaeal models with versatile genetic tools, which include efficient genome editing, gene silencing, and robust protein expression systems. However, plasmid vectors constructed for this crenarchaeon thus far are based solely on the pRN2 cryptic plasmid. Although this plasmid coexists with pRN1 in its original host, early attempts to test pRN1-based vectors consistently failed to yield any stable host-vector system for Sa. islandicus. We hypothesized that this failure could be due to the occurrence of CRISPR immunity against pRN1 in this archaeon. We identified a putative target sequence in orf904 encoding a putative replicase on pRN1 (target N1). Mutated targets (N1a, N1b, and N1c) were then designed and tested for their capability to escape the host CRISPR immunity by using a plasmid interference assay. The results revealed that the original target triggered CRISPR immunity in this archaeon, whereas all three mutated targets did not, indicating that all the designed target mutations evaded host immunity. These mutated targets were then incorporated into orf904 individually, yielding corresponding mutated pRN1 backbones with which shuttle plasmids were constructed (pN1aSD, pN1bSD, and pN1cSD). Sa. islandicus transformation revealed that pN1aSD and pN1bSD were functional shuttle vectors, but pN1cSD lost the capability for replication. These results indicate that the missense mutations in the conserved helicase domain in pN1c inactivated the replicase. We further showed that pRN1-based and pRN2-based vectors were stably maintained in the archaeal cells either alone or in combination, and this yielded a dual plasmid system for genetic study with this important archaeal model.
Collapse
Affiliation(s)
- Pengpeng Zhao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Xiaonan Bi
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Xiaoning Wang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Xu Feng
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Guanhua Yuan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| |
Collapse
|
8
|
Xiao Y, Jiang Z, Zhang M, Zhang X, Gan Q, Yang Y, Wu P, Feng X, Ni J, Dong X, She Q, Huang Q, Shen Y. The canonical single-stranded DNA-binding protein is not an essential replication factor but an RNA chaperon in Saccharolobus islandicus. iScience 2023; 26:108389. [PMID: 38034349 PMCID: PMC10684826 DOI: 10.1016/j.isci.2023.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) have been regarded as indispensable replication factors. Herein, we report that the genes encoding the canonical SSB (SisSSB) and the non-canonical SSB (SisDBP) in Saccharolobus islandicus REY15A are not essential for cell viability. Interestingly, at a lower temperature (55°C), the protein level of SisSSB increases and the growth of ΔSisssb and ΔSisssbΔSisdbp is retarded. SisSSB exhibits melting activity on dsRNA and DNA/RNA hybrid in vitro and is able to melt RNA hairpin in Escherichia coli. Furthermore, the core SisSSB domain is able to complement the absence of cold-shock proteins in E. coli. Importantly, these activities are conserved in the canonical SSBs from Crenarchaeota species that lack bacterial Csp homologs. Overall, our study has clarified the function of the archaeal canonical SSBs which do not function as a DNA-processing factor, but play a role in the processes requiring melting of dsRNA or DNA/RNA hybrid.
Collapse
Affiliation(s)
- Yuanxi Xiao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Zhichao Jiang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Mengqi Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Xuemei Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Qi Gan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Yunfeng Yang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Xu Feng
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
9
|
Jiang Z, Lin Z, Gan Q, Wu P, Zhang X, Xiao Y, She Q, Ni J, Shen Y, Huang Q. The FHA domain protein ArnA functions as a global DNA damage response repressor in the hyperthermophilic archaeon Saccharolobus islandicus. mBio 2023; 14:e0094223. [PMID: 37389462 PMCID: PMC10470591 DOI: 10.1128/mbio.00942-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Forkhead-associated (FHA) domain proteins specifically recognize phosphorylated threonine via the FHA domain and are involved in signal transduction in various processes especially DNA damage response (DDR) and cell cycle regulation in eukaryotes. Although FHA domain proteins are found in prokaryotes, archaea, and bacteria, their functions are far less clear as compared to the eukaryotic counterparts, and it has not been studied whether archaeal FHA proteins play a role in DDR. Here, we have characterized an FHA protein from the hyperthermophilic Crenarchaeon Saccharolobus islandicus (SisArnA) by genetic, biochemical, and transcriptomic approaches. We find that ΔSisarnA exhibits higher resistance to DNA damage agent 4-nitroquinoline 1-oxide (NQO). The transcription of ups genes, encoding the proteins for pili-mediated cell aggregation and cell survival after DDR, is elevated in ΔSisarnA. The interactions of SisArnA with two predicted partners, SisvWA1 (SisArnB) and SisvWA2 (designated as SisArnE), were enhanced by phosphorylation in vitro. ΔSisarnB displays higher resistance to NQO than the wild type. In addition, the interaction between SisArnA and SisArnB, which is reduced in the NQO-treated cells, is indispensable for DNA binding in vitro. These indicate that SisArnA and SisArnB work together to inhibit the expression of ups genes in vivo. Interestingly, ΔSisarnE is more sensitive to NQO than the wild type, and the interaction between SisArnA and SisArnE is strengthened after NQO treatment, suggesting a positive role of SisArnE in DDR. Finally, transcriptomic analysis reveals that SisArnA represses a number of genes, implying that archaea apply the FHA/phospho-peptide recognition module for extensive transcriptional regulation. IMPORTANCE Cellular adaption to diverse environmental stresses requires a signal sensor and transducer for cell survival. Protein phosphorylation and its recognition by forkhead-associated (FHA) domain proteins are widely used for signal transduction in eukaryotes. Although FHA proteins exist in archaea and bacteria, investigation of their functions, especially those in DNA damage response (DDR), is limited. Therefore, the evolution and functional conservation of FHA proteins in the three domains of life is still a mystery. Here, we find that an FHA protein from the hyperthermophilic Crenarchaeon Saccharolobus islandicus (SisArnA) represses the transcription of pili genes together with its phosphorylated partner SisArnB. SisArnA derepression facilitates DNA exchange and repair in the presence of DNA damage. The fact that more genes including a dozen of those involved in DDR are found to be regulated by SisArnA implies that the FHA/phosphorylation module may serve as an important signal transduction pathway for transcriptional regulation in archaeal DDR.
Collapse
Affiliation(s)
- Zhichao Jiang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zijia Lin
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qi Gan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xuemei Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yuanxi Xiao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Liu D, Sonalkar J, Prasanth SG. ORChestra coordinates the replication and repair music. Bioessays 2023; 45:e2200229. [PMID: 36811379 PMCID: PMC10023367 DOI: 10.1002/bies.202200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Error-free genome duplication and accurate cell division are critical for cell survival. In all three domains of life, bacteria, archaea, and eukaryotes, initiator proteins bind replication origins in an ATP-dependent manner, play critical roles in replisome assembly, and coordinate cell-cycle regulation. We discuss how the eukaryotic initiator, Origin recognition complex (ORC), coordinates different events during the cell cycle. We propose that ORC is the maestro driving the orchestra to coordinately perform the musical pieces of replication, chromatin organization, and repair.
Collapse
Affiliation(s)
- Dazhen Liu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801 USA
| | - Jay Sonalkar
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801 USA
| | - Supriya G. Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801 USA
- Cancer center at Illinois, UIUC
| |
Collapse
|
11
|
Wu P, Gan Q, Zhang X, Yang Y, Xiao Y, She Q, Ni J, Huang Q, Shen Y. The archaeal KEOPS complex possesses a functional Gon7 homolog and has an essential function independent of the cellular t 6A modification level. MLIFE 2023; 2:11-27. [PMID: 38818338 PMCID: PMC10989989 DOI: 10.1002/mlf2.12051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2024]
Abstract
Kinase, putative Endopeptidase, and Other Proteins of Small size (KEOPS) is a multisubunit protein complex conserved in eukaryotes and archaea. It is composed of Pcc1, Kae1, Bud32, Cgi121, and Gon7 in eukaryotes and is primarily involved in N6-threonylcarbamoyl adenosine (t6A) modification of transfer RNAs (tRNAs). Recently, it was reported that KEOPS participates in homologous recombination (HR) repair in yeast. To characterize the KEOPS in archaea (aKEOPS), we conducted genetic and biochemical analyses of its encoding genes in the hyperthermophilic archaeon Saccharolobus islandicus. We show that aKEOPS also possesses five subunits, Pcc1, Kae1, Bud32, Cgi121, and Pcc1-like (or Gon7-like), just like eukaryotic KEOPS. Pcc1-like has physical interactions with Kae1 and Pcc1 and can mediate the monomerization of the dimeric subcomplex (Kae1-Pcc1-Pcc1-Kae1), suggesting that Pcc1-like is a functional homolog of the eukaryotic Gon7 subunit. Strikingly, none of the genes encoding aKEOPS subunits, including Pcc1 and Pcc1-like, can be deleted in the wild type and in a t6A modification complementary strain named TsaKI, implying that the aKEOPS complex is essential for an additional cellular process in this archaeon. Knock-down of the Cgi121 subunit leads to severe growth retardance in the wild type that is partially rescued in TsaKI. These results suggest that aKEOPS plays an essential role independent of the cellular t6A modification level. In addition, archaeal Cgi121 possesses dsDNA-binding activity that relies on its tRNA 3' CCA tail binding module. Our study clarifies the subunit organization of archaeal KEOPS and suggests an origin of eukaryotic Gon7. The study also reveals a possible link between the function in t6A modification and the additional function, presumably HR.
Collapse
Affiliation(s)
- Pengju Wu
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Qi Gan
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Xuemei Zhang
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Yunfeng Yang
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Yuanxi Xiao
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Qunxin She
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Qihong Huang
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, CRISPR and Archaea Biology Research Center, Microbial Technology InstituteShandong UniversityQingdaoChina
| |
Collapse
|
12
|
Yang Y, Liu J, Fu X, Zhou F, Zhang S, Zhang X, Huang Q, Krupovic M, She Q, Ni J, Shen Y. A novel RHH family transcription factor aCcr1 and its viral homologs dictate cell cycle progression in archaea. Nucleic Acids Res 2023; 51:1707-1723. [PMID: 36715325 PMCID: PMC9976878 DOI: 10.1093/nar/gkad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023] Open
Abstract
Cell cycle regulation is of paramount importance for all forms of life. Here, we report that a conserved and essential cell cycle-specific transcription factor (designated as aCcr1) and its viral homologs control cell division in Sulfolobales. We show that the transcription level of accr1 reaches peak during active cell division (D-phase) subsequent to the expression of CdvA, an archaea-specific cell division protein. Cells over-expressing the 58-aa-long RHH (ribbon-helix-helix) family cellular transcription factor as well as the homologs encoded by large spindle-shaped viruses Acidianus two-tailed virus (ATV) and Sulfolobus monocaudavirus 3 (SMV3) display significant growth retardation and cell division failure, manifesting as enlarged cells with multiple chromosomes. aCcr1 over-expression results in downregulation of 17 genes (>4-fold), including cdvA. A conserved motif, aCcr1-box, located between the TATA-binding box and the translation initiation site of 13 out of the 17 highly repressed genes, is critical for aCcr1 binding. The aCcr1-box is present in the promoters and 5' UTRs of cdvA genes across Sulfolobales, suggesting that aCcr1-mediated cdvA repression is an evolutionarily conserved mechanism by which archaeal cells dictate cytokinesis progression, whereas their viruses take advantage of this mechanism to manipulate the host cell cycle.
Collapse
Affiliation(s)
- Yunfeng Yang
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Junfeng Liu
- Correspondence may also be addressed to Junfeng Liu.
| | - Xiaofei Fu
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Fan Zhou
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Shuo Zhang
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Xuemei Zhang
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, 75015, France
| | - Qunxin She
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, P. R. China
| | | |
Collapse
|
13
|
Sanchez-Nieves RL, Zhang C, Whitaker RJ. Integrated conjugative plasmid drives high frequency chromosomal gene transfer in Sulfolobus islandicus. Front Microbiol 2023; 14:1114574. [PMID: 36756353 PMCID: PMC9899855 DOI: 10.3389/fmicb.2023.1114574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Gene transfer in crenarchaea has been observed within natural and experimental populations of Sulfolobus. However, the molecular factors that govern how gene transfer and recombination manifest themselves in these populations is still unknown. In this study, we examine a plasmid-mediated mechanism of gene transfer in S. islandicus that results in localized high frequency recombination within the chromosome. Through chromosomal marker exchange assays with defined donors and recipients, we find that while bidirectional exchange occurs among all cells, those possessing the integrated conjugative plasmid, pM164, mobilize a nearby locus at a significantly higher frequency when compared to a more distal marker. We establish that traG is essential for this phenotype and that high frequency recombination can be replicated in transconjugants after plasmid transfer. Mapping recombinants through genomic analysis, we establish the distribution of recombinant tracts with decreasing frequency at increasing distance from pM164. We suggest the bias in transfer is a result of an Hfr (high frequency recombination)-like conjugation mechanism in this strain. In addition, we find recombinants containing distal non-selected recombination events, potentially mediated by a different host-encoded marker exchange (ME) mechanism.
Collapse
Affiliation(s)
- Ruben L. Sanchez-Nieves
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States,Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Rachel J. Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States,Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, United States,*Correspondence: Rachel J. Whitaker,
| |
Collapse
|
14
|
Sulfolobus islandicus Employs Orc1-2-Mediated DNA Damage Response in Defense against Infection by SSV2. J Virol 2022; 96:e0143822. [PMID: 36448807 PMCID: PMC9769372 DOI: 10.1128/jvi.01438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
All living organisms have evolved DNA damage response (DDR) strategies in coping with threats to the integrity of their genome. In response to DNA damage, Sulfolobus islandicus activates its DDR network in which Orc1-2, an ortholog of the archaeal Orc1/Cdc6 superfamily proteins, plays a central regulatory role. Here, we show that pretreatment with UV irradiation reduced virus genome replication in S. islandicus infected with the fusellovirus SSV2. Like treatment with UV or the DNA-damaging agent 4-nitroquinoline-1-oxide (NQO), infection with SSV2 facilitated the expression of orc1-2 and significantly raised the cellular level of Orc1-2. The inhibitory effect of UV irradiation on the virus DNA level was no longer apparent in the infected culture of an S. islandicus orc1-2 deletion mutant strain. On the other hand, the overexpression of orc1-2 decreased virus genomic DNA by ~102-fold compared to that in the parent strain. Furthermore, as part of the Orc1-2-mediated DDR response genes for homologous recombination repair (HRR), cell aggregation and intercellular DNA transfer were upregulated, whereas genes for cell division were downregulated. However, the HRR pathway remained functional in host inhibition of SSV2 genome replication in the absence of UpsA, a subunit of pili essential for intercellular DNA transfer. In agreement with this finding, lack of the general transcriptional activator TFB3, which controls the expression of the ups genes, only moderately affected SSV2 genome replication. Our results demonstrate that infection of S. islandicus by SSV2 triggers the host DDR pathway that, in return, suppresses virus genome replication. IMPORTANCE Extremophiles thrive in harsh habitats and thus often face a daunting challenge to the integrity of their genome. How these organisms respond to virus infection when their genome is damaged remains unclear. We found that the thermophilic archaeon Sulfolobus islandicus became more inhibitory to genome replication of the virus SSV2 after preinfection UV irradiation than without the pretreatment. On the other hand, like treatment with UV or other DNA-damaging agents, infection of S. islandicus by SSV2 triggers the activation of Orc1-2-mediated DNA damage response, including the activation of homologous recombination repair, cell aggregation and DNA import, and the repression of cell division. The inhibitory effect of pretreatment with UV irradiation on SSV2 genome replication was no longer observed in an S. islandicus mutant lacking Orc1-2. Our results suggest that DNA damage response is employed by S. islandicus as a strategy to defend against virus infection.
Collapse
|
15
|
Dissection of Functional Domains of Orc1-2, the Archaeal Global DNA Damage-Responsive Regulator. Int J Mol Sci 2022; 23:ijms232314609. [PMID: 36498936 PMCID: PMC9738581 DOI: 10.3390/ijms232314609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Orc1-2 is a non-initiator ortholog of archaeal/eukaryotic Orc1 proteins, which functions as a global regulator in DNA damage-responsive (DDR) expression. As for Orc1 initiators, the DDR regulator harbors an AAA+ ATPase domain, an Initiator-Specific Motif (ISM) and a winged-helix (wH) DNA-binding domain, which are also organized in a similar fashion. To investigate how Orc1-2 mediates the DDR regulation, the orc1-2 mutants inactivating each of these functional domains were constructed with Saccharolobus islandicus and genetically characterized. We found that disruption of each functional domain completely abolished the DDR regulation in these orc1-2 mutants. Strikingly, inactivation of ATP hydrolysis of Orc1-2 rendered an inviable mutant. However, the cell lethality can be suppressed by the deficiency of the DNA binding in the same protein, and it occurs independent of any DNA damage signal. Mutant Orc1-2 proteins were then obtained and investigated for DNA-binding in vitro. This revealed that both the AAA+ ATPase and the wH domains are involved in DNA-binding, where ISM and R381R383 in wH are responsible for specific DNA binding. We further show that Orc1-2 regulation occurs in two distinct steps: (a) eliciting cell division inhibition at a low Orc1-2 content, and this regulation is switched on by ATP binding and turned off by ATP hydrolysis; any failure in turning off the regulation leads to growth inhibition and cell death; (b) activation of the expression of DDR gene encoding DNA repair proteins at an elevated level of Orc1-2.
Collapse
|
16
|
Zhang Y, Lin J, Tian X, Wang Y, Zhao R, Wu C, Wang X, Zhao P, Bi X, Yu Z, Han W, Peng N, Liang YX, She Q. Inactivation of Target RNA Cleavage of a III-B CRISPR-Cas System Induces Robust Autoimmunity in Saccharolobus islandicus. Int J Mol Sci 2022; 23:ijms23158515. [PMID: 35955649 PMCID: PMC9368842 DOI: 10.3390/ijms23158515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Type III CRISPR-Cas systems show the target (tg)RNA-activated indiscriminate DNA cleavage and synthesis of oligoadenylates (cOA) and a secondary signal that activates downstream nuclease effectors to exert indiscriminate RNA/DNA cleavage, and both activities are regulated in a spatiotemporal fashion. In III-B Cmr systems, cognate tgRNAs activate the two Cmr2-based activities, which are then inactivated via tgRNA cleavage by Cmr4, but how Cmr4 nuclease regulates the Cmr immunization remains to be experimentally characterized. Here, we conducted mutagenesis of Cmr4 conserved amino acids in Saccharolobus islandicus, and this revealed that Cmr4α RNase-dead (dCmr4α) mutation yields cell dormancy/death. We also found that plasmid-borne expression of dCmr4α in the wild-type strain strongly reduced plasmid transformation efficiency, and deletion of CRISPR arrays in the host genome reversed the dCmr4α inhibition. Expression of dCmr4α also strongly inhibited plasmid transformation with Cmr2αHD and Cmr2αPalm mutants, but the inhibition was diminished in Cmr2αHD,Palm. Since dCmr4α-containing effectors lack spatiotemporal regulation, this allows an everlasting interaction between crRNA and cellular RNAs to occur. As a result, some cellular RNAs, which are not effective in mediating immunity due to the presence of spatiotemporal regulation, trigger autoimmunity of the Cmr-α system in the S. islandicus cells expressing dCmr4α. Together, these results pinpoint the crucial importance of tgRNA cleavage in autoimmunity avoidance and in the regulation of immunization of type III systems.
Collapse
Affiliation(s)
- Yan Zhang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China;
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Jinzhong Lin
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark;
| | - Xuhui Tian
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Yuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Ruiliang Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Chenwei Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (C.W.); (X.W.); (P.Z.); (X.B.); (Z.Y.)
| | - Xiaoning Wang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (C.W.); (X.W.); (P.Z.); (X.B.); (Z.Y.)
| | - Pengpeng Zhao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (C.W.); (X.W.); (P.Z.); (X.B.); (Z.Y.)
| | - Xiaonan Bi
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (C.W.); (X.W.); (P.Z.); (X.B.); (Z.Y.)
| | - Zhenxiao Yu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (C.W.); (X.W.); (P.Z.); (X.B.); (Z.Y.)
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Yun Xiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.T.); (Y.W.); (R.Z.); (W.H.); (N.P.); (Y.X.L.)
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark;
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (C.W.); (X.W.); (P.Z.); (X.B.); (Z.Y.)
- Correspondence:
| |
Collapse
|
17
|
Abstract
B-family DNA polymerases (PolBs) of different groups are widespread in Archaea, and different PolBs often coexist in the same organism. Many of these PolB enzymes remain to be investigated. One of the main groups that is poorly characterized is PolB2, whose members occur in many archaea but are predicted to be inactivated forms of DNA polymerase. Here, Sulfolobus islandicus DNA polymerase 2 (Dpo2), a PolB2 enzyme, was expressed in its native host and purified. Characterization of the purified enzyme revealed that the polymerase possesses a robust nucleotide incorporation activity but is devoid of the 3'-5' exonuclease activity. Enzyme kinetics analyses showed that Dpo2 replicates undamaged DNA templates with high fidelity, which is consistent with its inefficient nucleotide insertion activity opposite different DNA lesions. Strikingly, the polymerase is highly efficient in extending mismatches and mispaired primer termini once a nucleotide is placed opposite a damaged site. This extender polymerase represents a novel type of prokaryotic PolB specialized for DNA damage repair in Archaea. IMPORTANCE In this work, we report that Sulfolobus islandicus Dpo2, a B-family DNA polymerase once predicted to be an inactive form, is a bona fide DNA polymerase functioning in translesion synthesis. S. islandicus Dpo2 is a member of a large group of B-family DNA polymerases (PolB2) that are present in many archaea and some bacteria, and they carry variations in well-conserved amino acids in the functional domains responsible for polymerization and proofreading. However, we found that this prokaryotic B-family DNA polymerase not only replicates undamaged DNA with high fidelity but also extends mismatch and DNA lesion-containing substrates with high efficiencies. With these data, we propose this enzyme functions as an extender polymerase, the first prokaryotic enzyme of this type. Our data also suggest this PolB2 enzyme represents a functional counterpart of the eukaryotic DNA polymerase Pol zeta, an enzyme that is devoted to DNA damage repair.
Collapse
|
18
|
Liu H, Lu Z, Shi X, Liu L, Zhang P, Golemis EA, Tu Z. HSP90 inhibition downregulates DNA replication and repair genes via E2F1 repression. J Biol Chem 2021; 297:100996. [PMID: 34302809 PMCID: PMC8363837 DOI: 10.1016/j.jbc.2021.100996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an especially aggressive and highly heterogeneous mature B-cell lymphoma. Heat shock protein 90 (HSP90) is considered an attractive therapeutic target in a variety of cancers, including MCL, but no HSP90 inhibitors have succeeded in the clinical trials to date. Exploring fine mechanisms of HSP90 inhibition in cancer cells may shed light on novel therapeutic strategies. Here, we found that HSP90 knockdown and continuous inhibition with ganetespib inhibited growth of MCL cells in vitro and in vivo. To our surprise, transient exposure over 12 h was almost as efficient as continuous exposure, and treatment with ganetespib for 12 h efficiently inhibited growth and induced G1 cell cycle arrest and apoptosis of MCL cells. Transcriptome analysis complemented by functional studies was performed to define critical MCL signaling pathways that are exceptionally sensitive to HSP90 inhibition and vital to cell fate. Six genes (cell division cycle 6, cell division cycle 45, minichromosome maintenance 4, minichromosome maintenance 7, RecQ-mediated genome instability 2, and DNA primase polypeptide 1) involved in DNA replication and repair were identified as consistently downregulated in three MCL cell lines after transient ganetespib treatment. E2F1, an important transcription factor essential for cell cycle progression, was identified as a ganetespib target mediating transcriptional downregulation of these six genes, and its stability was also demonstrated to be maintained by HSP90. This study identifies E2F1 as a novel client protein of HSP90 that is very sensitive and worthy of targeting and also finds that HSP90 inhibitors may be useful in combination therapies for MCL.
Collapse
Affiliation(s)
- Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ziwen Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaofeng Shi
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lanlan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peishan Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China; Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
19
|
Menikpurage IP, Woo K, Mera PE. Transcriptional Activity of the Bacterial Replication Initiator DnaA. Front Microbiol 2021; 12:662317. [PMID: 34140937 PMCID: PMC8203912 DOI: 10.3389/fmicb.2021.662317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
In bacteria, DnaA is the most conserved DNA replication initiator protein. DnaA is a DNA binding protein that is part of the AAA+ ATPase family. In addition to initiating chromosome replication, DnaA can also function as a transcription factor either as an activator or repressor. The first gene identified to be regulated by DnaA at the transcriptional levels was dnaA. DnaA has been shown to regulate genes involved in a variety of cellular events including those that trigger sporulation, DNA repair, and cell cycle regulation. DnaA's dual functions (replication initiator and transcription factor) is a potential mechanism for DnaA to temporally coordinate diverse cellular events with the onset of chromosome replication. This strategy of using chromosome replication initiator proteins as regulators of gene expression has also been observed in archaea and eukaryotes. In this mini review, we focus on our current understanding of DnaA's transcriptional activity in various bacterial species.
Collapse
Affiliation(s)
- Inoka P Menikpurage
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kristin Woo
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Paola E Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
20
|
Huang Q, Lin Z, Wu P, Ni J, Shen Y. Phosphoproteomic Analysis Reveals Rio1-Related Protein Phosphorylation Changes in Response to UV Irradiation in Sulfolobus islandicus REY15A. Front Microbiol 2020; 11:586025. [PMID: 33343525 PMCID: PMC7744417 DOI: 10.3389/fmicb.2020.586025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022] Open
Abstract
DNA damage response (DDR) in eukaryotes is largely regulated by protein phosphorylation. In archaea, many proteins are phosphorylated, however, it is unclear how the cells respond to DNA damage through global protein phosphorylation. We previously found that Δrio1, a Rio1 kinase homolog deletion strain of Sulfolobus islandicus REY15A, was sensitive to UV irradiation. In this study, we showed that Δrio1 grew faster than the wild type. Quantitative phosphoproteomic analysis of the wild type and Δrio1, untreated and irradiated with UV irradiation, revealed 562 phosphorylated sites (with a Ser/Thr/Tyr ratio of 65.3%/23.8%/10.9%) of 333 proteins in total. The phosphorylation levels of 35 sites of 30 proteins changed with >1.3-fold in the wild type strain upon UV irradiation. Interestingly, more than half of the UV-induced changes in the wild type did not occur in the Δrio1 strain, which were mainly associated with proteins synthesis and turnover. In addition, a protein kinase and several transcriptional regulators were differentially phosphorylated after UV treatment, and some of the changes were dependent on Rio1. Finally, many proteins involved in various cellular metabolisms exhibited Riol-related and UV-independent phosphorylation changes. Our results suggest that Rio1 is involved in the regulation of protein recycling and signal transduction in response to UV irradiation, and plays regulatory roles in multiple cellular processes in S. islandicus.
Collapse
Affiliation(s)
- Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zijia Lin
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
21
|
Liu Z, Sun M, Liu J, Liu T, Ye Q, Li Y, Peng N. A CRISPR-associated factor Csa3a regulates DNA damage repair in Crenarchaeon Sulfolobus islandicus. Nucleic Acids Res 2020; 48:9681-9693. [PMID: 32833023 PMCID: PMC7515695 DOI: 10.1093/nar/gkaa694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 02/05/2023] Open
Abstract
CRISPR−Cas system provides acquired immunity against invasive genetic elements in prokaryotes. In both bacteria and archaea, transcriptional factors play important roles in regulation of CRISPR adaptation and interference. In the model Crenarchaeon Sulfolobus islandicus, a CRISPR-associated factor Csa3a triggers CRISPR adaptation and activates CRISPR RNA transcription for the immunity. However, regulation of DNA repair systems for repairing the genomic DNA damages caused by the CRISPR self-immunity is less understood. Here, according to the transcriptome and reporter gene data, we found that deletion of the csa3a gene down-regulated the DNA damage response (DDR) genes, including the ups and ced genes. Furthermore, in vitro analyses demonstrated that Csa3a specifically bound the DDR gene promoters. Microscopic analysis showed that deletion of csa3a significantly inhibited DNA damage-induced cell aggregation. Moreover, the flow cytometry study and survival rate analysis revealed that the csa3a deletion strain was more sensitive to the DNA-damaging reagent. Importantly, CRISPR self-targeting and DNA transfer experiments revealed that Csa3a was involved in regulating Ups- and Ced-mediated repair of CRISPR-damaged host genomic DNA. These results explain the interplay between Csa3a functions in activating CRISPR adaptation and DNA repair systems, and expands our understanding of the lost link between CRISPR self-immunity and genome stability.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Mengmeng Sun
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jilin Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Tao Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
22
|
Feng X, Liu X, Xu R, Zhao R, Feng W, Liao J, Han W, She Q. A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota. Front Microbiol 2020; 11:1585. [PMID: 32793138 PMCID: PMC7390963 DOI: 10.3389/fmicb.2020.01585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
Sulfolobus islandicus codes for four DNA polymerases: three are of the B-family (Dpo1, Dpo2, and Dpo3), and one is of the Y-family (Dpo4). Western analysis revealed that among the four polymerases, only Dpo2 exhibited DNA damage-inducible expression. To investigate how these DNA polymerases could contribute to DNA damage tolerance in S. islandicus, we conducted genetic analysis of their encoding genes in this archaeon. Plasmid-borne gene expression revealed that Dpo2 increases cell survival upon DNA damage at the expense of mutagenesis. Gene deletion studies showed although dpo1 is essential, the remaining three genes are dispensable. Furthermore, although Dpo4 functions in housekeeping translesion DNA synthesis (TLS), Dpo2, a B-family DNA polymerase once predicted to be inactive, functions as a damage-inducible TLS enzyme solely responsible for targeted mutagenesis, facilitating GC to AT/TA conversions in the process. Together, our data indicate that Dpo2 is the main DNA polymerase responsible for DNA damage tolerance and is the primary source of targeted mutagenesis. Given that crenarchaea encoding a Dpo2 also have a low-GC composition genome, the Dpo2-dependent DNA repair pathway may be conserved in this archaeal lineage.
Collapse
Affiliation(s)
- Xu Feng
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaotong Liu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruyi Xu
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruiliang Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenqian Feng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianglan Liao
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
23
|
Suzuki S, Kurosawa N. Participation of UV-regulated Genes in the Response to Helix-distorting DNA Damage in the Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius. Microbes Environ 2019; 34:363-373. [PMID: 31548441 PMCID: PMC6934391 DOI: 10.1264/jsme2.me19055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/11/2019] [Indexed: 11/15/2022] Open
Abstract
Several species of Sulfolobales have been used as model organisms in the study of response mechanisms to ultraviolet (UV) irradiation in hyperthermophilic crenarchaea. To date, the transcriptional responses of genes involved in the initiation of DNA replication, transcriptional regulation, protein phosphorylation, and hypothetical function have been observed in Sulfolobales species after UV irradiation. However, due to the absence of knockout experiments, the functions of these genes under in situ UV irradiation have not yet been demonstrated. In the present study, we constructed five gene knockout strains (cdc6-2, tfb3, rio1, and two genes encoding the hypothetical proteins, Saci_0951 and Saci_1302) of Sulfolobus acidocaldarius and examined their sensitivities to UV irradiation. The knockout strains exhibited significant sensitivities to UV-B irradiation, indicating that the five UV-regulated genes play an important role in responses to UV irradiation in vivo. Furthermore, Δcdc6-2, Δrio1, ΔSaci_0951, and Δtfb3 were sensitive to a wide variety of helix-distorting DNA lesions, including UV-induced DNA damage, an intra-strand crosslink, and bulky adducts. These results reveal that cdc6-2, tfb3, rio1, and Saci_0951 are play more important roles in broad responses to helix-distorting DNA damage than in specific responses to UV irradiation.
Collapse
Affiliation(s)
- Shoji Suzuki
- Department of Science and Engineering for Sustainable Development, Faculty of Science and Engineering, Soka UniversityTokyoJapan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Development, Faculty of Science and Engineering, Soka UniversityTokyoJapan
| |
Collapse
|
24
|
Liu Q, Gao J, Zhao C, Guo Y, Wang S, Shen F, Xing X, Luo Y. To control or to be controlled? Dual roles of CDK2 in DNA damage and DNA damage response. DNA Repair (Amst) 2019; 85:102702. [PMID: 31731257 DOI: 10.1016/j.dnarep.2019.102702] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 02/04/2023]
Abstract
CDK2 (cyclin-dependent kinase 2), a member of the CDK family, has been shown to play a role in many cellular activities including cell cycle progression, apoptosis and senescence. Recently, accumulating evidence indicates that CDK2 is involved in DNA damage and DNA repair response (DDR). When DNA is damaged by internal or external genotoxic stresses, CDK2 activity is required for proper DNA repair in vivo and in vitro, whereas inactivation of CDK2 by siRNA techniques or by inhibitors could result in DNA damage and stimulate DDR. Hence, CDK2 seems to play dual roles in DNA damage and DDR. On one aspect, it is activated and stimulates DDR to repair DNA damage when DNA damage occurs; on the other hand, its inactivation directly leads to DNA damage and evokes DDR. Here, we describe the roles of CDK2 in DNA damage and DDR, and discuss the potential application of CDK2 inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Yingying Guo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Shiquan Wang
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Fei Shen
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
25
|
Han W, Stella S, Zhang Y, Guo T, Sulek K, Peng-Lundgren L, Montoya G, She Q. A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding. Nucleic Acids Res 2019; 46:10319-10330. [PMID: 30239876 PMCID: PMC6212834 DOI: 10.1093/nar/gky844] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Recently, Type III-A CRISPR-Cas systems were found to catalyze the synthesis of cyclic oligoadenylates (cOAs), a second messenger that specifically activates Csm6, a Cas accessory RNase and confers antiviral defense in bacteria. To test if III-B CRISPR-Cas systems could mediate a similar CRISPR signaling pathway, the Sulfolobus islandicus Cmr-α ribonucleoprotein complex (Cmr-α-RNP) was purified from the native host and tested for cOA synthesis. We found that the system showed a robust production of cyclic tetra-adenylate (c-A4), and that c-A4 functions as a second messenger to activate the III-B-associated RNase Csx1 by binding to its CRISPR-associated Rossmann Fold domain. Investigation of the kinetics of cOA synthesis revealed that Cmr-α-RNP displayed positively cooperative binding to the adenosine triphosphate (ATP) substrate. Furthermore, mutagenesis of conserved domains in Cmr2α confirmed that, while Palm 2 hosts the active site of cOA synthesis, Palm 1 domain serves as the primary site in the enzyme-substrate interaction. Together, our data suggest that the two Palm domains cooperatively interact with ATP molecules to achieve a robust cOA synthesis by the III-B CRISPR-Cas system.
Collapse
Affiliation(s)
- Wenyuan Han
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Stefano Stella
- Structural Molecular Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Yan Zhang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Guo
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Karolina Sulek
- Clinical Proteomics, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Li Peng-Lundgren
- Protein Production and Characterization Platform, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Guillermo Montoya
- Structural Molecular Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| |
Collapse
|
26
|
Polyploidy in halophilic archaea: regulation, evolutionary advantages, and gene conversion. Biochem Soc Trans 2019; 47:933-944. [PMID: 31189733 DOI: 10.1042/bst20190256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022]
Abstract
All analyzed haloarachea are polyploid. In addition, haloarchaea contain more than one type of chromosome, and thus the gene dosage can be regulated independently on different replicons. Haloarchaea and several additional archaea have more than one replication origin on their major chromosome, in stark contrast with bacteria, which have a single replication origin. Two of these replication origins of Haloferax volcanii have been studied in detail and turned out to have very different properties. The chromosome copy number appears to be regulated in response to growth phases and environmental factors. Archaea typically contain about two Origin Recognition Complex (ORC) proteins, which are homologous to eukaryotic ORC proteins. However, haloarchaea are the only archaeal group that contains a multitude of ORC proteins. All 16 ORC protein paralogs from H. volcanii are involved in chromosome copy number regulation. Polyploidy has many evolutionary advantages for haloarchaea, e.g. a high resistance to desiccation, survival over geological times, and the relaxation of cell cycle-specific replication control. A further advantage is the ability to grow in the absence of external phosphate while using the many genome copies as internal phosphate storage polymers. Very efficient gene conversion operates in haloarchaea and results in the unification of genome copies. Taken together, haloarchaea are excellent models to study many aspects of genome biology in prokaryotes, exhibiting properties that have not been found in bacteria.
Collapse
|
27
|
Huang Q, Mayaka JB, Zhong Q, Zhang C, Hou G, Ni J, Shen Y. Phosphorylation of the Archaeal Holliday Junction Resolvase Hjc Inhibits Its Catalytic Activity and Facilitates DNA Repair in Sulfolobus islandicus REY15A. Front Microbiol 2019; 10:1214. [PMID: 31214148 PMCID: PMC6555300 DOI: 10.3389/fmicb.2019.01214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 11/18/2022] Open
Abstract
Protein phosphorylation is one of the main protein post-translational modifications and regulates DNA repair in eukaryotes. Archaeal genomes encode eukaryotic-like DNA repair proteins and protein kinases (ePKs), and several proteins involved in homologous recombination repair (HRR) including Hjc, a conserved Holliday junction (HJ) resolvase in Archaea, undergo phosphorylation, indicating that phosphorylation plays important roles in HRR. Herein, we performed phosphorylation analysis of Hjc by various ePKs from Sulfolobus islandicus. It was shown that SiRe_0171, SiRe_2030, and SiRe_2056, were able to phosphorylate Hjc in vitro. These ePKs phosphorylated Hjc at different Ser/Thr residues: SiRe_0171 on S34, SiRe_2030 on both S9 and T138, and SiRe_2056 on T138. The HJ cleavage activity of the phosphorylation-mimic mutants was analyzed and the results showed that the cleavage activity of S34E was completely lost and that of S9E had greatly reduced. S. islandicus strain expressing S34E in replacement of the wild type Hjc was resistant to higher doses of DNA damaging agents. Furthermore, SiRe_0171 deletion mutant exhibited higher sensitivity to DNA damaging agents, suggesting that Hjc phosphorylation by SiRe_0171 enhanced the DNA repair capability. Our results revealed that HJ resolvase is regulated by protein phosphorylation, reminiscent of the regulation of eukaryotic HJ resolvases GEN1 and Yen1.
Collapse
Affiliation(s)
- Qihong Huang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Joseph Badys Mayaka
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qing Zhong
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Chao Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guihua Hou
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
28
|
Archaeal DNA polymerases: new frontiers in DNA replication and repair. Emerg Top Life Sci 2018; 2:503-516. [PMID: 33525823 DOI: 10.1042/etls20180015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022]
Abstract
Archaeal DNA polymerases have long been studied due to their superior properties for DNA amplification in the polymerase chain reaction and DNA sequencing technologies. However, a full comprehension of their functions, recruitment and regulation as part of the replisome during genome replication and DNA repair lags behind well-established bacterial and eukaryotic model systems. The archaea are evolutionarily very broad, but many studies in the major model systems of both Crenarchaeota and Euryarchaeota are starting to yield significant increases in understanding of the functions of DNA polymerases in the respective phyla. Recent advances in biochemical approaches and in archaeal genetic models allowing knockout and epitope tagging have led to significant increases in our understanding, including DNA polymerase roles in Okazaki fragment maturation on the lagging strand, towards reconstitution of the replisome itself. Furthermore, poorly characterised DNA polymerase paralogues are finding roles in DNA repair and CRISPR immunity. This review attempts to provide a current update on the roles of archaeal DNA polymerases in both DNA replication and repair, addressing significant questions that remain for this field.
Collapse
|