1
|
Wen R, Huang R, Yang M, Yang J, Yi X. Regulation of protein arginine methyltransferase in osteoporosis: a narrative review. Front Cell Dev Biol 2025; 13:1453624. [PMID: 40342926 PMCID: PMC12058719 DOI: 10.3389/fcell.2025.1453624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 04/14/2025] [Indexed: 05/11/2025] Open
Abstract
Osteoporosis (OP), a systemic bone disease characterised by increased bone fragility and susceptibility to fracture, is mainly caused by a decline in bone mineral density (BMD) and quality caused by an imbalance between bone formation and resorption. Protein arginine methyltransferases (PRMTs) are epigenetic factors and post-translational modification (PTM) enzymes participating in various biological processes, including mRNA splicing, DNA damage repair, transcriptional regulation, and cell signalling. They act by catalysing the transfer and modification of arginine residues and, thus, have become therapeutic targets for OP. In-depth studies have found that these enzymes also play key roles in bone matrix protein metabolism, skeletal cell proliferation and differentiation, and signal pathway regulation to regulate bone formation, bone resorption balance, or both and jointly maintain bone health and stability. However, the expression changes and mechanisms of action of multiple members of the PRMT family differ in OP. Therefore, this paper discusses the biological functions, mechanisms of action, and influencing factors of PRMTs in OP, which is expected to provide a new understanding of the pathogenesis of OP. Furthermore, we present theoretical support for the development of more precise and effective treatment strategies as well as for further study of the molecular mechanisms of PRMTs.
Collapse
Affiliation(s)
| | | | | | | | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Giacomoni J, Sabatier JM. Vitamin D and Mitochondrial Activity Preservation in COVID-19. Infect Disord Drug Targets 2025; 25:e190424229153. [PMID: 38644705 DOI: 10.2174/0118715265304580240405064250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Affiliation(s)
- Julien Giacomoni
- Independent Researcher, 245 chemin du château 13119, Saint Savournin, France
| | - Jean-Marc Sabatier
- Institut de NeuroPhysiopathologie (INP), CNRS UMR 7051, 27 Bd Jean Moulin, 13005, Marseille, France
| |
Collapse
|
3
|
Auddino S, Aiello E, Grieco GE, Dotta F, Sebastiani G. A three-layer perspective on miRNA regulation in β cell inflammation. Trends Endocrinol Metab 2024:S1043-2760(24)00257-1. [PMID: 39532586 DOI: 10.1016/j.tem.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression post-transcriptionally and influence numerous biological processes. Aberrant miRNA expression is linked to diseases such as diabetes mellitus; indeed, miRNAs regulate pancreatic islet inflammation in both type 1 (T1D) and type 2 diabetes (T2D). Traditionally, miRNA research has focused on canonical sequences and offers a two-layer view - from expression to function. However, advances in RNA sequencing have revealed miRNA variants, called isomiRs, that arise from alternative processing or modifications of canonical sequences. This introduces a three-layer view - from expression, through sequence modifications, to function. We discuss the potential link between cellular stresses and isomiR biogenesis, and how this association could improve our knowledge of islet inflammation and dysfunction.
Collapse
Affiliation(s)
- Stefano Auddino
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy
| | - Elena Aiello
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy
| | - Giuseppina Emanuela Grieco
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy.
| | - Guido Sebastiani
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy; Fondazione Umberto Di Mario Onlus, Toscana Life Sciences, Siena, Italy.
| |
Collapse
|
4
|
Thivierge C, Bellefeuille M, Diwan SS, Dyakov BJA, Leventis R, Perron G, Najafabadi HS, Gravel SP, Gingras AC, Duchaine TF. Paraspeckle-independent co-transcriptional regulation of nuclear microRNA biogenesis by SFPQ. Cell Rep 2024; 43:114695. [PMID: 39250314 DOI: 10.1016/j.celrep.2024.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in physiological functions and disease, but the regulation of their nuclear biogenesis remains poorly understood. Here, BioID on Drosha, the catalytic subunit of the microprocessor complex, reveals its proximity to splicing factor proline- and glutamine (Q)-rich (SFPQ), a multifunctional RNA-binding protein (RBP) involved in forming paraspeckle nuclear condensates. SFPQ depletion impacts both primary and mature miRNA expression, while other paraspeckle proteins (PSPs) or the paraspeckle scaffolding RNA NEAT1 do not, indicating a paraspeckle-independent role. Comprehensive transcriptomic analyses show that SFPQ loss broadly affects RNAs and miRNA host gene (HG) expression, influencing both their transcription and the stability of their products. Notably, SFPQ protects the oncogenic miR-17∼92 polycistron from degradation by the nuclear exosome targeting (NEXT)-exosome complex and is tightly linked with its overexpression across a broad variety of cancers. Our findings reveal a dual role for SFPQ in regulating miRNA HG transcription and stability, as well as its significance in cancers.
Collapse
Affiliation(s)
- Caroline Thivierge
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Maxime Bellefeuille
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Sarah-Slim Diwan
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Boris J A Dyakov
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Rania Leventis
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Gabrielle Perron
- McGill Genome Centre & Department of Human Genetics, McGill University, Montréal, QC H3A 0G1, Canada
| | - Hamed S Najafabadi
- McGill Genome Centre & Department of Human Genetics, McGill University, Montréal, QC H3A 0G1, Canada
| | | | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System & Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Thomas F Duchaine
- Rosalind and Morris Goodman Cancer Institute, McGill Centre for RNA Sciences & Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
5
|
Lu L, Ye Z, Zhang R, Olsen JV, Yuan Y, Mao Y. ETD-Based Proteomic Profiling Improves Arginine Methylation Identification and Reveals Novel PRMT5 Substrates. J Proteome Res 2024; 23:1014-1027. [PMID: 38272855 DOI: 10.1021/acs.jproteome.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Protein arginine methylations are important post-translational modifications (PTMs) in eukaryotes, regulating many biological processes. However, traditional collision-based mass spectrometry methods inevitably cause neutral losses of methylarginines, preventing the deep mining of biologically important sites. Herein we developed an optimized mass spectrometry workflow based on electron-transfer dissociation (ETD) with supplemental activation for proteomic profiling of arginine methylation in human cells. Using symmetric dimethylarginine (sDMA) as an example, we show that the ETD-based optimized workflow significantly improved the identification and site localization of sDMA. Quantitative proteomics identified 138 novel sDMA sites as potential PRMT5 substrates in HeLa cells. Further biochemical studies on SERBP1, a newly identified PRMT5 substrate, confirmed the coexistence of sDMA and asymmetric dimethylarginine in the central RGG/RG motif, and loss of either methylation caused increased the recruitment of SERBP1 to stress granules under oxidative stress. Overall, our optimized workflow not only enabled the identification and localization of extensive, nonoverlapping sDMA sites in human cells but also revealed novel PRMT5 substrates whose sDMA may play potentially important biological functions.
Collapse
Affiliation(s)
- Lingzi Lu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Zilu Ye
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Rou Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Mao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Li WJ, Huang Y, Lin YA, Zhang BD, Li MY, Zou YQ, Hu GS, He YH, Yang JJ, Xie BL, Huang HH, Deng X, Liu W. Targeting PRMT1-mediated SRSF1 methylation to suppress oncogenic exon inclusion events and breast tumorigenesis. Cell Rep 2023; 42:113385. [PMID: 37938975 DOI: 10.1016/j.celrep.2023.113385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
PRMT1 plays a vital role in breast tumorigenesis; however, the underlying molecular mechanisms remain incompletely understood. Herein, we show that PRMT1 plays a critical role in RNA alternative splicing, with a preference for exon inclusion. PRMT1 methylome profiling identifies that PRMT1 methylates the splicing factor SRSF1, which is critical for SRSF1 phosphorylation, SRSF1 binding with RNA, and exon inclusion. In breast tumors, PRMT1 overexpression is associated with increased SRSF1 arginine methylation and aberrant exon inclusion, which are critical for breast cancer cell growth. In addition, we identify a selective PRMT1 inhibitor, iPRMT1, which potently inhibits PRMT1-mediated SRSF1 methylation, exon inclusion, and breast cancer cell growth. Combination treatment with iPRMT1 and inhibitors targeting SRSF1 phosphorylation exhibits an additive effect of suppressing breast cancer cell growth. In conclusion, our study dissects a mechanism underlying PRMT1-mediated RNA alternative splicing. Thus, PRMT1 has great potential as a therapeutic target in breast cancer treatment.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ying Huang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-An Lin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Bao-Ding Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China
| | - Mei-Yan Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yi-Qin Zou
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yao-Hui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jing-Jing Yang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Bing-Lan Xie
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China
| | - Hai-Hua Huang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, China; Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.
| |
Collapse
|
7
|
Liu Z, Fang Z, Wang K, Ye M. Hydrophobic Derivatization Strategy Facilitates Comprehensive Profiling of Protein Methylation. J Proteome Res 2023; 22:3275-3281. [PMID: 37738134 DOI: 10.1021/acs.jproteome.3c00318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Protein methylation is receiving more and more attention due to its essential role in diverse biological processes. Large-scale analysis of protein methylation requires the efficient identification of methylated peptides at the proteome level; unfortunately, a significant number of methylated peptides are highly hydrophilic and hardly retained during reversed-phase chromatography, making it difficult to be identified by conventional approaches. Herein, we report the development of a novel strategy by combining hydrophobic derivatization and high pH strong cation exchange enrichment, which significantly expands the identification coverage of the methylproteome. Noteworthily, the total number of identified methylated short peptides was improved by more than 2-fold. By this strategy, we identified 492 methylation sites from NCI-H460 cells compared to only 356 sites identified in native forms. The identification of methylation sites before and after derivatization was highly complementary. Approximately 2-fold the methylation sites were obtained by combining the results identified in both approaches (native and derivatized) as compared with the only analysis in native forms. Therefore, this novel chemical derivatization strategy is a promising approach for the comprehensive identification of protein methylation by improving the identification of methylated short peptides.
Collapse
Affiliation(s)
- Zhen Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keyun Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Liu Z, Wang K, Ye M. Photoreactive Probe-Based Strategy Enables the Specific Identification of the Transient Substrates of Methyltransferase at the Proteome Scale. Anal Chem 2023; 95:12580-12585. [PMID: 37578933 DOI: 10.1021/acs.analchem.3c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
To decipher the biological function of protein arginine methyltransferases (PRMTs), the identification of their substrate proteins is crucial. However, this is not a trivial task as the stable and strong interacting proteins always prevail over the weak and transient substrate proteins. Herein, we report the development of a novel photoreactive probe-based strategy to identify the substrate proteins of methyltransferases. By applying it to PRMT1, we demonstrate that this strategy can effectively distinguish substrate proteins from other interacting proteins and allows the identification of highly confident substrate proteins. Noteworthily, we found for the first time that hypomethylation of proteins is a prerequisite for efficient capturing of substrate proteins. This study describes the development of a robust chemical proteomics tool for profiling the transient substrates and can be adapted for broad biomedical applications.
Collapse
Affiliation(s)
- Zhen Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keyun Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Qiu J, Wu X, Luo Y, Yao Y, Zhang X, Pan B, Wang X, Tang N. Prognostic and immunotherapeutic predictive value of interleukin enhancer-binding factor 3 in hepatocellular carcinoma: Integrated bioinformatics and experimental analysis. Gene 2023; 856:147132. [PMID: 36566982 DOI: 10.1016/j.gene.2022.147132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Interleukin enhancer-binding factor 3 (ILF3) as an RNA-binding protein that plays a critical role in the process of cancer and antiviral responses. However, no researcher has focused on the pan-cancer analysis of ILF3, and the effect of ILF3 on tumor immunity is still largely unclear. This study synthetically analyzed the relationship between the expression of ILF3 across various cancers and prognosis, microsatellite instability (MSI), tumor mutational burden (TMB), tumor immune cell infiltration, and common immune checkpoint molecules by multiple bioinformatics databases. Experimentally, we detected the mRNA abundance of ILF3 and immune checkpoint molecules in liver hepatocellular carcinoma (LIHC) tissues. The functions of ILF3 on hepatocellular carcinoma (HCC) cells were verified by western blot assay and cytotoxicity assay. We found that ILF3 was aberrantly expressed and associated with the prognosis in several types of tumors. The ILF3 expression was significantly correlated with infiltrating levels of immune cells and immune molecules in certain cancers, particularly in LIHC. Detection of clinical liver cancer tissues confirmed the positive correlation between ILF3 and immune checkpoint molecules, including programmed cell death 1 (PD-1), programmed cell death ligand 1 (PD-L1), cytotoxic T lymphocyte-associated antigen 4 (CTLA4), lymphocyte-activation gene 3 (LAG3), and T cell immunoglobulin domain and mucin domain-3 (TIM3). Furthermore, reduced PD-L1 and increased sensitivity of HCC cells to T cells cytotoxicity were found in ILF3-knockdown cells. This work suggested ILF3 may be used as a prognostic marker for various tumors to predict the response to immunotherapy.
Collapse
Affiliation(s)
- Jiacheng Qiu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxuan Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yue Luo
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
10
|
Zhang L, Liu X, Wei Q, Zou L, Zhou L, Yu Y, Wang D. Arginine attenuates chronic mountain sickness in rats via microRNA-144-5p. Mamm Genome 2023; 34:76-89. [PMID: 36763178 DOI: 10.1007/s00335-023-09980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Hypobaric hypoxia is an environmental stress leading to high-altitude pulmonary hypertension. While high-altitude pulmonary hypertension has been linked to high hematocrit findings (chronic mountain sickness; CMS). The present study is designed to investigate the effect of arginine (ARG) on hypobaric hypoxia-induced CMS of rats. Hypobaric hypoxia resulted in lower body weight, decreased appetite, increased pulmonary artery pressure, and deteriorated lung tissue damage in rats. Red blood cells (RBC), hemoglobin, hematocrit, mean corpuscular volume, and mean corpuscular hemoglobin values and blood viscosity were increased in rats, which were alleviated by ARG. microRNA (miRNA) microarray analysis was used to filter differentially expressed miRNAs after ARG in rats. miR-144-5p was reduced under hypobaric hypoxia and upregulated by ARG. miR-144-5p silencing aggravated the erythrocytosis and hyperviscosity in rats, and also accentuated tissue damage and excessive accumulation of RBC. The role of miR-144-5p in rats with CMS was achieved by blocking erythropoietin (EPO)/erythropoietin receptor (EPOR). In conclusion, ARG alleviated CMS symptoms in rodents exposed to hypobaric hypoxia by decreasing EPO/EPOR via miR-144-5p.
Collapse
Affiliation(s)
- Leiying Zhang
- Chinese PLA Medical School, Beijing, 100039, People's Republic of China
- Department of Blood Transfusion, The First Medical Center of Chinese, PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100039, People's Republic of China
| | - Xiaomin Liu
- Chinese PLA Medical School, Beijing, 100039, People's Republic of China
- Department of Blood Transfusion, The First Medical Center of Chinese, PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100039, People's Republic of China
| | - Qingxia Wei
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Liyang Zou
- Chinese PLA Medical School, Beijing, 100039, People's Republic of China
- Department of Blood Transfusion, The First Medical Center of Chinese, PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100039, People's Republic of China
| | - Lingling Zhou
- Chinese PLA Medical School, Beijing, 100039, People's Republic of China
- Department of Blood Transfusion, The First Medical Center of Chinese, PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100039, People's Republic of China
| | - Yang Yu
- Chinese PLA Medical School, Beijing, 100039, People's Republic of China.
- Department of Blood Transfusion, The First Medical Center of Chinese, PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100039, People's Republic of China.
| | - Deqing Wang
- Chinese PLA Medical School, Beijing, 100039, People's Republic of China.
- Department of Blood Transfusion, The First Medical Center of Chinese, PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, 100039, People's Republic of China.
| |
Collapse
|
11
|
Massignani E, Maniaci M, Bonaldi T. Heavy Methyl SILAC Metabolic Labeling of Human Cell Lines for High-Confidence Identification of R/K-Methylated Peptides by High-Resolution Mass Spectrometry. Methods Mol Biol 2023; 2603:173-186. [PMID: 36370279 DOI: 10.1007/978-1-0716-2863-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein methylation is a widespread post-translational modification (PTM) involved in several important biological processes including, but not limited to, RNA splicing, signal transduction, translation, and DNA repair. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is considered today the most versatile and accurate technique to profile PTMs with high precision and proteome-wide depth; however, the identification of protein methylations by MS is still prone to high false discovery rates. In this chapter, we describe the heavy methyl SILAC metabolic labeling strategy that allows high-confidence identification of in vivo methyl-peptides by MS-based proteomics. We provide a general protocol that covers the steps of heavy methyl labeling of cultured cells, protein sample preparation, LC-MS/MS analysis, and downstream computational analysis of the acquired MS data.
Collapse
Affiliation(s)
- Enrico Massignani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- European School of Molecular Medicine (SEMM), Milan, Italy
| | - Marianna Maniaci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- European School of Molecular Medicine (SEMM), Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Haemathology-Oncology, University of MIlan, Milano, Italy.
| |
Collapse
|
12
|
Giambruno R, Nicassio F. Proximity-dependent biotinylation technologies for mapping RNA-protein interactions in live cells. Front Mol Biosci 2022; 9:1062448. [PMID: 36452457 PMCID: PMC9702341 DOI: 10.3389/fmolb.2022.1062448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2023] Open
Abstract
Proximity ligation technologies are extremely powerful tools for unveiling RNA-protein interactions occurring at different stages in living cells. These approaches mainly rely on the inducible activity of enzymes (biotin ligases or peroxidases) that promiscuously biotinylate macromolecules within a 20 nm range. These enzymes can be either fused to an RNA binding protein or tethered to any RNA of interest and expressed in living cells to biotinylate the amino acids and nucleic acids of binding partners in proximity. The biotinylated molecules can then be easily affinity purified under denaturing conditions and analyzed by mass spectrometry or next generation sequencing. These approaches have been widely used in recent years, providing a potent instrument to map the molecular interactions of specific RNA-binding proteins as well as RNA transcripts occurring in mammalian cells. In addition, they permit the identification of transient interactions as well as interactions among low expressed molecules that are often missed by standard affinity purification strategies. This review will provide a brief overview of the currently available proximity ligation methods, highlighting both their strengths and shortcomings. Furthermore, it will bring further insights to the way these technologies could be further used to characterize post-transcriptional modifications that are known to regulate RNA-protein interactions.
Collapse
Affiliation(s)
- Roberto Giambruno
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| |
Collapse
|
13
|
Massignani E, Giambruno R, Maniaci M, Nicosia L, Yadav A, Cuomo A, Raimondi F, Bonaldi T. ProMetheusDB: An In-Depth Analysis of the High-Quality Human Methyl-proteome. Mol Cell Proteomics 2022; 21:100243. [PMID: 35577067 PMCID: PMC9207298 DOI: 10.1016/j.mcpro.2022.100243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 01/01/2023] Open
Abstract
Protein arginine (R) methylation is a post-translational modification involved in various biological processes, such as RNA splicing, DNA repair, immune response, signal transduction, and tumor development. Although several advancements were made in the study of this modification by mass spectrometry, researchers still face the problem of a high false discovery rate. We present a dataset of high-quality methylations obtained from several different heavy methyl stable isotope labeling with amino acids in cell culture experiments analyzed with a machine learning–based tool and show that this model allows for improved high-confidence identification of real methyl-peptides. Overall, our results are consistent with the notion that protein R methylation modulates protein–RNA interactions and suggest a role in rewiring protein–protein interactions, for which we provide experimental evidence for a representative case (i.e., NONO [non-POU domain–containing octamer-binding protein]–paraspeckle component 1 [PSPC1]). Upon intersecting our R-methyl-sites dataset with the PhosphoSitePlus phosphorylation dataset, we observed that R methylation correlates differently with S/T-Y phosphorylation in response to various stimuli. Finally, we explored the application of heavy methyl stable isotope labeling with amino acids in cell culture to identify unconventional methylated residues and successfully identified novel histone methylation marks on serine 28 and threonine 32 of H3. The database generated, named ProMetheusDB, is freely accessible at https://bioserver.ieo.it/shiny/app/prometheusdb. hmSEEKER 2.0 identifies methyl-peptides from hmSILAC data through machine learning. Arginine methylation plays a role in modulating protein–protein interactions. Arginine methylations occur more frequently in proximity of phosphorylation sites. hmSEEKER 2.0 was used to identify methylations occurring on nonstandard amino acids.
Collapse
Affiliation(s)
- Enrico Massignani
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; European School of Molecular Medicine (SEMM), Milan, Italy
| | - Roberto Giambruno
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Center for Genomic Science of Istituto Italiano di Tecnologia at European School of Molecular Medicine, Istituto Italiano di Tecnologia, Milan, Italy; Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Marianna Maniaci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; European School of Molecular Medicine (SEMM), Milan, Italy
| | - Luciano Nicosia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Avinash Yadav
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Raimondi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
14
|
Jiang JY, Liu DJ, Liu MX. The protective effect of NF-κB signaling pathway inhibitor PDTC on mice with chronic atrophic gastritis. Scand J Gastroenterol 2021; 56:1131-1139. [PMID: 34310252 DOI: 10.1080/00365521.2021.1953130] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To understand the protective effect of NF-κB signaling pathway inhibitor pyrrolidinedithiocarbamate (PDTC) on mice with chronic atrophic gastritis (CAG). METHODS Helicobacter pylori (H. pylori) infection combined with high-salt diet was used to construct the CAG mouse model, and 100 or 200 mg/kg/day PDTC was intragastrically treated for 8 weeks. Then, hematoxylin and eosin (HE) and Alcian blue-periodic acid-Schiff (AB-PAS) staining were used to observe the pathology of gastric mucosa, while immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immuno sorbent assay (ELISA) and western blotting were determined to detect the expression of related molecules. RESULTS The nuclear content of NF-κB p65 in the gastric mucosa of the CAG mice was increased accompanying by the structural disorder of the gastric mucosal epithelium, inflammatory cell infiltration, intestinal metaplasia, and increased MUC2 expression, but the symptoms were alleviated after PDTC treatment. In addition, the expressions of TNF-α, IL-1β, IL-6 and COX2 in the gastric mucosa and serum of CAG mice were higher than those control mice, which were reduced in CAG mice treated with either 100 or 200 mg/kg PDTC. Furthermore, 100 mg/kg and 200 mg/kg PDTC treatments reduced the serum PGE2 in CAG mice with the decreased PCNA and Ki-67 expression in gastric mucosa. The therapeutic effect of 200 mg/kg PDTC was significantly better than that of 100 mg/kg PDTC. CONCLUSION PDTC inhibited inflammation and the excessive proliferation of gastric mucosal epithelial cells, thereby exerting a potential therapeutic effect on CAG.
Collapse
Affiliation(s)
- Jun-Yan Jiang
- Department of Gastroenterology, Nan'an District People's Hospital of Chongqing, Chongqing, China
| | - Dai-Jiang Liu
- Department of Gastroenterology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing, China
| | - Mao-Xia Liu
- Outpatient Department, Chongqing University Central Hospital (Chongqing Emergency Medical Center), Chongqing, China
| |
Collapse
|
15
|
Maniaci M, Boffo FL, Massignani E, Bonaldi T. Systematic Analysis of the Impact of R-Methylation on RBPs-RNA Interactions: A Proteomic Approach. Front Mol Biosci 2021; 8:688973. [PMID: 34557518 PMCID: PMC8454774 DOI: 10.3389/fmolb.2021.688973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/11/2021] [Indexed: 12/03/2022] Open
Abstract
RNA binding proteins (RBPs) bind RNAs through specific RNA-binding domains, generating multi-molecular complexes known as ribonucleoproteins (RNPs). Various post-translational modifications (PTMs) have been described to regulate RBP structure, subcellular localization, and interactions with other proteins or RNAs. Recent proteome-wide experiments showed that RBPs are the most representative group within the class of arginine (R)-methylated proteins. Moreover, emerging evidence suggests that this modification plays a role in the regulation of RBP-RNA interactions. Nevertheless, a systematic analysis of how changes in protein-R-methylation can affect globally RBPs-RNA interactions is still missing. We describe here a quantitative proteomics approach to profile global changes of RBP-RNA interactions upon the modulation of type I and II protein arginine methyltransferases (PRMTs). By coupling the recently described Orthogonal Organic Phase Separation (OOPS) strategy with the Stable Isotope Labelling with Amino acids in Cell culture (SILAC) and pharmacological modulation of PRMTs, we profiled RNA-protein interaction dynamics in dependence of protein-R-methylation. Data are available via ProteomeXchange with identifier PXD024601.
Collapse
Affiliation(s)
- Marianna Maniaci
- Laboratory of Nuclear Proteomics to Study Gene Expression Regulation in Cancer, European Institute of Oncology (IEO) IRCSS, Department of Experimental Oncology (DEO), Milan, Italy.,European School of Molecular Medicine (SEMM), Milan, Italy
| | - Francesca Ludovica Boffo
- Laboratory of Nuclear Proteomics to Study Gene Expression Regulation in Cancer, European Institute of Oncology (IEO) IRCSS, Department of Experimental Oncology (DEO), Milan, Italy
| | - Enrico Massignani
- Laboratory of Nuclear Proteomics to Study Gene Expression Regulation in Cancer, European Institute of Oncology (IEO) IRCSS, Department of Experimental Oncology (DEO), Milan, Italy.,European School of Molecular Medicine (SEMM), Milan, Italy
| | - Tiziana Bonaldi
- Laboratory of Nuclear Proteomics to Study Gene Expression Regulation in Cancer, European Institute of Oncology (IEO) IRCSS, Department of Experimental Oncology (DEO), Milan, Italy
| |
Collapse
|
16
|
Song H, Liu Y, Liang H, Jin X, Liu L. SPINT1-AS1 Drives Cervical Cancer Progression via Repressing miR-214 Biogenesis. Front Cell Dev Biol 2021; 9:691140. [PMID: 34350182 PMCID: PMC8326843 DOI: 10.3389/fcell.2021.691140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidences have revealed the dysregulated expressions and critical roles of non-coding RNAs in various malignancies, including cervical cancer. Nevertheless, our knowledge about the vast majority of non-coding RNAs is still lacking. Here we identified long non-coding RNA (lncRNA) SPINT1-AS1 as a novel cervical cancer-associated lncRNA. SPINT1-AS1 was increased in cervical cancer and correlated with advanced stage and poor prognosis. SPINT1-AS1 was a direct downstream target of miR-214, a well-known tumor suppressive microRNA (miRNA) in cervical cancer. Intriguingly, SPINT1-AS1 was also found to repress miR-214 biogenesis via binding DNM3OS, the primary transcript of miR-214. The interaction between SPINT1-AS1 and DNM3OS repressed the binding of DROSHA and DGCR8 to DNM3OS, blocked DNM3OS cleavage, and therefore repressed mature miR-214 biogenesis. The expression of SPINT1-AS1 was significantly negatively correlated with miR-214 in cervical cancer tissues, supporting the reciprocal repression between SPINT1-AS1 and miR-214 in vivo. Through downregulating mature miR-214 level, SPINT1-AS1 upregulated the expression of β-catenin, a target of miR-214. Thus, SPINT1-AS1 further activated Wnt/β-catenin signaling in cervical cancer. Functionally, SPINT1-AS1 drove cervical cancer cellular proliferation, migration, and invasion in vitro, and also tumorigenesis in vivo. Deletion of the region mediating the interaction between SPINT1-AS1 and DNM3OS, overexpression of miR-214, and inhibition of Wnt/β-catenin signaling all reversed the roles of SPINT1-AS1 in cervical cancer. Collectively, these findings identified SPINT1-AS1 as a novel cervical cancer-associated oncogenic lncRNA which represses miR-214 biogenesis and activates Wnt/β-catenin signaling, highlighting its potential as prognostic biomarker and therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Hongjuan Song
- Department of Gynecology, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China.,Department of Gynecology, Xuzhou Renci Hospital, Xuzhou, China
| | - Yuan Liu
- Department of Gynecology, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China
| | - Hui Liang
- Department of Cervical Disease, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China
| | - Xin Jin
- Medical Department, Xuzhou Central Hospital, Xuzhou, China
| | - Liping Liu
- Department of Research and Development, Shanghai Lichun Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
17
|
Li Y, Liang Z, He H, Huang X, Mo Z, Tan J, Guo W, Zhao Z, Wei S. The lncRNA HOTAIR regulates autophagy and affects lipopolysaccharide-induced acute lung injury through the miR-17-5p/ATG2/ATG7/ATG16 axis. J Cell Mol Med 2021; 25:8062-8073. [PMID: 34180119 PMCID: PMC8358883 DOI: 10.1111/jcmm.16737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022] Open
Abstract
Long non‐coding ribonucleic acids (lncRNAs) play critical roles in acute lung injury (ALI). We aimed to explore the involvement of lncRNA HOX transcript antisense intergenic ribonucleic acid (HOTAIR) in regulating autophagy in lipopolysaccharide (LPS)‐induced ALI. We obtained 1289 differentially expressed lncRNAs or messenger RNAs (mRNAs) via microarray analysis. HOTAIR was significantly upregulated in the LPS stimulation experimental group. HOTAIR knockdown (si‐HOTAIR) promoted cell proliferation in LPS‐stimulated A549 and BEAS‐2B cells, suppressing the protein expression of autophagy marker light chain 3B and Beclin‐1. Inhibition of HOTAIR suppressed LPS‐induced cell autophagy, apoptosis and arrested cells in the G0/G1 phase prior to S phase entry. Further, si‐HOTAIR alleviated LPS‐induced lung injury in vivo. We predicted the micro‐ribonucleic acid miR‐17‐5p to target HOTAIR and confirmed this via RNA pull‐down and dual luciferase reporter assays. miR‐17‐5p inhibitor treatment reversed the HOTAIR‐mediated effects on autophagy, apoptosis, cell proliferation and cell cycle. Finally, we predicted autophagy‐related genes (ATGs) ATG2, ATG7 and ATG16 as targets of miR‐17‐5p, which reversed their HOTAIR‐mediated protein upregulation in LPS‐stimulated A549 and BEAS‐2B cells. Taken together, our results indicate that HOTAIR regulated apoptosis, the cell cycle, proliferation and autophagy through the miR‐17‐5p/ATG2/ATG7/ATG16 axis, thus driving LPS‐induced ALI.
Collapse
Affiliation(s)
- Yujun Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhike Liang
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hua He
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaomei Huang
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zexun Mo
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jinwen Tan
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Weihong Guo
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ziwen Zhao
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shuquan Wei
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
18
|
Liang Y, Kong D, Zhang Y, Li S, Li Y, Dong L, Zhang N, Ma J. Curcumin inhibits the viability, migration and invasion of papillary thyroid cancer cells by regulating the miR-301a-3p/STAT3 axis. Exp Ther Med 2021; 22:875. [PMID: 34194553 PMCID: PMC8237388 DOI: 10.3892/etm.2021.10307] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Thyroid cancer is one of the most common malignant tumors, and the mortality rate associated with thyroid cancer has been increasing annually. Curcumin has been reported to exert an antitumor effect on papillary thyroid cancer (PTC), and the identification of additional mechanisms underlying the anticancer effect of curcumin on PTC requires further investigation. The present study aimed to explore the effects of curcumin on the viability, migration and invasion of PTC cells. TPC-1 cells were incubated with different concentrations of curcumin, and then, cell viability, migration and invasion, and wound healing were examined by CCK-8, Transwell and wound healing assays, respectively. Subsequently, microRNA (miR)-301a-3p mimics, miR-301a-3p inhibitors and signal transducer and activator of transcription (STAT)3 overexpression vector were transfected into TPC-1 cells, and cell viability, migration, and invasion were reassessed in these transfected cells. Matrix metallopeptidase (MMP)-2, MMP-9, epithelial-mesenchymal transition (EMT)-related markers, and Janus kinase (JAK)/STAT signaling pathway components were assessed by western blot analysis. Curcumin significantly inhibited cell viability, migration and invasion and downregulated MMP-2, MMP-9 and EMT marker expression. Additionally, curcumin decreased STAT3 expression by upregulating miR-301a-3p expression, and the inhibition of miR-301a-3p and the overexpression of STAT3 reversed the effects of curcumin on cell viability, migration and invasion, and MMP-2, MMP-9 and EMT marker expression in TPC-1 cells. Furthermore, curcumin suppressed the JAK/STAT signaling pathway through the miR-301a-3p/STAT3 axis. The data of the present study indicated that curcumin could inhibit the viability, migration and invasion of TPC-1 cells by regulating the miR-301a-3p/STAT3 axis. These findings may provide a possible strategy for the clinical treatment of PTC.
Collapse
Affiliation(s)
- Ying Liang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Deyu Kong
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yi Zhang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Siqi Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yan Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Liying Dong
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Ningxin Zhang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Junfeng Ma
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
19
|
Samuel SF, Barry A, Greenman J, Beltran-Alvarez P. Arginine methylation: the promise of a 'silver bullet' for brain tumours? Amino Acids 2021; 53:489-506. [PMID: 33404912 PMCID: PMC8107164 DOI: 10.1007/s00726-020-02937-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Despite intense research efforts, our pharmaceutical repertoire against high-grade brain tumours has not been able to increase patient survival for a decade and life expectancy remains at less than 16 months after diagnosis, on average. Inhibitors of protein arginine methyltransferases (PRMTs) have been developed and investigated over the past 15 years and have now entered oncology clinical trials, including for brain tumours. This review collates recent advances in the understanding of the role of PRMTs and arginine methylation in brain tumours. We provide an up-to-date literature review on the mechanisms for PRMT regulation. These include endogenous modulators such as alternative splicing, miRNA, post-translational modifications and PRMT-protein interactions, and synthetic inhibitors. We discuss the relevance of PRMTs in brain tumours with a particular focus on PRMT1, -2, -5 and -8. Finally, we include a future perspective where we discuss possible routes for further research on arginine methylation and on the use of PRMT inhibitors in the context of brain tumours.
Collapse
Affiliation(s)
| | - Antonia Barry
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, UK
| | | |
Collapse
|
20
|
Musiani D, Massignani E, Cuomo A, Yadav A, Bonaldi T. Biochemical and Computational Approaches for the Large-Scale Analysis of Protein Arginine Methylation by Mass Spectrometry. Curr Protein Pept Sci 2021; 21:725-739. [PMID: 32338214 DOI: 10.2174/1389203721666200426232531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022]
Abstract
The absence of efficient mass spectrometry-based approaches for the large-scale analysis of protein arginine methylation has hindered the understanding of its biological role, beyond the transcriptional regulation occurring through histone modification. In the last decade, however, several technological advances of both the biochemical methods for methylated polypeptide enrichment and the computational pipelines for MS data analysis have considerably boosted this research field, generating novel insights about the extent and role of this post-translational modification. Here, we offer an overview of state-of-the-art approaches for the high-confidence identification and accurate quantification of protein arginine methylation by high-resolution mass spectrometry methods, which comprise the development of both biochemical and bioinformatics methods. The further optimization and systematic application of these analytical solutions will lead to ground-breaking discoveries on the role of protein methylation in biological processes.
Collapse
Affiliation(s)
- Daniele Musiani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| | - Enrico Massignani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| | - Avinash Yadav
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan 20139, Italy
| |
Collapse
|
21
|
Zhai W, Sun H, Li Z, Li L, Jin A, Li Y, Chen J, Yang X, Sun Q, Lu S, Roth M. PRMT1 Modulates Processing of Asthma-Related Primary MicroRNAs (Pri-miRNAs) into Mature miRNAs in Lung Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2020; 206:11-22. [PMID: 33239422 DOI: 10.4049/jimmunol.2000887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023]
Abstract
Protein arginine methyltransferase-1 (PRMT1) is an important epigenetic regulator of cell function and contributes to inflammation and remodeling in asthma in a cell type-specific manner. Disease-specific expression patterns of microRNAs (miRNA) are associated with chronic inflammatory lung diseases, including asthma. The de novo synthesis of miRNA depends on the transcription of primary miRNA (pri-miRNA) transcript. This study assessed the role of PRMT1 on pri-miRNA to mature miRNA process in lung epithelial cells. Human airway epithelial cells, BEAS-2B, were transfected with the PRMT1 expression plasmid pcDNA3.1-PRMT1 for 48 h. Expression profiles of miRNA were determined by small RNA deep sequencing. Comparing these miRNAs with datasets of microarrays from five asthma patients (Gene Expression Omnibus dataset), 12 miRNAs were identified that related to PRMT1 overexpression and to asthma. The overexpression or knockdown of PRMT1 modulated the expression of the asthma-related miRNAs and their pri-miRNAs. Coimmunoprecipitation showed that PRMT1 formed a complex with STAT1 or RUNX1 and thus acted as a coactivator, stimulating the transcription of pri-miRNAs. Stimulation with TGF-β1 promoted the interaction of PRMT1 with STAT1 or RUNX1, thereby upregulating the transcription of two miRNAs: let-7i and miR-423. Subsequent chromatin immunoprecipitation assays revealed that the binding of the PRMT1/STAT1 or PRMT1/RUNX1 coactivators to primary let-7i (pri-let-7i) and primary miR (pri-miR) 423 promoter was critical for pri-let-7i and pri-miR-423 transcription. This study describes a novel role of PRMT1 as a coactivator for STAT1 or RUNX1, which is essential for the transcription of pri-let-7i and pri-miR-423 in epithelial cells and might be relevant to epithelium dysfunction in asthma.
Collapse
Affiliation(s)
- Weiqi Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haoming Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ai Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuwen Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Qingzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; .,Pneumology and Pulmonary Cell Research, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland; and
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Michael Roth
- Pneumology and Pulmonary Cell Research, Department of Biomedicine, University Hospital Basel, CH-4031 Basel, Switzerland; and
| |
Collapse
|
22
|
Yan Y, Zhang K, Zhou G, Hu W. MicroRNAs Responding to Space Radiation. Int J Mol Sci 2020; 21:ijms21186603. [PMID: 32917057 PMCID: PMC7555309 DOI: 10.3390/ijms21186603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
High-energy and high-atom-number (HZE) space radiation poses an inevitable potential threat to astronauts on deep space exploration missions. Compared with low-LET radiation, high-energy and high-LET radiation in space is more efficient in inducing clustered DNA damage with more serious biological consequences, such as carcinogenesis, central nervous system injury and degenerative disease. Space radiation also causes epigenetic changes in addition to inducing damage at the DNA level. Considering the important roles of microRNAs in the regulation of biological responses of radiation, we systematically reviewed both expression profiling and functional studies relating to microRNAs responding to space radiation as well as to space compound environment. Finally, the directions for improvement of the research related to microRNAs responding to space radiation are proposed. A better understanding of the functions and underlying mechanisms of the microRNAs responding to space radiation is of significance to both space radiation risk assessment and therapy development for lesions caused by space radiation.
Collapse
Affiliation(s)
| | | | - Guangming Zhou
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| | - Wentao Hu
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| |
Collapse
|
23
|
Pharmacological inhibition of PRMT7 links arginine monomethylation to the cellular stress response. Nat Commun 2020; 11:2396. [PMID: 32409666 PMCID: PMC7224190 DOI: 10.1038/s41467-020-16271-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) regulate diverse biological processes and are increasingly being recognized for their potential as drug targets. Here we report the discovery of a potent, selective, and cell-active chemical probe for PRMT7. SGC3027 is a cell permeable prodrug, which in cells is converted to SGC8158, a potent, SAM-competitive PRMT7 inhibitor. Inhibition or knockout of cellular PRMT7 results in drastically reduced levels of arginine monomethylated HSP70 family stress-associated proteins. Structural and biochemical analyses reveal that PRMT7-driven in vitro methylation of HSP70 at R469 requires an ATP-bound, open conformation of HSP70. In cells, SGC3027 inhibits methylation of both constitutive and inducible forms of HSP70, and leads to decreased tolerance for perturbations of proteostasis including heat shock and proteasome inhibitors. These results demonstrate a role for PRMT7 and arginine methylation in stress response. Protein arginine methyltransferases (PRMTs) are increasingly recognized as potential therapeutic targets but PRMT7 remains an understudied member of this enzyme family. Here, the authors develop a chemical probe for PRMT7 and apply it to elucidate the role of PRMT7 in the cellular stress response.
Collapse
|