1
|
Park JH, Jang H, Jung YK, Jung YL, Shin I, Cho DY, Park HG. A mass spectrometry-based multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification. Biosens Bioelectron 2017; 91:122-127. [DOI: 10.1016/j.bios.2016.10.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 01/21/2023]
|
2
|
Kim S, Park J, Na J, Jung GY, Hwang J. Simultaneous Determination of Multiple microRNA Levels Utilizing Biotinylated Dideoxynucleotides and Mass Spectrometry. PLoS One 2016; 11:e0153201. [PMID: 27380276 PMCID: PMC4933350 DOI: 10.1371/journal.pone.0153201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/24/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene translation and have been suggested as potent biomarkers in various disease states. In this study, we established an efficient method for simultaneous determination of multiple miRNA levels, employing the previously developed SPC-SBE (solid phase capture-single base extension) approach and MALDI-TOF mass spectrometry (MS). In this approach, we first perform reverse transcription of miRNAs extracted using stem-loop primers. Then the cDNA is co-amplified with competitors, synthetic oligonucleotides whose sequences precisely match cDNA except for one base, and the amplicons serve as templates for a multiplexed SBE reaction. Extension products are isolated using SPC and quantitatively analyzed with MALDI-TOF MS to determine multiple miRNA levels. Here we demonstrated concurrent analysis of four miRNA levels utilizing the approach. Furthermore, we showed the presented method significantly facilitated MS analysis of peak area ratio owing to SPC. The SPC process allowed effective removal of irrelevant reaction components prior to MS and promoted MS sample purification. Data obtained in this study was verified with RT-qPCR and agreement was shown on one order of magnitude scale, suggesting the SPC-SBE and MS approach has strong potential as a viable tool for high throughput miRNA analysis.
Collapse
Affiliation(s)
- Sobin Kim
- Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul, Korea
- * E-mail: (SK); (JH)
| | - Jungyun Park
- Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Jeongkyeong Na
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- Department of Chemical Engineering, Pohang University of Sciences and Technology, Pohang, Gyeongbuk, Korea
| | - Jungwook Hwang
- Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul, Korea
- Department of Medical Genetics, College of Medicine, Hanyang University, Seoul, Korea
- * E-mail: (SK); (JH)
| |
Collapse
|
3
|
Ultrasensitive Detection of Multiplexed Somatic Mutations Using MALDI-TOF Mass Spectrometry. J Mol Diagn 2015; 18:23-31. [PMID: 26596526 DOI: 10.1016/j.jmoldx.2015.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/29/2015] [Accepted: 08/28/2015] [Indexed: 11/22/2022] Open
Abstract
Multiplex detection of low-frequency mutations is becoming a necessary diagnostic tool for clinical laboratories interested in noninvasive prognosis and prediction. Challenges include the detection of minor alleles among abundant wild-type alleles, the heterogeneous nature of tumors, and the limited amount of available tissue. A method that can reliably detect minor variants <1% in a multiplexed reaction using a platform amenable to a variety of throughputs would meet these requirements. We developed a novel approach, UltraSEEK, for high-throughput, multiplexed, ultrasensitive mutation detection and used it for detection of mutant sequence mixtures as low as 0.1% minor allele frequency. The process consisted of multiplex PCR, followed by mutation-specific, single-base extension using chain terminators labeled with a moiety for solid phase capture. The captured and enriched products were then identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. For verification, we successfully analyzed ultralow fractions of mutations in a set of characterized cell lines, and included a direct comparison to droplet digital PCR. Finally, we verified the specificity in a set of 122 paired tumor and circulating cell-free DNA samples from melanoma patients. Our results show that the UltraSEEK chemistry is a particularly powerful approach for the detection of somatic variants, with the potential to be an invaluable resource to investigators in saving time and material without compromising analytical sensitivity and accuracy.
Collapse
|
4
|
Fujishima K, Yamamoto S, Tsukagoshi K, Hashimoto M. A Microbead-based Single Base Extension Assay for the Detection of Known Single-base Changes in Genomic DNA. CHEM LETT 2015. [DOI: 10.1246/cl.150014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kohei Fujishima
- Department of Chemical Engineering and Materials Science, Doshisha University
| | - Shunsuke Yamamoto
- Department of Chemical Engineering and Materials Science, Doshisha University
| | - Kazuhiko Tsukagoshi
- Department of Chemical Engineering and Materials Science, Doshisha University
| | - Masahiko Hashimoto
- Department of Chemical Engineering and Materials Science, Doshisha University
| |
Collapse
|
5
|
Abstract
High-throughput DNA sequencing development for mutation screening and identification is essential to realize the goal of pharmacogenomics and personalized medicine, which will lead to a new era in clinical medicine and healthcare. Molecular engineering approaches to modify the building blocks of DNA by introducing functional groups for purification and detection has led to the development of high-throughput genetic analysis technologies. This review is focused on the following two DNA sequencing approaches. The first approach is based on the use of molecular affinity and mass spectrometry to perform quick and highly accurate mutation screening, heterozygote identification and insertion/deletion detection. The second approach is based on a sequencing-by-synthesis platform that has the potential for generating DNA sequencing data in a massive, parallel manner. The basic principles, fundamental challenges and methods of implementation of these exciting new technologies will be discussed.
Collapse
Affiliation(s)
- Xiaopeng Bai
- Columbia University, Department of Chemical Engineering, NY 10027, USA.
| | | | | |
Collapse
|
6
|
Zhu J, Palla M, Ronca S, Warpner R, Ju J, Lin Q. A MEMS-Based Approach to Single Nucleotide Polymorphism Genotyping. SENSORS AND ACTUATORS. A, PHYSICAL 2013; 195:175-182. [PMID: 24729659 PMCID: PMC3979494 DOI: 10.1016/j.sna.2012.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genotyping of single nucleotide polymorphisms (SNPs) allows diagnosis of human genetic disorders associated with single base mutations. Conventional SNP genotyping methods are capable of providing either accurate or high-throughput detection, but are still labor-, time-, and resource-intensive. Microfluidics has been applied to SNP detection to provide fast, low-cost, and automated alternatives, although these applications are still limited by either accuracy or throughput issues. To address this challenge, we present a MEMS-based SNP genotyping approach that uses solid-phase-based reactions in a single microchamber on a temperature control chip. Polymerase chain reaction (PCR), allele specific single base extension (SBE), and desalting on microbeads are performed in the microchamber, which is coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the SBE product. Experimental results from genotyping of the SNP on exon 1 of the HBB gene, which causes sickle cell anemia, demonstrate the potential of the device for rapid, accurate, multiplexed and high-throughput detection of SNPs.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Mechanical Engineering, Columbia University,
New York, NY, USA
| | - Mirkó Palla
- Department of Mechanical Engineering, Columbia University,
New York, NY, USA
- Department of Chemical Engineering, Columbia University,
New York, NY, USA
| | - Stefano Ronca
- Department of Mechanical Engineering, Columbia University,
New York, NY, USA
- Department of Mechanical and Industrial Engineering,
University of Brescia, Brescia, BS, Italy
| | - Ronald Warpner
- Department of Obstetrics and Gynecology, Columbia
University, New York, NY, USA
| | - Jingyue Ju
- Department of Chemical Engineering, Columbia University,
New York, NY, USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University,
New York, NY, USA
| |
Collapse
|
7
|
Qiu C, Kumar S, Guo J, Lu J, Shi S, Kalachikov SM, Russo JJ, Naini AB, Schon EA, Ju J. Mitochondrial single nucleotide polymorphism genotyping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using cleavable biotinylated dideoxynucleotides. Anal Biochem 2012; 427:202-10. [PMID: 22579594 DOI: 10.1016/j.ab.2012.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 04/19/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
Characterization of mitochondrial DNA (mtDNA) single nucleotide polymorphisms (SNPs) and mutations is crucial for disease diagnosis, which requires accurate and sensitive detection methods and quantification due to mitochondrial heteroplasmy. We report here the characterization of mutations for myoclonic epilepsy with ragged red fibers syndrome using chemically cleavable biotinylated dideoxynucleotides and a mass spectrometry (MS)-based solid phase capture (SPC) single base extension (SBE) assay. The method effectively eliminates unextended primers and primer dimers, and the presence of cleavable linkers between the base and biotin allows efficient desalting and release of the DNA products from solid phase for MS analysis. This approach is capable of high multiplexing, and the use of different length linkers for each of the purines and each of the pyrimidines permits better discrimination of the four bases by MS. Both homoplasmic and heteroplasmic genotypes were accurately determined on different mtDNA samples. The specificity of the method for mtDNA detection was validated by using mitochondrial DNA-negative cells. The sensitivity of the approach permitted detection of less than 5% mtDNA heteroplasmy levels. This indicates that the SPC-SBE approach based on chemically cleavable biotinylated dideoxynucleotides and MS enables rapid, accurate, and sensitive genotyping of mtDNA and has broad applications for genetic analysis.
Collapse
Affiliation(s)
- Chunmei Qiu
- Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Meyer K, Ueland PM. Use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for multiplex genotyping. Adv Clin Chem 2011; 53:1-29. [PMID: 21404912 DOI: 10.1016/b978-0-12-385855-9.00001-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After completion of the human genome project, the focus of geneticists has shifted to elucidation of gene function and genetic diversity to understand the mechanisms of complex diseases or variation of patient response in drug treatment. In the past decade, many different genotyping techniques have been described for the detection of single-nucleotide polymorphisms (SNPs) and other common polymorphic variants. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is among the most powerful and widely used genotyping technologies. The method offers great flexibility in assay design and enables highly accurate genotyping at high sample throughput. Different strategies for allele discrimination and quantification have been combined with MALDI (hybridization, ligation, cleavage, and primer extension). Approaches based on primer extension have become the most popular applications. This combination enables rapid and reliable multiplexing of SNPs and other common variants, and makes MALDI-TOF-MS well suited for large-scale studies in fine-mapping and verification of genome-wide scans. In contrast to standard genotyping, more demanding approaches have enabled genotyping of DNA pools, molecular haplotyping or the detection of free circulating DNA for prenatal or cancer diagnostics. In addition, MALDI can also be used in novel applications as DNA methylation analysis, expression profiling, and resequencing. This review gives an introduction to multiplex genotyping by MALDI-MS and will focus on the latest developments of this technology.
Collapse
|
9
|
Peter JF, Otto AM. Magnetic particles as powerful purification tool for high sensitive mass spectrometric screening procedures. Proteomics 2010; 10:628-33. [PMID: 20099258 DOI: 10.1002/pmic.200900535] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effective isolation and purification of proteins from biological fluids is the most crucial step for a successful protein analysis when only minute amounts are available. While conventional purification methods such as dialysis, ultrafiltration or protein precipitation often lead to a marked loss of protein, SPE with small-sized particles is a powerful alternative. The implementation of particles with superparamagnetic cores facilitates the handling of those particles and allows the application of particles in the nanometer to low micrometer range. Due to the small diameters, magnetic particles are advantageous for increasing sensitivity when using subsequent MS analysis or gel electrophoresis. In the last years, different types of magnetic particles were developed for specific protein purification purposes followed by analysis or screening procedures using MS or SDS gel electrophoresis. In this review, the use of magnetic particles for different applications, such as, the extraction and analysis of DNA/RNA, peptides and proteins, is described.
Collapse
|
10
|
Abstract
Iron overload in humans is associated with a variety of genetic and acquired conditions. Of these, HFE hemochromatosis (HFE-HC) is by far the most frequent and most well-defined inherited cause when considering epidemiological aspects and risks for iron-related morbidity and mortality. The majority of patients with HFE-HC are homozygotes for the C282Y polymorphism [1]. Without therapeutic intervention, there is a risk that iron overload will occur, with the potential for tissue damage and disease. While a specific genetic test now allows for the diagnosis of HFE-HC, the uncertainty in defining cases and disease burden, as well as the low phenotypic penetrance of C282Y homozygosity poses a number of clinical problems in the management of patients with HC. This Clinical Practice Guideline will therefore, focus on HFE-HC, while rarer forms of genetic iron overload recently attributed to pathogenic mutations of transferrin receptor 2, (TFR2), hepcidin (HAMP), hemojuvelin (HJV), or to a sub-type of ferroportin (FPN) mutations, on which limited and sparse clinical and epidemiologic data are available, will not be discussed. We have developed recommendations for the screening, diagnosis, and management of HFE-HC.
Collapse
|
11
|
Duffield DS, Cai L, Kim S. Simultaneous determination of multiple mRNA levels utilizing MALDI-TOF mass spectrometry and biotinylated dideoxynucleotides. RNA (NEW YORK, N.Y.) 2010; 16:1285-1291. [PMID: 20410241 PMCID: PMC2874180 DOI: 10.1261/rna.1859810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 02/18/2010] [Indexed: 05/29/2023]
Abstract
Here we report an efficient method to simultaneously measure multiple mRNA levels utilizing mass spectrometry (MS) and molecular affinity isolation. In this approach, reverse transcription products of a group of mRNAs are subjected to competitive PCR with competitors and internal standards of known concentrations, and the PCR products are differentiated and quantified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS to determine the mRNA levels. The method provides high accuracy in quantitative MS analysis due to the facilitated purification of oligonucleotides by molecular affinity isolation. Additionally, owing to the molecular affinity isolation, only those oligonucleotides required for expression level determination are introduced into the mass spectrometer, while other irrelevant reaction components that could overlap with peaks of gene transcripts or competitors are removed prior to MS analysis. Thus the approach enhances the parallel analysis of multiple gene transcripts by MS. Utilizing the method we have simultaneously measured mRNA levels of four genes (Rho, Nrl, Hprt, and Lhx2) in mouse retinal tissue.
Collapse
Affiliation(s)
- Daniel Scott Duffield
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
12
|
Vogel N, Schiebel K, Humeny A. Technologies in the Whole-Genome Age: MALDI-TOF-Based Genotyping. ACTA ACUST UNITED AC 2009; 36:253-262. [PMID: 21049076 DOI: 10.1159/000225089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/26/2009] [Indexed: 11/19/2022]
Abstract
With the decipherment of the human genome, new questions have moved into the focus of today's research. One key aspect represents the discovery of DNA variations capable to influence gene transcription, RNA splicing, or regulating processes, and their link to pathology. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) is a powerful tool for the qualitative investigation and relative quantification of variations like single nucleotide polymorphisms, DNA methylation, microsatellite instability, or loss of heterozygosity. After its introduction into proteomics, efforts were made to adopt this technique to DNA analysis. Initially intended for peptide/protein analysis, it held several difficulties for application to nucleic acids. Today, MALDI-TOF-MS has reached worldwide acceptance and application in nucleic acid research, with a wide spectrum of methods being available. One of the most versatile approaches relies on primer extension to genotype single alleles, microsatellite repeat lengths or the methylation status of a given cytosine. Optimized methods comprising intelligent primer design and proper nucleotide selection for primer extension enabled multiplexing of reactions, rendering the analysis more economic due to parallel genotyping of several alleles in a single experiment. Laboratories equipped with MALDI-TOF-MS possess a universal technical platform for the analysis of a large variety of different molecules.
Collapse
Affiliation(s)
- Nicolas Vogel
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
13
|
Thongnoppakhun W, Jiemsup S, Yongkiettrakul S, Kanjanakorn C, Limwongse C, Wilairat P, Vanasant A, Rungroj N, Yenchitsomanus PT. Simple, efficient, and cost-effective multiplex genotyping with matrix assisted laser desorption/ionization time-of-flight mass spectrometry of hemoglobin beta gene mutations. J Mol Diagn 2009; 11:334-46. [PMID: 19460936 DOI: 10.2353/jmoldx.2009.080151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of common mutations in the hemoglobin beta (HBB) gene cause beta-thalassemia, a monogenic disease with high prevalence in certain ethnic groups. As there are 30 HBB variants that cover more than 99.5% of HBB mutant alleles in the Thai population, an efficient and cost-effective screening method is required. Three panels of multiplex primer extensions, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were developed. The first panel simultaneously detected 21 of the most common HBB mutations, while the second panel screened nine additional mutations, plus seven of the first panel for confirmation; the third panel was used to confirm three HBB mutations, yielding a 9-Da mass difference that could not be clearly distinguished by the previous two panels. The protocol was both standardized using 40 samples of known genotypes and subsequently validated in 162 blind samples with 27 different genotypes (including a normal control), comprising heterozygous, compound heterozygous, and homozygous beta-thalassemia. Results were in complete agreement with those from the genotyping results, conducted using three different methods overall. The method developed here permitted the detection of mutations missed using a single genotyping procedure. The procedure should serve as the method of choice for HBB genotyping due to its accuracy, sensitivity, and cost-effectiveness, and can be applied to studies of other gene variants that are potential disease biomarkers.
Collapse
Affiliation(s)
- Wanna Thongnoppakhun
- Departments of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Oeth P, del Mistro G, Marnellos G, Shi T, van den Boom D. Qualitative and quantitative genotyping using single base primer extension coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MassARRAY). Methods Mol Biol 2009; 578:307-43. [PMID: 19768603 DOI: 10.1007/978-1-60327-411-1_20] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has developed over the past decade into a versatile tool for the analysis of nucleic acids and especially as a reliable genotyping platform. This chapter summarizes its use in the context of the most widely used MALDI-TOF MS genomics platform, the Sequenom MassARRAY system. MassARRAY genotyping is based upon region-specific PCR followed by allele-specific single base primer extension reactions which are then desalted, dispensed onto a silica array preloaded with matrix, and the genotyping products are resolved on the basis of mass using MALDI-TOF MS. The platform is versatile in that it can resolve multiplexed reactions (40+ separate loci per reaction), acquires and interprets data quickly, gives a quantitative output which reflects the amount of product generated for each allele within an assay for multiplexed reactions, and is highly sensitive. These characteristics coupled with integrated software for sequence annotation, assay design, data interpretation, and data storage have lead to its wide adoption and use for multiple nucleic acid analysis applications in both the realm of genomics research and molecular diagnostics.
Collapse
Affiliation(s)
- Paul Oeth
- Research and Development, Sequenom, Inc, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
15
|
Misra A, Kim S. Microbead device for isolating biotinylated oligonucleotides for use in mass spectrometric analysis. Anal Biochem 2008; 384:96-100. [PMID: 18823931 DOI: 10.1016/j.ab.2008.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/26/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
We describe a prototypical device for isolating biotinylated oligonucleotides for use in mass spectrometric analysis. It consists of monomeric avidin-coated microbeads trapped in a pipette tip and has been used for genotyping single nucleotide polymorphisms (SNPs) with the previously developed solid phase capture-single base extension (SPC-SBE) method. The device reduces processing time for genotyping by SPC-SBE and allows direct spotting of sample for rapid analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In addition, it allows simultaneous processing of multiple samples and can be reused after regeneration of beads with no carryover effects. These results indicate that the microbead device is a low-cost tool that enhances sample cleanup prior to MS for SNP genotyping.
Collapse
Affiliation(s)
- Ashish Misra
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | |
Collapse
|
16
|
Castleberry CM, Chou CW, Limbach PA. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of oligonucleotides. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2008; Chapter 10:Unit 10.1. [PMID: 18551426 DOI: 10.1002/0471142700.nc1001s33] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
MALDI-MS is one of the most useful techniques available for determining biomolecule mass. It offers high mass accuracy, good sensitivity, simplicity, and speed. Because singly charged ions of oligonucleotides are typically observed, MALDI-MS spectra are easy to interpret. This unit presents protocols for sample preparation and purification, matrix preparation, and matrix/analyte sample preparation. It provides an introduction to the instrumentation and its calibration, and a discussion of some of the useful applications of MALDI-MS analysis in the study of oligonucleotides. This technique is typically used for 120-mer or smaller oligonucleotides.
Collapse
|
17
|
Abstract
Single nucleotide polymorphisms (SNPs) are the most frequently occurring genetic variation in the human genome, with the total number of SNPs reported in public SNP databases currently exceeding 9 million. SNPs are important markers in many studies that link sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular bases of diseases. For this reason, over the past several years a great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis, yielding a large number of distinct approaches. This article presents a review of SNP genotyping techniques and examines their principles of genotype determination in terms of allele differentiation strategies and detection methods. Further, several current biomedical applications of SNP genotyping are discussed.
Collapse
Affiliation(s)
- Sobin Kim
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
18
|
Misra A, Hong JY, Kim S. Multiplex genotyping of cytochrome p450 single-nucleotide polymorphisms by use of MALDI-TOF mass spectrometry. Clin Chem 2007; 53:933-9. [PMID: 17384008 DOI: 10.1373/clinchem.2006.080739] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Polymorphisms in cytochrome P450 (CYP450) genes contribute to interindividual differences in the metabolism of xenobiotic chemicals, including the vast majority of drugs, and may lead to toxicity and adverse drug reactions. Studies on these polymorphisms in research and diagnostic settings typically involve large-scale genotyping and hence require high-throughput assays. METHODS We used the previously developed solid-phase capture-single-base extension (SPC-SBE) approach for concurrent analysis of 40 single-nucleotide polymorphisms (SNPs) of CYP2C9 and 50 SNPs of CYP2A13, both genes belonging to the CYP450 family. Desired SNP-containing regions for each gene were amplified in a single-step multiplex PCR. We designed a library of primers to anneal immediately upstream of the selected SNPs and extended it with biotinylated terminators using PCR products as templates. Biotinylated extension products were isolated by affinity purification and analyzed with MALDI-TOF mass spectrometry to determine SNP genotypes. RESULTS We analyzed 11 samples for CYP2C9 and 14 samples for CYP2A13 with unambiguous detection of SNPs in all samples. Many samples showed a high occurrence of heterozygotes for both genes, with as many as 10 of 50 SNPs appearing as heterozygotes in 1 sample genotyped for CYP2A13. CONCLUSIONS The SPC-SBE method provides an efficient means for genotyping SNPs from the CYP450 family. This approach is suitable for automation and can be extended to other genotyping applications.
Collapse
Affiliation(s)
- Ashish Misra
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
19
|
Mengel-Jørgensen J, Sanchez JJ, Børsting C, Kirpekar F, Morling N. Typing of multiple single-nucleotide polymorphisms using ribonuclease cleavage of DNA/RNA chimeric single-base extension primers and detection by MALDI-TOF mass spectrometry. Anal Chem 2007; 77:5229-35. [PMID: 16097763 DOI: 10.1021/ac0502044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel single-base extension (SBE) assay using cleavable and noncleavable SBE primers in the same reaction mix is described. The cleavable SBE primers consisted of deoxyribonucleotides and one ribonucleotide (hereafter denoted chimeric primers), whereas the noncleavable SBE primers consisted of only deoxyribonucleotides (hereafter denoted standard primers). Biotin-labeled ddNTPs were used in the SBE reaction, and the SBE products were purified using the monomeric avidin triethylamine purification protocol, ensuring that only primers extended with a biotin-ddNTP in the 3'-end were isolated. A ribonuclease mix was developed to specifically cleave the chimeric primers, irrespective of the base of the ribonucleotide, whereas standard primers without a ribonucleotide were unaffected by the ribonuclease treatment. The SBE products were analyzed in linear mode using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer. The cleaved SBE products were detected in the 2000-5500 m/z range, and the noncleaved SBE products were detected in the 5500-10 000 m/z range. The method was validated by typing 17 Y chromosome single-nucleotide polymorphisms in 100 males with a 17-plex SBE package containing 9 chimeric primers and 8 standard primers.
Collapse
Affiliation(s)
- J Mengel-Jørgensen
- Department of Forensic Genetics, Institute of Forensic Medicine, University of Copenhagen, 11 Frederik V's Vej, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | |
Collapse
|
20
|
Tost J, Gut IG. DNA analysis by mass spectrometry-past, present and future. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:981-95. [PMID: 16921576 DOI: 10.1002/jms.1096] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The analysis of deoxyribose nucleic acid (DNA) by mass spectrometry (MS) has evolved to where it can be used to analyze most known types of DNA and ribose nucleic acid (RNA) situations. It can efficiently deal with the analysis of DNA polymorphisms, sequences, haplotypes, human leukocyte antigen (HLA) typing, DNA methylation and RNA expression. Implementations of MS for these forms of DNA analyses are reviewed. The use of DNA analysis by MS is compared with competing technologies. Finally, an overview is given of worthwhile applications where the know-how gained so far could be used for future developments.
Collapse
Affiliation(s)
- Jörg Tost
- Centre National de Génotypage, Bâtiment G2, 2 rue Gaston Crémieux, CP 5721, 91057 Evry Cedex, France
| | | |
Collapse
|
21
|
Sauer S. Typing of single nucleotide polymorphisms by MALDI mass spectrometry: Principles and diagnostic applications. Clin Chim Acta 2006; 363:95-105. [PMID: 16139255 DOI: 10.1016/j.cccn.2005.05.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 12/18/2022]
Abstract
BACKGROUND After the completion of the human genome sequencing project human genetics has now shifted its focus to DNA variation. DNA variation analysis is considered to be a key in partly understanding the mechanisms of complex diseases or varying patient responses in drug treatment. One of the major goals in genetics is finding the DNA variants that can act as diagnostic markers for predisposition to specific diseases. Moreover, in microbiology DNA variation has long been known to help discriminate and identify bacterial strains and viruses. Diagnostics based on DNA or RNA detection might be advantageous as an early-stage indication can be provided. METHODS Many simple and efficient methods for the analysis of nucleic acids are already available. Consequently, the last few years have seen an increased in the use of large-scale analysis of nucleic acids, in basic DNA variation studies along with diagnostics. Mass spectrometry techniques such as matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) can be of great use for genome variation analysis. In particular high-throughput SNP analysis by MALDI can be performed using fully integrated platforms. CONCLUSIONS Mass spectrometry-based procedures have promise for SNPs analysis especially for clinical diagnostics.
Collapse
Affiliation(s)
- Sascha Sauer
- Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics (Prof. H. Lehrach), Berlin, Germany.
| |
Collapse
|
22
|
Mengel-Jørgensen J, Sanchez JJ, Børsting C, Kirpekar F, Morling N. MALDI-TOF mass spectrometric detection of multiplex single base extended primers. A study of 17 y-chromosome single-nucleotide polymorphisms. Anal Chem 2005; 76:6039-45. [PMID: 15481951 DOI: 10.1021/ac049264k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most promising techniques for typing of multiple single-nucleotide polymorphism (SNP) is detection of single base extension primers (SBE) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We present a new MALDI-TOF MS protocol for typing of multiple SNPs in a single reaction. Biotin-labeled ddNTPs were used in the SBE reaction and solid phase-bound monomeric avidin was used as capturing/purification scheme allowing the exclusive release of the SBE products under gentle conditions using 5% triethylamine. We dubbed this method monomeric avidin triethylamine purification. The biotin-labeled ddNTPs contained linkers with different masses ensuring a clear separation of the alleles even for SBE primers with a mass of 10 300 Da. Furthermore, only 25-350 fmol of SBE primers were necessary in order to obtain reproducible MALDI-TOF spectra. Similar signal intensities were obtained in the 5500-10 300 m/z mass range by increasing the concentration of the longer SBE primers in the reaction. To validate the technique, 17 Y-chromosome SNPs were analyzed in 200 males. The precision and accuracy of the mass determination were analyzed by parametric statistic, and the potential use of MALDI-TOF MS for SNP typing is discussed.
Collapse
Affiliation(s)
- J Mengel-Jørgensen
- Department of Forensic Genetics, Institute of Forensic Medicine, University of Copenhagen, 11 Frederik V's Vej, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | |
Collapse
|
23
|
Tost J, Gut IG. Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clin Biochem 2005; 38:335-50. [PMID: 15766735 DOI: 10.1016/j.clinbiochem.2004.12.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 11/22/2004] [Accepted: 12/09/2004] [Indexed: 11/24/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry has become one of the most powerful and widely applied technologies for SNP scoring and determination of allele frequencies in the post-genome sequencing era. Although different strategies for allele discrimination combined with MALDI were devised, in practice only primer extension methods are nowadays routinely used. This combination enables the rapid, quantitative, and direct detection of several genetic markers simultaneously in a broad variety of biological samples. In the field of molecular diagnostics, MALDI has been applied to the discovery of genetic markers, that are associated with a phenotype like a disease susceptibility or drug response, as well as an alternative means for diagnostic testing of a range of diseases for which the responsible mutations are already known. It is one of the first techniques with which whole genome scans based on single nucleotide polymorphisms were carried out. It is equally well suited for pathogen identification and the detection of emerging mutant strains as well as for the characterization of the genetic identity and quantitative trait loci mapping in farm animals. MALDI can also be used as a detection platform for a range of novel applications that are more demanding than standard SNP genotyping such as mutation/polymorphism discovery, molecular haplotyping, analysis of DNA methylation, and expression profiling. This review gives an introduction to the application of mass spectrometry for DNA analysis, and provides an overview of most studies using SNPs as genetic markers and MALDI mass spectrometric detection that are related to clinical applications and molecular diagnostics. Further, it aims to show specialized applications that might lead to diagnostic applications in the future. It does not speculate on whether this methodology will ever reach the diagnostic market.
Collapse
Affiliation(s)
- Jörg Tost
- Centre National de Génotypage, Bâtiment G2, 2 Rue Gaston Crémieux, CP 5721, 91057 Evry Cedex, France
| | | |
Collapse
|
24
|
Liao HK, Su YN, Kao HY, Hung CC, Wang HT, Chen YJ. Parallel minisequencing followed by multiplex matrix-assisted laser desorption/ionization mass spectrometry assay for beta-thalassemia mutations. J Hum Genet 2005; 50:139-150. [PMID: 15761692 DOI: 10.1007/s10038-005-0234-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 01/17/2005] [Indexed: 11/25/2022]
Abstract
Beta-thalassemia is a common monogenic disease caused by mutations in the human beta-globin gene (HBB), many of which are differentially represented in human subpopulations stratified by ethnicity. This study describes an efficient and highly accurate method to screen for the eight most-common disease-causing mutations, covering more than 98% of HBB alleles in the Taiwanese population, using parallel minisequencing and multiplex assay by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The MALDI-TOF MS was optimized for sensitivity and resolution by "mass tuning" the PinPoint assay for eight HBB SNPs. Because of the close proximity and clustering of mutations in HBB, primer extension reactions were conducted in parallel. Efficient sequential desalting using POROS and cationic exchange chromatography allowed for an unambiguous multiplex genotyping by MALDI-TOF MS. The embellishing SNP assay allowed for highly accurate identification of the eight most-common beta-thalassemia mutations in homozygous normal control, carrier, and eight heterozygous carrier mixtures, as well as the diagnosis of a high-risk family. The results demonstrated a flexible strategy for rapid identification of clustering SNPs in HBB with a high degree of accuracy and specificity. It can be adapted easily for high-throughput diagnosis of various hereditary diseases or to establish family heritage databases for clinical applications.
Collapse
Affiliation(s)
- Hsin-Kai Liao
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan, Republic of China
| | - Yi-Ning Su
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Hung-Yi Kao
- Department of Chemical Engineering, National Taipei University of Technology, Taipei, Taiwan, Republic of China
| | - Chia-Cheng Hung
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Hsueh-Ting Wang
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan, Republic of China
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan, Republic of China.
| |
Collapse
|
25
|
Affiliation(s)
- Kazuhiko Nakatani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8150, Japan.
| |
Collapse
|
26
|
Kuzuya A, Mizoguchi R, Sasayama T, Zhou JM, Komiyama M. Selective activation of two sites in RNA by acridine-bearing oligonucleotides for clipping of designated RNA fragments. J Am Chem Soc 2004; 126:1430-6. [PMID: 14759201 DOI: 10.1021/ja0389568] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Artificial enzymes for selective scission of RNA at two designated sites, which are valuable for advanced RNA science, have been prepared by combining lanthanide(III) ion with an oligonucleotide bearing two acridine groups. When these modified oligonucleotides form heteroduplexes with substrate RNA, the two phosphodiester linkages in front of the acridines are selectively activated and preferentially hydrolyzed by lanthanide ion. This two-site RNA scission does not require any specific RNA sequence at the scission sites, and the length of clipped RNA fragment is easily and precisely controllable by changing the distance between two acridine groups in the modified oligonucleotide. The two-site scission is also successful even when the substrate RNA has higher-order structures. By using these two-site RNA cutters, RNA fragments of predetermined length were obtained from long RNA substrates and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Single nucleotide polymorphisms in homozygous and heterozygous samples were accurately and easily detected in terms of the difference in mass number. Multiplex analyses of in vitro transcripts from human genome were also successful.
Collapse
Affiliation(s)
- Akinori Kuzuya
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904 Japan
| | | | | | | | | |
Collapse
|
27
|
Mengel-Jørgensen J, Sanchez J, Børsting C, Kirpekar F, Morling N. Multiplex Y chromosome SNP genotyping using MALDI-TOF mass spectrometry. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0531-5131(03)01544-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Ruparel H, Ulz ME, Kim S, Ju J. Digital detection of genetic mutations using SPC-sequencing. Genome Res 2004; 14:296-300. [PMID: 14762066 PMCID: PMC327105 DOI: 10.1101/gr.1344104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Deletion or insertion mutations lead to a frameshift that causes misalignment between wild-type and mutated allele sequences, making it difficult to identify such mutations unambiguously by using electrophoresis-based DNA sequencing. We have previously established the feasibility of an accurate DNA sequencing method using solid-phase capturable (SPC) dideoxynucleotides and MALDI-TOF mass spectrometry on synthetic templates, an approach we refer to as SPC-sequencing. Here, we report the application of SPC-sequencing in characterizing frameshift mutations by using the detection of the BRCA1 gene mutations 185delAG and 5382insC as examples. In this method, Sanger DNA sequencing fragments are generated in one tube by using biotinylated dideoxynucleotides. The sequencing fragments carrying a biotin moiety at the 3' end are captured on a streptavidin-coated solid phase to eliminate excess primer, primer dimers, and false stops. Only correctly terminated DNA fragments are captured, subsequently released, and analyzed by mass spectrometry to obtain digital DNA sequencing data. This method produces distinct doublet mass peaks at each point in the mass spectrum beyond the mutation site, facilitating the accurate characterization of the mutation. We have compared SPC-sequencing with electrophoresis-based sequencing in characterizing the above BRCA1 mutations, demonstrating the significant advantage offered by SPC-sequencing for the accurate identification of frameshift mutations.
Collapse
Affiliation(s)
- Hameer Ruparel
- Laboratory of DNA Sequencing and Chemical Biology, Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
29
|
Bai X, Kim S, Li Z, Turro NJ, Ju J. Design and synthesis of a photocleavable biotinylated nucleotide for DNA analysis by mass spectrometry. Nucleic Acids Res 2004; 32:535-41. [PMID: 14744978 PMCID: PMC373325 DOI: 10.1093/nar/gkh198] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 12/09/2003] [Accepted: 12/09/2003] [Indexed: 01/24/2023] Open
Abstract
We report here the design, synthesis and evaluation of a novel photocleavable (PC) biotinylated nucleotide analog, dUTP-PC-Biotin, for DNA polymerase extension reaction to isolate DNA products for mass spectrometry (MS) analysis. This nucleotide analog has a biotin moiety attached to the 5-position of 2'-deoxyribouridine 5'-triphosphate via a photocleavable 2-nitrobenzyl linker. We have demonstrated that dUTP-PC-Biotin can be faithfully incorporated by the DNA polymerase Thermo Sequenase into the growing DNA strand in a DNA polymerase extension reaction and that its incorporation does not hinder the addition of the subsequent nucleotide. Therefore, the DNA extension fragments generated by using the dUTP-PC-Biotin can be efficiently isolated by a streptavidin-coated surface and recovered by near-UV light irradiation at room temperature in mild condition for further analysis without using any chemicals or heat. Single and multiple primer extension reactions were performed using the dUTP-PC-Biotin to generate DNA products for MALDI-TOF MS analysis. Such nucleotide analogs that carry a biotin and a photocleavable linker will allow the isolation and purification of DNA products under mild conditions for MS-based genetic analysis by DNA sequencing or multiplex single nucleotide polymorphism (SNP) detection. Furthermore, these nucleotide analogs should also be useful in isolating DNA-protein complexes under non-denaturing conditions.
Collapse
Affiliation(s)
- Xiaopeng Bai
- Laboratory of DNA Sequencing and Chemical Biology, Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
30
|
Kim S, Shi S, Bonome T, Ulz ME, Edwards JR, Fodstad H, Russo JJ, Ju J. Multiplex genotyping of the human beta2-adrenergic receptor gene using solid-phase capturable dideoxynucleotides and mass spectrometry. Anal Biochem 2003; 316:251-8. [PMID: 12711347 DOI: 10.1016/s0003-2697(03)00080-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Previously, we established the feasibility of using solid phase capturable (SPC) dideoxynucleotides to generate single base extension (SBE) products which were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for multiplex genotyping, an approach that we refer to as SPC-SBE. We report here the expanding of the SPC-SBE method as a single-tube assay to simultaneously detect 20 single nucleotide variations in a model system and 3 single nucleotide polymorphisms (SNPs) in the human beta2-adrenergic receptor (beta2AR) gene. Twenty primers were designed to have a sufficient mass difference between all extension products for accurate detection of nucleotide variants of the synthetic templates related to the p53 gene. These primers were extended simultaneously in a single tube with biotin-ddNTPs to generate 3(')-biotinylated DNA products, which were first captured by streptavidin-coated magnetic beads and then released from the beads and analyzed with MALDI-TOF MS. This approach generates a mass spectrum free of primer peaks and their associated dimers, increasing the scope of multiplexing SNPs. We also simultaneously genotyped 3 SNPs in the beta2AR gene (5(')LC-Cys19Arg, Gly16Arg, and Gln27Glu) from the genomic DNA of 20 individuals. Comparison of this approach with direct sequencing and the restriction fragment length polymorphism method indicated that the SPC-SBE method is superior for detecting nucleotide variations at known SNP sites.
Collapse
Affiliation(s)
- Sobin Kim
- Laboratory of DNA Sequencing and Chemical Biology, Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Li Z, Bai X, Ruparel H, Kim S, Turro NJ, Ju J. A photocleavable fluorescent nucleotide for DNA sequencing and analysis. Proc Natl Acad Sci U S A 2003; 100:414-9. [PMID: 12515853 PMCID: PMC141009 DOI: 10.1073/pnas.242729199] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2002] [Indexed: 11/18/2022] Open
Abstract
DNA sequencing by synthesis during a polymerase reaction using laser-induced fluorescence detection is an approach that has a great potential to increase the throughput and data quality of DNA sequencing. We report the design and synthesis of a photocleavable fluorescent nucleoside triphosphate, one of the essential molecules required for the sequencing-by-synthesis approach. We synthesized this nucleoside triphosphate by attaching a fluorophore, 4,4-difluoro-5,7-dimethyl-4-bora-3alpha,4alpha-diaza-s-indacene propionic acid (BODIPY), to the 5 position of 2'-deoxyuridine triphosphate via a photocleavable 2-nitrobenzyl linker. We demonstrate that the nucleotide analogue can be faithfully incorporated by a DNA polymerase Thermo Sequenase into the growing DNA strand in a DNA-sequencing reaction and that its incorporation does not hinder the addition of the subsequent nucleotide. These results indicate that the nucleotide analogue is an excellent substrate for Thermo Sequenase. We also systematically studied the photocleavage of the fluorescent dye from a DNA molecule that contained the nucleotide analogue. UV irradiation at 340 nm of the DNA molecule led to the efficient release of the fluorescent dye, ensuring that a previous fluorescence signal did not leave any residue that could interfere with the detection of the next nucleotide. Thus, our results indicate that it should be feasible to use four different fluorescent dyes with distinct fluorescence emissions as unique tags to label the four nucleotides (A, C, G, and T) through the photocleavable 2-nitrobenzyl linker. These fluorescent tags can be removed easily by photocleavage after the identification of each nucleotide in the DNA sequencing-by-synthesis approach.
Collapse
Affiliation(s)
- Zengmin Li
- Columbia Genome Center, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
32
|
Tost J, Gut IG. Genotyping single nucleotide polymorphisms by mass spectrometry. MASS SPECTROMETRY REVIEWS 2002; 21:388-418. [PMID: 12666148 DOI: 10.1002/mas.1009] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the last decade, the demand for high-throughput DNA analysis methods has dramatically increased, mainly due to the advent of the human genome sequencing project that is now nearing completion. Even though mass spectrometry did not contribute to that project, it is clear that it will have an important role in the post-genome sequencing era, in genomics and proteomics. In genomics, mainly matrix-assisted laser desorption/ionization (MALDI) mass spectrometry will contribute to large-scale single nucleotide polymorphism (SNP) genotyping projects. Here, the development and history of DNA analysis by mass spectrometry is reviewed and put into the context with the requirements of genomics. All major contributions to the field and their status and limitations are described in detail.
Collapse
Affiliation(s)
- Jörg Tost
- Centre National de Génotypage, Bâtiment G2, 2 Rue Gaston Crémieux, 91057 Evry Cedex, France
| | | |
Collapse
|
33
|
Muhammad WT, Fox KF, Fox A, Cotham W, Walla M. Electrospray ionization quadrupole time-of-flight mass spectrometry and quadrupole mass spectrometry for genotyping single nucleotide substitutions in intact polymerase chain reaction products in K-ras and p53. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:2278-2285. [PMID: 12478572 DOI: 10.1002/rcm.859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single nucleotide polymorphisms (SNPs) and mutations were genotyped for both homozygous and heterozygous PCR products of p53, a tumor suppressor gene, and K-ras, an oncogene, using electrospray ionization (ESI) quadrupole time-of-flight (Q-TOF) mass spectrometry (MS) and ESI-quadrupole MS analysis. Mass accuracy was adequate for both instruments to detect genetic changes in homozygous PCR products, including the most difficult to distinguish (adenine [A] --> thymine [T] transversion). However, for the detection of A --> T shifts (9.0 Da difference) in heterozygous PCR products, the increased resolution of ESI-Q-TOFMS proved essential. Although, greater mass differences in heterozygotes (e.g. cytosine [C] <--> T or guanine [G] <--> A) can be discriminated using ESI-quadrupole MS analysis.
Collapse
Affiliation(s)
- Warees T Muhammad
- Department of Pathology and Microbiology, University of South Carolina, School of Medicine, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|