1
|
Hatamli K, Eritja R, Giménez E, Benavente F, Gargallo R. Resolution of complex mixtures of duplex and antiparallel triplex DNA structures by capillary electrophoresis and multivariate analysis. Talanta 2025; 288:127616. [PMID: 39933343 DOI: 10.1016/j.talanta.2025.127616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/18/2025] [Indexed: 02/13/2025]
Abstract
Triplex DNA structures, which are formed by the addition of an extra strand to a target B-DNA duplex, have attracted increasing interest due to their analytical and therapeutic applications. These structures are classified into parallel and antiparallel, depending on the orientation of the Triplex-Forming Oligonucleotide (TFO) relative to the B-DNA duplex. Whereas the formation of parallel triplexes is easily detected by monitoring spectral changes in the UV region, the formation of antiparallel triplexes produces small or even no spectral variations, which makes their detection difficult and uncertain. In this study, we propose the use of capillary electrophoresis with ultraviolet absorption spectrophotometric (CE-UV) detection combined with the multivariate curve resolution-alternating least squares (MCR-ALS) chemometric method to analyse mixtures of DNA sequences capable of forming mixtures of B-DNA duplex and triplex antiparallel structures. Rapid and reproducible CE-UV analysis in hydroxypropylcellulose (HPC)-coated capillaries are done in a pH 7.4 buffer containing Mg(II) for the stabilization of the intermolecular species. Spectra measured from 220 to 300 nm along the CE-UV analysis of individual DNA strands and of their mixtures at different ratios are merged into an augmented data matrix. This is later analyzed with MCR-ALS to deconvolute characteristic pure spectra and electropherograms for each one of the CE-UV analysis considered. This procedure has allowed the resolution and detection of DNA species present in mixtures of DNA strands capable of forming duplexes, as well as antiparallel triplex structures.
Collapse
Affiliation(s)
- Kanan Hatamli
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028, Barcelona, Spain; Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Av. Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Estela Giménez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028, Barcelona, Spain; Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Av. Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028, Barcelona, Spain; Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Av. Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028, Barcelona, Spain.
| |
Collapse
|
2
|
Li C, Wang M, Li PF, Sheng J, Fu Q. Construction of Smart DNA-Based Drug Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306257. [PMID: 38377302 DOI: 10.1002/smll.202306257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/10/2024] [Indexed: 02/22/2024]
Abstract
Due to the disadvantages of poor targeting, slow action, and low effectiveness of current commonly used cancer treatments, including surgery, chemotherapy, and radiotherapy, researchers have turned to DNA as a biomaterial for constructing drug delivery nanocarriers. DNA is favored for its biocompatibility and programmability. In order to overcome the limitations associated with traditional drug delivery systems (DDSs), researchers have developed smart-responsive DNA DDSs that can control drug release in response to specific physical or chemical stimuli at targeted sites. In this review, a summary of multiple targeted ligand structures is provided, various shapes of stable DNA nanomaterials, and different stimuli-responsive drug release strategies in DNA DDSs. Specifically, targeted cell recognition, in vivo stable transport, and controlled drug release of smart DDSs are focused. Finally, the further development prospects and challenges of clinical application of DNA nanomaterials in the field of smart drug delivery are discussed. The objective of this review is to enhance researchers' comprehension regarding the potential application of DNA nanomaterials in precision drug delivery, with the aim of expediting the clinical implementation of intelligent DDSs.
Collapse
Affiliation(s)
- Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Junyue Sheng
- Qingdao No.58 High School of Shandong Province, 20 Jiushui Road, Qingdao, 266100, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
3
|
Bchara L, Eritja R, Gargallo R, Benavente F. Rapid and Highly Efficient Separation of i-Motif DNA Species by CE-UV and Multivariate Curve Resolution. Anal Chem 2023; 95:15189-15198. [PMID: 37782260 PMCID: PMC10585953 DOI: 10.1021/acs.analchem.3c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
The i-motif is a class of nonstandard DNA structure with potential biological implications. A novel capillary electrophoresis with an ultraviolet absorption spectrophotometric detection (CE-UV) method has been developed for the rapid analysis of the i-motif folding equilibrium as a function of pH and temperature. The electrophoretic analyses are performed in reverse polarity of the separation voltage with 32 cm long fused silica capillaries permanently coated with hydroxypropyl cellulose (HPC), after an appropriate conditioning procedure was used to achieve good repeatability. However, the electrophoretic separation between the folded and unfolded conformers of the studied cytosine-rich i-motif sequences (i.e., TT, Py39WT, and nmy01) is compromised, especially for Py39WT and nmy01, which result in completely overlapped peaks. Therefore, deconvolution with multivariate curve resolution-alternating least-squares (MCR-ALS) has been required for the efficient separation of the folded and unfolded species found at different concentration levels at pH 6.5 and between 12 and 40 °C, taking advantage of the small dissimilarities in the electrophoretic mobilities and UV spectra levels. MCR-ALS has also provided quantitative information that has been used to estimate melting temperatures (Tm), which are similar to those determined by UV and circular dichroism (CD) spectroscopies. The obtained results demonstrate that CE-UV assisted by MCR-ALS may become a very useful tool to get novel insight into the folding of i-motifs and other complex DNA structures.
Collapse
Affiliation(s)
- Laila Bchara
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Ramon Eritja
- Institute
for Advanced Chemistry of Catalonia (IQAC−CSIC), CIBER-BBN, Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Raimundo Gargallo
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
| | - Fernando Benavente
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Marti i Franquès 1-11, E-08028 Barcelona, Spain
- Institute
for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
4
|
Gómez-Sánchez A, Vitale R, Devos O, de Juan A, Ruckebusch C. Kernelizing: A way to increase accuracy in trilinear decomposition analysis of multiexponential signals. Anal Chim Acta 2023; 1273:341545. [PMID: 37423671 DOI: 10.1016/j.aca.2023.341545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023]
Abstract
The unmixing of multiexponential decay signals into monoexponential components using soft modelling approaches is a challenging task due to the strong correlation and complete window overlap of the profiles. To solve this problem, slicing methodologies, such as PowerSlicing, tensorize the original data matrix into a three-way data array that can be decomposed based on trilinear models providing unique solutions. Satisfactory results have been reported for different types of data, e.g., nuclear magnetic resonance or time-resolved fluorescence spectra. However, when decay signals are described by only a few sampling (time) points, a significant degradation of the results can be observed in terms of accuracy and precision of the recovered profiles. In this work, we propose a methodology called Kernelizing that provides a more efficient way to tensorize data matrices of multiexponential decays. Kernelizing relies on the invariance of exponential decays, i.e., when convolving a monoexponential decaying function with any positive function of finite width (hereafter called "kernel"), the shape of the decay (determined by the characteristic decay constant) remains unchanged and only the preexponential factor varies. The way preexponential factors are affected across the sample and time modes is linear, and it only depends on the kernel used. Thus, using kernels of different shapes, a set of convolved curves can be obtained for every sample, and a three-way data array generated, for which the modes are sample, time and kernelizing effect. This three-way array can be afterwards analyzed by a trilinear decomposition method, such as PARAFAC-ALS, to resolve the underlying monoexponential profiles. To validate this new approach and assess its performance, we applied Kernelizing to simulated datasets, real time-resolved fluorescence spectra collected on mixtures of fluorophores and fluorescence-lifetime imaging microscopy data. When the measured multiexponential decays feature few sampling points (down to fifteen), more accurate trilinear model estimates are obtained than when using slicing methodologies.
Collapse
Affiliation(s)
- Adrián Gómez-Sánchez
- Chemometrics Group, Universitat de Barcelona, Diagonal, 645, 08028, Barcelona, Spain; Univ. Lille, CNRS, UMR 8516, LASIRe, Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, F-59000, Lille, France.
| | - Raffaele Vitale
- Univ. Lille, CNRS, UMR 8516, LASIRe, Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, F-59000, Lille, France
| | - Olivier Devos
- Univ. Lille, CNRS, UMR 8516, LASIRe, Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, F-59000, Lille, France
| | - Anna de Juan
- Chemometrics Group, Universitat de Barcelona, Diagonal, 645, 08028, Barcelona, Spain
| | - Cyril Ruckebusch
- Univ. Lille, CNRS, UMR 8516, LASIRe, Laboratoire Avancé de Spectroscopie pour Les Intéractions La Réactivité et L'Environnement, F-59000, Lille, France
| |
Collapse
|
5
|
Improta R. Shedding Light on the Photophysics and Photochemistry of I-Motifs Using Quantum Mechanical Calculations. Int J Mol Sci 2023; 24:12614. [PMID: 37628797 PMCID: PMC10454157 DOI: 10.3390/ijms241612614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
I-motifs are non-canonical DNA structures formed by intercalated hemiprotonated (CH·C)+ pairs, i.e., formed by a cytosine (C) and a protonated cytosine (CH+), which are currently drawing great attention due to their biological relevance and promising nanotechnological properties. It is important to characterize the processes occurring in I-motifs following irradiation by UV light because they can lead to harmful consequences for genetic code and because optical spectroscopies are the most-used tools to characterize I-motifs. By using time-dependent DFT calculations, we here provide the first comprehensive picture of the photoactivated behavior of the (CH·C)+ core of I-motifs, from absorption to emission, while also considering the possible photochemical reactions. We reproduce and assign their spectral signatures, i.e., infrared, absorption, fluorescence and circular dichroism spectra, disentangling the underlying chemical-physical effects. We show that the main photophysical paths involve C and CH+ bases on adjacent steps and, using this basis, interpret the available time-resolved spectra. We propose that a photodimerization reaction can occur on an excited state with strong C→CH+ charge transfer character and examine some of the possible photoproducts. Based on the results reported, some future perspectives for the study of I-motifs are discussed.
Collapse
Affiliation(s)
- Roberto Improta
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy
| |
Collapse
|
6
|
Chen Q, Shi T, Du D, Wang B, Zhao S, Gao Y, Wang S, Zhang Z. Non-destructive diagnostic testing of cardiac myxoma by serum confocal Raman microspectroscopy combined with multivariate analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2578-2587. [PMID: 37114381 DOI: 10.1039/d3ay00180f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The symptoms of cardiac myxoma (CM) mainly occur when the tumor is growing, and the diagnosis is determined by clinical presentation. Unfortunately, there is no evidence that specific blood tests are useful in CM diagnosis. Raman spectroscopy (RS) has emerged as a promising auxiliary diagnostic tool because of its ability to simultaneously detect multiple molecular features without labelling. The objective of this study was to identify spectral markers for CM, one of the most common benign cardiac tumors with insidious onset and rapid progression. In this study, a preliminary analysis was conducted based on serum Raman spectra to obtain the spectral differences between CM patients (CM group) and healthy control subjects (normal group). Principal component analysis-linear discriminant analysis (PCA-LDA) was constructed to highlight the differences in the distribution of biochemical components among the groups according to the obtained spectral information. Principal component analysis was combined with a support vector machine model (PCA-SVM) based on three different kernel functions (linear, polynomial, and Gaussian radial basis function (RBF)) to resolve spectral variations between all study groups. The results showed that CM patients had lower serum levels of phenylalanine and carotenoid than those in the normal group, and increased levels of fatty acids. The resulting Raman data was used in a multivariate analysis to determine the Raman range that could be used for CM diagnosis. Also, the chemical interpretation of the spectral results obtained is further presented in the discussion section based on the multivariate curve resolution-alternating least squares (MCR-ALS) method. These results suggest that RS can be used as an adjunct and promising tool for CM diagnosis, and that vibrations in the fingerprint region can be used as spectral markers for the disease under study.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Shi
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Du
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Bo Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Sha Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yang Gao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuang Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, China
| | - Zhanqin Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Khamari L, Mukherjee S. Deciphering the Nanoconfinement Effect on the Folding Pathway of c-MYC Promoter-Based Intercalated-Motif DNA by Single-Molecule Förster Resonance Energy Transfer. J Phys Chem Lett 2022; 13:8169-8176. [PMID: 36005552 DOI: 10.1021/acs.jpclett.2c01893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intercalated-motif (i-motif) DNA formed by cytosine (C)-rich sequences has been considered a novel target in anticancer research. Interestingly, this type of noncanonical DNA structure is highly dynamic and can display several conformational polymorphisms based on the immediate surrounding environment. However, studies regarding the folding pathway of i-motifs having disease-specific sequences under a confined environment at physiological pH are relatively scarce. This thereby warrants more explorations that will decipher their structural and functional properties inside constrained media. Herein, using the single-molecule Förster Resonance Energy Transfer (smFRET) studies, for the first time, we have illustrated the conformational dynamics of c-MYC promoter-based i-motif structures at physiological pH inside microemulsions of different dimensions. We concluded that the folding of such motifs under confined space is not a direct transition between the random coil and i-motif conformations; rather it occurs through a partially folded intermediate, depending on the confined dimension.
Collapse
Affiliation(s)
- Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
8
|
Khatik SY, Srivatsan SG. Environment-Sensitive Nucleoside Probe Unravels the Complex Structural Dynamics of i-Motif DNAs. Bioconjug Chem 2022; 33:1515-1526. [PMID: 35819865 DOI: 10.1021/acs.bioconjchem.2c00237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although evidence for the existence and biological role of i-motif (iM) DNA structures in cells is emerging, probing their structural polymorphism and identifying physiologically active conformations using currently available tools remain a major challenge. Here, we describe the development of an innovative device to investigate the conformation equilibrium of different iMs formed by C-rich telomeric repeat and oncogenic B-raf promoter sequences using a new conformation-sensitive dual-purpose nucleoside probe. The nucleoside is composed of a trifluoromethyl-benzofuran-2-yl moiety at the C5 position of 2'-deoxyuridine, which functions as a responsive fluorescent and 19F NMR probe. While the fluorescent component is useful in monitoring and estimating the folding process, the 19F label provides spectral signatures for various iMs, thereby enabling a systematic analysis of their complex population equilibrium under different conditions (e.g., pH, temperature, metal ions, and cell lysate). Distinct 19F signals exhibited by the iMs formed by the human telomeric repeat helped in calculating their relative population. A battery of fluorescence and 19F NMR studies using native and mutated B-raf oligonucleotides gave valuable insights into the iM structure landscape and its dependence on environmental conditions and also helped in predicting the structure of the major iM conformation. Overall, our findings indicate that the probe is highly suitable for studying complex nucleic acid systems.
Collapse
Affiliation(s)
- Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
9
|
Deng Z, Tian Y, Song J, An G, Yang P. mRNA Vaccines: The Dawn of a New Era of Cancer Immunotherapy. Front Immunol 2022; 13:887125. [PMID: 35720301 PMCID: PMC9201022 DOI: 10.3389/fimmu.2022.887125] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
mRNA therapy is a novel anticancer strategy based on in vitro transcription (IVT), which has potential for the treatment of malignant tumors. The outbreak of the COVID-19 pandemic in the early 21st century has promoted the application of mRNA technologies in SARS-CoV-2 vaccines, and there has been a great deal of interest in the research and development of mRNA cancer vaccines. There has been progress in a number of key technologies, including mRNA production strategies, delivery systems, antitumor immune strategies, etc. These technologies have accelerated the progress and clinical applications of mRNA therapy, overcoming problems encountered in the past, such as instability, inefficient delivery, and weak immunogenicity of mRNA vaccines. This review provides a detailed overview of the production, delivery systems, immunological mechanisms, and antitumor immune response strategies for mRNA cancer vaccines. We list some mRNA cancer vaccines that are candidates for cancer treatment and discuss clinical trials in the field of tumor immunotherapy. In addition, we discuss the immunological mechanism of action by which mRNA vaccines destroy tumors as well as challenges and prospects for the future.
Collapse
Affiliation(s)
- Zhuoya Deng
- Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuying Tian
- Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Guangwen An
- Department of Pharmacy, No. 984 Hospital of the PLA, Beijing, China
| | - Penghui Yang
- Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Wang H, Li J, Qin J, Li J, Chen Y, Song D, Zeng H, Wang S. Investigating the cellular responses of osteosarcoma to cisplatin by confocal Raman microspectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112366. [PMID: 34826719 DOI: 10.1016/j.jphotobiol.2021.112366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Confocal Raman Microspectroscopy (CRM) was employed to clarify the cellular response of cisplatin in osteosarcoma (OS) cells with different dosages and incubation times. The K7M2 mouse osteosarcoma cells were treated by cisplatin in 0 μM (UT group), 20 μM (20 T group), and 40 μM (40 T group) doses for 24-h (24H group) and 48-h (48H group), respectively. Raman spectroscopy was utilized to analyze the drug induced variations of intracellular biochemical components in osteosarcoma cells. The spectral results shows that the main changes in its biochemical composition come from nucleic acids. By adopting three different kernel functions (linear, polynomial, and Gaussian radial basis function (RBF)), principal component analysis combined with support vector machine models (PCA-SVM) was built to address the spectral variations among all investigated groups. Meanwhile, multivariate curve resolution alternating least squares (MCR-ALS) was further utilized to discuss on the chemical interpretation on the acquired spectral results. Moreover, Raman spectral images, which is reconstructed by K-means cluster analysis (KCA) with point-scanned hyperspectral dataset, was applied to illustrate the drug induced compositional and morphological variations in each subcellular region. The achieved results not only prove the application potential of Raman based analytical technique in non-labeled intracellular studies, but also illustrate the detailed compositional and structural information of cisplatin induced OS cell responses from the perspective of multivariate analysis and imaging of Raman spectroscopy.
Collapse
Affiliation(s)
- Haifeng Wang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Jing Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jie Qin
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Jie Li
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Yishen Chen
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Dongliang Song
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China
| | - Haishan Zeng
- Imaging Unit - Integrative Oncology Department, BC Cancer Research Center, Vancouver, BC, V5Z1L3, Canada
| | - Shuang Wang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
11
|
Guan C, Zhu X, Feng C. DNA Nanodevice-Based Drug Delivery Systems. Biomolecules 2021; 11:1855. [PMID: 34944499 PMCID: PMC8699395 DOI: 10.3390/biom11121855] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
DNA, a natural biological material, has become an ideal choice for biomedical applications, mainly owing to its good biocompatibility, ease of synthesis, modifiability, and especially programmability. In recent years, with the deepening of the understanding of the physical and chemical properties of DNA and the continuous advancement of DNA synthesis and modification technology, the biomedical applications based on DNA materials have been upgraded to version 2.0: through elaborate design and fabrication of smart-responsive DNA nanodevices, they can respond to external or internal physical or chemical stimuli so as to smartly perform certain specific functions. For tumor treatment, this advancement provides a new way to solve the problems of precise targeting, controllable release, and controllable elimination of drugs to a certain extent. Here, we review the progress of related fields over the past decade, and provide prospects for possible future development directions.
Collapse
Affiliation(s)
- Chaoyang Guan
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
12
|
Devos O, Ghaffari M, Vitale R, de Juan A, Sliwa M, Ruckebusch C. Multivariate Curve Resolution Slicing of Multiexponential Time-Resolved Spectroscopy Fluorescence Data. Anal Chem 2021; 93:12504-12513. [PMID: 34494422 DOI: 10.1021/acs.analchem.1c01284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Time-resolved fluorescence spectroscopy (TRFS), i.e., measurement of fluorescence decay curves for different excitation and/or emission wavelengths, provides specific and sensitive local information on molecules and on their environment. However, TRFS relies on multiexponential data fitting to derive fluorescence lifetimes from the measured decay curves and the time resolution of the technique is limited by the instrumental response function (IRF). We propose here a multivariate curve resolution (MCR) approach based on data slicing to perform tailored and fit-free analysis of multiexponential fluorescence decay curves. MCR slicing, taking as a basic framework the multivariate curve resolution-alternating least-squares (MCR-ALS) soft-modeling algorithm, relies on a hybrid bilinear/trilinear data decomposition. A key feature of the method is that it enables the recovery of individual components characterized by decay profiles that are only partially describable by monoexponential functions. For TRFS data, not only pure multiexponential tail information but also shorter time delay information can be decomposed, where the signal deviates from the ideal exponential behavior due to the limited time resolution. The accuracy of the proposed approach is validated by analyzing mixtures of three commercial dyes and characterizing the mixture composition, lifetimes, and associated contributions, even in situations where only ternary mixture samples are available. MCR slicing is also applied to the analysis of TRFS data obtained on a photoswitchable fluorescent protein (rsEGFP2). Three fluorescence lifetimes are extracted, along with the profile of the IRF, highlighting that decomposition of complex systems, for which individual isomers are characterized by different exponential decays, can also be achieved.
Collapse
Affiliation(s)
- Olivier Devos
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| | - Mahdiyeh Ghaffari
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| | - Raffaele Vitale
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| | - Anna de Juan
- Chemometrics Group, Dept. of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí I Franquès, 1, 08028 Barcelona, Spain
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| | - Cyril Ruckebusch
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| |
Collapse
|
13
|
Fu X, Chen T, Song Y, Feng C, Chen H, Zhang Q, Chen G, Zhu X. mRNA Delivery by a pH-Responsive DNA Nano-Hydrogel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101224. [PMID: 34145748 DOI: 10.1002/smll.202101224] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The delivery of mRNA to manipulate protein expression has attracted widespread attention, since that mRNA overcomes the problem of infection and mutation risks in transgenes and can work as drugs for the treatment of diseases. Although there are currently some vehicles that deliver mRNA into cells, they have not yet reached a good balance in terms of expression efficiency and biocompatibility. Here, a DNA nano-hydrogel system for mRNA delivery is developed. The nano-hydrogel is all composed of DNA except the target mRNA, so it has superior biocompatibility compared with those chemical vehicles. In parallel, the nano-hydrogel can be compacted into a nanosphere under the crosslinking by well-designed "X"-shaped DNA scaffolds and DNA linkers, facilitating the delivery into cells through endocytosis. In addition, smart intracellular release of the mRNA is achieved by incorporating a pH-responsive i-motif structure into the nano-hydrogel. Thus, taking the efficient delivery and release together, mRNA can be translated into the corresponding protein with a high efficiency, which is comparable to that of the commercial liposome but with a much better biocompatibility. Due to the excellent biocompatibility and efficiency, this nano-hydrogel system is expected to become a competitive alternative for delivering functional mRNA in vivo.
Collapse
Affiliation(s)
- Xin Fu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Tianshu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yuchen Song
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Chang Feng
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Huinan Chen
- College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Qianqian Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
14
|
Hugelier S, Van den Eynde R, Vandenberg W, Dedecker P. Fluorophore unmixing based on bleaching and recovery kinetics using MCR-ALS. Talanta 2021; 226:122117. [PMID: 33676672 DOI: 10.1016/j.talanta.2021.122117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/03/2023]
Abstract
Fluorescence microscopy is a key technology in the life sciences, though its performance is constrained by the number of labels that can be recorded. We propose to use the kinetics of fluorophore photodestruction and subsequent fluorescence recovery to distinguish multiple spectrally-overlapping emitters in fixed cells, thus enhancing the information that can be obtained from a single measurement. We show that the data can be directly processed using multivariate curve resolution - alternating least squares (MCR-ALS) to deliver distinct images for each fluorophore in their local environment, and apply this methodology to membrane imaging using DiBAC4(3) and concanavalin A - Alexa Fluor 488 as the fluorophores. We find that the DiBAC4(3) displays two distinct degradation/recovery kinetics that correspond to two different label distributions, allowing us to simultaneously distinguish three different fluorescence distributions from two spectrally overlapping fluorophores. We expect that our approach will scale to other dynamically-binding dyes, leading to similarly increased multiplexing capability.
Collapse
Affiliation(s)
- S Hugelier
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium.
| | - R Van den Eynde
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium
| | - W Vandenberg
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium; Univ. Lille, CNRS, Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement (LASIRE), F-59000 Lille, France
| | - P Dedecker
- Laboratory for Nanobiology, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
15
|
de Juan A, Tauler R. Multivariate Curve Resolution: 50 years addressing the mixture analysis problem – A review. Anal Chim Acta 2021; 1145:59-78. [DOI: 10.1016/j.aca.2020.10.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022]
|