1
|
Darbeheshti F, Makrigiorgos GM. Enzymatic Methods for Mutation Detection in Cancer Samples and Liquid Biopsies. Int J Mol Sci 2023; 24:923. [PMID: 36674433 PMCID: PMC9865676 DOI: 10.3390/ijms24020923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Low-level tumor somatic DNA mutations in tissue and liquid biopsies obtained from cancer patients can have profound implications for development of metastasis, prognosis, choice of treatment, follow-up, or early cancer detection. Unless detected, such low-frequency DNA alterations can misinform patient management decisions or become missed opportunities for personalized medicine. Next-generation sequencing technologies and digital-PCR can resolve low-level mutations but require access to specialized instrumentation, time, and resources. Enzymatic-based approaches to detection of low-level mutations provide a simple, straightforward, and affordable alternative to enrich and detect such alterations and is broadly available to low-resource laboratory settings. This review summarizes the traditional uses of enzymatic mutation detection and describes the latest exciting developments, potential, and applications with specific reference to the field of liquid biopsy in cancer.
Collapse
Affiliation(s)
| | - G. Mike Makrigiorgos
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
2
|
Pre-PCR Mutation-Enrichment Methods for Liquid Biopsy Applications. Cancers (Basel) 2022; 14:cancers14133143. [PMID: 35804916 PMCID: PMC9264780 DOI: 10.3390/cancers14133143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
Liquid biopsy is having a remarkable impact on healthcare- and disease-management in the context of personalized medicine. Circulating free DNA (cfDNA) is one of the most instructive liquid-biopsy-based biomarkers and harbors valuable information for diagnostic, predictive, and prognostic purposes. When it comes to cancer, circulating DNA from the tumor (ctDNA) has a wide range of applications, from early cancer detection to the early detection of relapse or drug resistance, and the tracking of the dynamic genomic make-up of tumor cells. However, the detection of ctDNA remains technically challenging, due, in part, to the low frequency of ctDNA among excessive circulating cfDNA originating from normal tissues. During the past three decades, mutation-enrichment methods have emerged to boost sensitivity and enable facile detection of low-level mutations. Although most developed techniques apply mutation enrichment during or following initial PCR, there are a few techniques that allow mutation selection prior to PCR, which provides advantages. Pre-PCR enrichment techniques can be directly applied to genomic DNA and diminish the influence of PCR errors that can take place during amplification. Moreover, they have the capability for high multiplexity and can be followed by established mutation detection and enrichment technologies without changes to their established procedures. The first approaches for pre-PCR enrichment were developed by employing restriction endonucleases directly on genomic DNA in the early 1990s. However, newly developed pre-PCR enrichment methods provide higher sensitivity and versatility. This review describes the available pre-PCR enrichment methods and focuses on the most recently developed techniques (NaME-PrO, UVME, and DEASH/MAESTRO), emphasizing their applications in liquid biopsies.
Collapse
|
3
|
Darbeheshti F, Yu F, Ahmed F, Adalsteinsson VA, Makrigiorgos GM. Recent Developments in Mutation Enrichment and Detection Technologies. Clin Chem 2022; 68:1250-1260. [PMID: 35716101 DOI: 10.1093/clinchem/hvac093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Presence of excess unaltered, wild-type DNA (wtDNA) providing information of little clinical value may often mask low-level mutations containing important diagnostic or therapeutic clues. This is a recurring hurdle in biotechnology and medicine, including cancer, prenatal diagnosis, infectious diseases, and organ transplantation. Mutation enrichment techniques that allow reduction of unwanted DNA to enable the detection of low-level mutations have emerged since the early 1990s. They are continuously being refined and updated with new technologies. The burgeoning interest in liquid biopsies for residual cancer monitoring, detection of resistance to therapy, and early cancer detection has driven an expanded interest in new and improved methodologies for practical and effective mutation enrichment and detection of low-level mutations of clinical relevance. CONTENT Newly developed mutation enrichment technologies are described and grouped according to the main principle of operation, PCR-blocking technologies, enzymatic methods, and physicochemical approaches. Special emphasis is given to technologies enabling pre-PCR blockage of wtDNA to bypass PCR errors [nuclease-assisted minor-allele enrichment assay with overlapping probes (NaME-PrO) and UV-mediated cross-linking minor allele enrichment (UVME)] or providing high multiplexity followed by next-generation sequencing [Minor allele enriched sequencing through recognition oligonucleotides (MAESTRO)]. SUMMARY This review summarizes technological developments in rare mutation enrichment over the last 12 years, complementing pre-2010 reviews on this topic. The expanding field of liquid biopsy calls for improved limits of detection (LOD) and highly parallel applications, along with the traditional requirements for accuracy, speed, and cost-effectiveness. The current technologies are reviewed with regards to these new requirements.
Collapse
Affiliation(s)
- Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fangyan Yu
- Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Farzana Ahmed
- Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - G Mike Makrigiorgos
- Department of Radiation Oncology, Dana Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Garcia-Mazcorro JF, Barcenas-Walls JR. Thinking beside the box: Should we care about the non-coding strand of the 16S rRNA gene? FEMS Microbiol Lett 2016; 363:fnw171. [DOI: 10.1093/femsle/fnw171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/22/2022] Open
|
5
|
Bergueiro J, Calderón M. Thermoresponsive nanodevices in biomedical applications. Macromol Biosci 2014; 15:183-99. [PMID: 25324003 DOI: 10.1002/mabi.201400362] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/11/2014] [Indexed: 02/04/2023]
Abstract
In the last couple of decades several drug carriers have been tailored on the nanometric scale by taking advantage of new stimuli responsive materials. Thermoresponsive polymers in particular have been extensively employed as stimuli-responsive building blocks that in combination with other environmental-responsive materials allowed the birth of smarter systems that can respond to more than one stimulus. Examples that highlight the different polymers for thermally triggered drug delivery will be described. A special emphasis will be given to the description of novel theranostic nanodevices that combine more than one responsive modality in order to create a local hyperthermia that leads to the polymer phase transition and triggered drug release, cell recognition, and/or appearance of an imaging signal.
Collapse
Affiliation(s)
- Julián Bergueiro
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustrasse 3, 14195, Berlin, Germany
| | | |
Collapse
|
6
|
Zahid M, Kim B, Hussain R, Amin R, Park SH. DNA nanotechnology: a future perspective. NANOSCALE RESEARCH LETTERS 2013; 8:119. [PMID: 23497147 PMCID: PMC3599551 DOI: 10.1186/1556-276x-8-119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/21/2013] [Indexed: 05/05/2023]
Abstract
In addition to its genetic function, DNA is one of the most distinct and smart self-assembling nanomaterials. DNA nanotechnology exploits the predictable self-assembly of DNA oligonucleotides to design and assemble innovative and highly discrete nanostructures. Highly ordered DNA motifs are capable of providing an ultra-fine framework for the next generation of nanofabrications. The majority of these applications are based upon the complementarity of DNA base pairing: adenine with thymine, and guanine with cytosine. DNA provides an intelligent route for the creation of nanoarchitectures with programmable and predictable patterns. DNA strands twist along one helix for a number of bases before switching to the other helix by passing through a crossover junction. The association of two crossovers keeps the helices parallel and holds them tightly together, allowing the assembly of bigger structures. Because of the DNA molecule's unique and novel characteristics, it can easily be applied in a vast variety of multidisciplinary research areas like biomedicine, computer science, nano/optoelectronics, and bionanotechnology.
Collapse
Affiliation(s)
- Muniza Zahid
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Byeonghoon Kim
- Department of Physics & SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, South Korea
| | - Rafaqat Hussain
- Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Ta'zim, Malaysia
| | - Rashid Amin
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Sung Ha Park
- Department of Physics & SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, South Korea
| |
Collapse
|
7
|
Du C, Ge B, Liu Z, Fu K, Chan WC, McKeithan TW. PCR-based generation of shRNA libraries from cDNAs. BMC Biotechnol 2006; 6:28. [PMID: 16790063 PMCID: PMC1533825 DOI: 10.1186/1472-6750-6-28] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 06/21/2006] [Indexed: 12/03/2022] Open
Abstract
Background The use of small interfering RNAs (siRNAs) to silence target gene expression has greatly facilitated mammalian genetic analysis by generating loss-of-function mutants. In recent years, high-throughput, genome-wide screening of siRNA libraries has emerged as a viable approach. Two different methods have been used to generate short hairpin RNA (shRNA) libraries; one is to use chemically synthesized oligonucleotides, and the other is to convert complementary DNAs (cDNAs) into shRNA cassettes enzymatically. The high cost of chemical synthesis and the low efficiency of the enzymatic approach have hampered the widespread use of screening with shRNA libraries. Results We report here an improved method for constructing genome-wide shRNA libraries enzymatically. The method includes steps of cDNA fragmentation and endonuclease MmeI digestion to generate 19-bp fragments, capping the 19-bp cDNA fragments with a hairpin oligonucleotide, and amplification of the hairpin structures by PCR. The PCR step converts hairpins into double-stranded DNAs that contain head-to-head cDNA fragments that can be cloned into a vector downstream of a Pol III promoter. Conclusion This method can readily be used to generate shRNA libraries from a small amount of mRNA and thus can be used to create cell- or tissue-specific libraries.
Collapse
Affiliation(s)
- Cheng Du
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-0766, USA
| | - Baosheng Ge
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-7680, USA
| | - Zhongfeng Liu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-0766, USA
| | - Kai Fu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-0766, USA
| | - Wing C Chan
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-0766, USA
| | - Timothy W McKeithan
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-7680, USA
| |
Collapse
|
8
|
Yeung AT, Hattangadi D, Blakesley L, Nicolas E. Enzymatic mutation detection technologies. Biotechniques 2005; 38:749-58. [PMID: 15948293 DOI: 10.2144/05385rv01] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mutation is as necessary for life as fidelity is in DNA replication. The study of mutations reveals the normal functions of genes, messages, proteins, the causes of many diseases, and the variability of responses among individuals. Indeed, recent mutations that have not yet become polymorphisms are often deleterious and pertinent to the disease history of afflicted individuals. This review discusses the principles behind a variety of methods for the detection of mutations and factors that should be considered in future methods design. One enzymatic approach in particular using orthologs of the CEL I nuclease that show high specificity for all mismatches, appears to be easy and robust. Further developments of this and other methods will allow mutation detection to become an integral component of individualized medicine.
Collapse
|
9
|
Binkowski BF, Richmond KE, Kaysen J, Sussman MR, Belshaw PJ. Correcting errors in synthetic DNA through consensus shuffling. Nucleic Acids Res 2005; 33:e55. [PMID: 15800206 PMCID: PMC1072806 DOI: 10.1093/nar/gni053] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 03/01/2005] [Accepted: 03/01/2005] [Indexed: 11/19/2022] Open
Abstract
Although efficient methods exist to assemble synthetic oligonucleotides into genes and genomes, these suffer from the presence of 1-3 random errors/kb of DNA. Here, we introduce a new method termed consensus shuffling and demonstrate its use to significantly reduce random errors in synthetic DNA. In this method, errors are revealed as mismatches by re-hybridization of the population. The DNA is fragmented, and mismatched fragments are removed upon binding to an immobilized mismatch binding protein (MutS). PCR assembly of the remaining fragments yields a new population of full-length sequences enriched for the consensus sequence of the input population. We show that two iterations of consensus shuffling improved a population of synthetic green fluorescent protein (GFPuv) clones from approximately 60 to >90% fluorescent, and decreased errors 3.5- to 4.3-fold to final values of approximately 1 error per 3500 bp. In addition, two iterations of consensus shuffling corrected a population of GFPuv clones where all members were non-functional, to a population where 82% of clones were fluorescent. Consensus shuffling should facilitate the rapid and accurate synthesis of long DNA sequences.
Collapse
Affiliation(s)
- Brock F. Binkowski
- Department of Biochemistry, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Kathryn E. Richmond
- Center for Nanotechnology, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - James Kaysen
- Center for Nanotechnology, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Michael R. Sussman
- Department of Biochemistry, University of Wisconsin-MadisonMadison, WI 53706, USA
| | - Peter J. Belshaw
- Department of Biochemistry, University of Wisconsin-MadisonMadison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-MadisonMadison, WI 53706, USA
| |
Collapse
|
10
|
Danielson PB, Kristinsson R, Shelton RJ, Laberge GS. Separating human DNA mixtures using denaturing high-performance liquid chromatography. Expert Rev Mol Diagn 2005; 5:53-63. [PMID: 15723592 DOI: 10.1586/14737159.5.1.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA mixtures represent challenging samples that are rarely amenable to direct DNA sequence analysis and many of the strategies available to separate mixtures are both labor and time intensive. Denaturing high-performance liquid chromatography is an accurate and rapid approach for the detection and scoring of mutations. It can also be used to separate DNA mixtures. The technique relies on the chromatographic separation of crosshybridization products to isolate the individual components of a mixture. By eliminating secondary amplification and excessive manipulation prior to sequencing, denaturing high-performance liquid chromatography can streamline the analysis of conditions ranging from somatic mosaicism, microchimerism and mitochondrial heteroplasmy to evidentiary material containing mixtures of DNA encountered in forensic investigations.
Collapse
Affiliation(s)
- Phillip B Danielson
- University of Denver, Department of Biological Sciences, Denver, CO 80210, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
The need for detection of minority mutations (i.e., a few mutants within a high excess of wild-type alleles) arises frequently in the field of cancer and molecular genetics. Current mutation detection technologies are limited by several technical factors when it comes to the detection of minority point mutations, including generation of misincorporations by the DNA polymerase during PCR amplification. Primer ligation-mediated PCR methodologies for detection of mutations in an excess wild-type sequences are described, that can be applied for detection of both known and unknown minority point mutations. Furthermore, a new methodology is described, hairpin-PCR, which has the potential to completely eliminate PCR errors from amplified sequences, prior to minority mutation detection. Combination of these technologies can effectively tackle the problem of minority mutation detection, in order to pursue demanding applications such as identification of cancer cells at an early stage, detection of mutations in single cells, identification of minimal residual disease, or investigation of mechanisms of spontaneous mutagenesis.
Collapse
Affiliation(s)
- G Mike Makrigiorgos
- Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
12
|
Laird CD, Pleasant ND, Clark AD, Sneeden JL, Hassan KMA, Manley NC, Vary JC, Morgan T, Hansen RS, Stöger R. Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules. Proc Natl Acad Sci U S A 2004; 101:204-9. [PMID: 14673087 PMCID: PMC314163 DOI: 10.1073/pnas.2536758100] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Indexed: 11/18/2022] Open
Abstract
Epigenetic inheritance, the transmission of gene expression states from parent to daughter cells, often involves methylation of DNA. In eukaryotes, cytosine methylation is a frequent component of epigenetic mechanisms. Failure to transmit faithfully a methylated or an unmethylated state of cytosine can lead to altered phenotypes in plants and animals. A central unresolved question in epigenetics concerns the mechanisms by which a locus maintains, or changes, its state of cytosine methylation. We developed "hairpin-bisulfite PCR" to analyze these mechanisms. This method reveals the extent of methylation symmetry between the complementary strands of individual DNA molecules. Using hairpin-bisulfite PCR, we determined the fidelity of methylation transmission in the CpG island of the FMR1 gene in human lymphocytes. For the hypermethylated CpG island of this gene, characteristic of inactive-X alleles, we estimate a maintenance methylation efficiency of approximately 0.96 per site per cell division. For de novo methylation efficiency (E(d)), remarkably different estimates were obtained for the hypermethylated CpG island (E(d) = 0.17), compared with the hypomethylated island on the active-X chromosome (E(d) < 0.01). These results clarify the mechanisms by which the alternative hypomethylated and hypermethylated states of CpG islands are stably maintained through many cell divisions. We also analyzed a region of human L1 transposable elements. These L1 data provide accurate methylation patterns for the complementary strand of each repeat sequence analyzed. Hairpin-bisulfite PCR will be a powerful tool in studying other processes for which genetic or epigenetic information differs on the two complementary strands of DNA.
Collapse
Affiliation(s)
- Charles D Laird
- Department of Biology, Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|