1
|
Tseng YT, Sung YC, Liu CY, Lo KY. Translation initiation factor eIF4G1 modulates assembly of the polypeptide exit tunnel region in yeast ribosome biogenesis. J Cell Sci 2022; 135:275526. [PMID: 35615984 DOI: 10.1242/jcs.259540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/12/2022] [Indexed: 01/24/2023] Open
Abstract
eIF4G is an important eukaryotic translation initiation factor. In this study, eIF4G1, one of the eIF4G isoforms, was shown to directly participate in biogenesis of the large (60S) ribosomal subunit in Saccharomyces cerevisiae cells. Mutation of eIF4G1 decreased the amount 60S ribosomal subunits significantly. The C-terminal fragment of eIF4G1 could complement the function in 60S biogenesis. Analyses of its purified complex with mass spectrometry indicated that eIF4G1 associated with the pre-60S form directly. Strong genetic and direct protein-protein interactions were observed between eIF4G1 and Ssf1 protein. Upon deletion of eIF4G1, Ssf1, Rrp15, Rrp14 and Mak16 were abnormally retained on the pre-60S complex. This purturbed the loading of Arx1 and eL31 at the polypeptide exit tunnel (PET) site and the transition to a Nog2 complex. Our data indicate that eIF4G1 is important in facilitating PET maturation and 27S processing correctly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yun-Ting Tseng
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Cheng Sung
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Yu Liu
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Braun C, Knüppel R, Perez-Fernandez J, Ferreira-Cerca S. Non-radioactive In Vivo Labeling of RNA with 4-Thiouracil. Methods Mol Biol 2022; 2533:199-213. [PMID: 35796990 PMCID: PMC9761907 DOI: 10.1007/978-1-0716-2501-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
RNA molecules and their expression dynamics play essential roles in the establishment of complex cellular phenotypes and/or in the rapid cellular adaption to environmental changes. Accordingly, analyzing RNA expression remains an important step to understand the molecular basis controlling the formation of cellular phenotypes, cellular homeostasis or disease progression. Steady-state RNA levels in the cells are controlled by the sum of highly dynamic molecular processes contributing to RNA expression and can be classified in transcription, maturation and degradation. The main goal of analyzing RNA dynamics is to disentangle the individual contribution of these molecular processes to the life cycle of a given RNA under different physiological conditions. In the recent years, the use of nonradioactive nucleotide/nucleoside analogs and improved chemistry, in combination with time-dependent and high-throughput analysis, have greatly expanded our understanding of RNA metabolism across various cell types, organisms, and growth conditions.In this chapter, we describe a step-by-step protocol allowing pulse labeling of RNA with the nonradioactive nucleotide analog, 4-thiouracil , in the eukaryotic model organism Saccharomyces cerevisiae and the model archaeon Haloferax volcanii .
Collapse
Affiliation(s)
- Christina Braun
- Biochemistry III-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Robert Knüppel
- Biochemistry III-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Jorge Perez-Fernandez
- Biochemistry III-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany.
- Department of Experimental Biology, University of Jaen, Jaén, Spain.
| | - Sébastien Ferreira-Cerca
- Biochemistry III-Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Aquino GRR, Hackert P, Krogh N, Pan KT, Jaafar M, Henras AK, Nielsen H, Urlaub H, Bohnsack KE, Bohnsack MT. The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly. Nat Commun 2021; 12:6152. [PMID: 34686661 PMCID: PMC8536713 DOI: 10.1038/s41467-021-26208-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Early pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre-60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center (PTC) and is responsible for stabilizing interactions between the 5′ and 3′ ends of the 25S, an essential pre-requisite for subsequent pre-60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation. Early steps of large 60S ribosomal subunit biogenesis are not well understood. Here, the authors combine biochemical experiments with protein-RNA crosslinking and mass spectrometry to show that the RNA helicase Dbp7 is key player during early 60S ribosomal assembly. Dbp7 regulates a series of events driving compaction of domain V/VI in early pre60S ribosomal particles.
Collapse
Affiliation(s)
- Gerald Ryan R Aquino
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200N, Copenhagen, Denmark
| | - Kuan-Ting Pan
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, 37077, Göttingen, Germany.,Hematology/Oncology, Department of Medicine II, Johann Wolfgang Goethe University, 60590, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, 60596, Frankfurt am Main, Germany
| | - Mariam Jaafar
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200N, Copenhagen, Denmark.,Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, 37077, Göttingen, Germany.,Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany. .,Göttingen Centre for Molecular Biosciences, Georg-August-University, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Aquino GRR, Krogh N, Hackert P, Martin R, Gallesio JD, van Nues RW, Schneider C, Watkins NJ, Nielsen H, Bohnsack KE, Bohnsack MT. RNA helicase-mediated regulation of snoRNP dynamics on pre-ribosomes and rRNA 2'-O-methylation. Nucleic Acids Res 2021; 49:4066-4084. [PMID: 33721027 PMCID: PMC8053091 DOI: 10.1093/nar/gkab159] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
RNA helicases play important roles in diverse aspects of RNA metabolism through their functions in remodelling ribonucleoprotein complexes (RNPs), such as pre-ribosomes. Here, we show that the DEAD box helicase Dbp3 is required for efficient processing of the U18 and U24 intron-encoded snoRNAs and 2′-O-methylation of various sites within the 25S ribosomal RNA (rRNA) sequence. Furthermore, numerous box C/D snoRNPs accumulate on pre-ribosomes in the absence of Dbp3. Many snoRNAs guiding Dbp3-dependent rRNA modifications have overlapping pre-rRNA basepairing sites and therefore form mutually exclusive interactions with pre-ribosomes. Analysis of the distribution of these snoRNAs between pre-ribosome-associated and ‘free’ pools demonstrated that many are almost exclusively associated with pre-ribosomal complexes. Our data suggest that retention of such snoRNPs on pre-ribosomes when Dbp3 is lacking may impede rRNA 2′-O-methylation by reducing the recycling efficiency of snoRNPs and by inhibiting snoRNP access to proximal target sites. The observation of substoichiometric rRNA modification at adjacent sites suggests that the snoRNPs guiding such modifications likely interact stochastically rather than hierarchically with their pre-rRNA target sites. Together, our data provide new insights into the dynamics of snoRNPs on pre-ribosomal complexes and the remodelling events occurring during the early stages of ribosome assembly.
Collapse
Affiliation(s)
- Gerald Ryan R Aquino
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Roman Martin
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Robert W van Nues
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Claudia Schneider
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicholas J Watkins
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark.,Genomics group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Davila Gallesio J, Hackert P, Bohnsack KE, Bohnsack MT. Sgd1 is an MIF4G domain-containing cofactor of the RNA helicase Fal1 and associates with the 5' domain of the 18S rRNA sequence. RNA Biol 2020; 17:539-553. [PMID: 31994962 PMCID: PMC7237134 DOI: 10.1080/15476286.2020.1716540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Assembly of eukaryotic ribosomal subunits is a complex and dynamic process involving the action of more than 200 trans-acting assembly factors. Although recent cryo-electron microscopy structures have provided information on architecture of several pre-ribosomal particles and the binding sites of many AFs, the RNA and protein interactions of many other AFs not captured in these snapshots still remain elusive. RNA helicases are key regulators of structural rearrangements within pre-ribosomal complexes and here we have analysed the eIF4A-like RNA helicase Fal1 and its putative cofactor Sgd1. Our data show that these proteins interact directly via the MIF4G domain of Sgd1 and that the MIF4G domain of Sgd1 stimulates the catalytic activity of Fal1 in vitro. The catalytic activity of Fal1, and the interaction between Fal1 and Sgd1, are required for efficient pre-rRNA processing at the A0, A1 and A2 sites. Furthermore, Sgd1 co-purifies the early small subunit biogenesis factors Lcp5 and Rok1, suggesting that the Fal1-Sgd1 complex likely functions within the SSU processome. In vivo crosslinking data reveal that Sgd1 binds to helix H12 of the 18S rRNA sequence and we further demonstrate that this interaction is formed by the C-terminal region of the protein, which is essential for its function in ribosome biogenesis.
Collapse
Affiliation(s)
- Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University, Göttingen, Germany
| |
Collapse
|