1
|
Zebrowska J, Jezewska-Frackowiak J, Wieczerzak E, Kasprzykowski F, Zylicz-Stachula A, Skowron PM. Novel parameter describing restriction endonucleases: Secondary-Cognate-Specificity and chemical stimulation of TsoI leading to substrate specificity change. Appl Microbiol Biotechnol 2019; 103:3439-3451. [PMID: 30879089 PMCID: PMC6449304 DOI: 10.1007/s00253-019-09731-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 11/30/2022]
Abstract
Over 470 prototype Type II restriction endonucleases (REases) are currently known. Most recognise specific DNA sequences 4–8 bp long, with very few exceptions cleaving DNA more frequently. TsoI is a thermostable Type IIC enzyme that recognises the DNA sequence TARCCA (R = A or G) and cleaves downstream at N11/N9. The enzyme exhibits extensive top-strand nicking of the supercoiled single-site DNA substrate. The second DNA strand of such substrate is specifically cleaved only in the presence of duplex oligonucleotides containing a cognate site. We have previously shown that some Type IIC/IIG/IIS enzymes from the Thermus-family exhibit ‘affinity star’ activity, which can be induced by the S-adenosyl-L-methionine (SAM) cofactor analogue—sinefungin (SIN). Here, we define a novel type of inherently built-in ‘star’ activity, exemplified by TsoI. The TsoI ‘star’ activity cannot be described under the definition of the classic ‘star’ activity as it is independent of the reaction conditions used and cannot be separated from the cognate specificity. Therefore, we define this phenomenon as Secondary-Cognate-Specificity (SCS). The TsoI SCS comprises several degenerated variants of the cognate site. Although the efficiency of TsoI SCS cleavage is lower in comparison to the cognate TsoI recognition sequence, it can be stimulated by S-adenosyl-L-cysteine (SAC). We present a new route for the chemical synthesis of SAC. The TsoI/SAC REase may serve as a novel tool for DNA manipulation.
Collapse
Affiliation(s)
- Joanna Zebrowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Joanna Jezewska-Frackowiak
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Franciszek Kasprzykowski
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland.
| |
Collapse
|
2
|
Krefft D, Papkov A, Prusinowski M, Zylicz-Stachula A, Skowron PM. Randomized DNA libraries construction tool: a new 3-bp 'frequent cutter' TthHB27I/sinefungin endonuclease with chemically-induced specificity. BMC Genomics 2018; 19:361. [PMID: 29751745 PMCID: PMC5948728 DOI: 10.1186/s12864-018-4748-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Background Acoustic or hydrodynamic shearing, sonication and enzymatic digestion are used to fragment DNA. However, these methods have several disadvantages, such as DNA damage, difficulties in fragmentation control, irreproducibility and under-representation of some DNA segments. The DNA fragmentation tool would be a gentle enzymatic method, offering cleavage frequency high enough to eliminate DNA fragments distribution bias and allow for easy control of partial digests. Only three such frequently cleaving natural restriction endonucleases (REases) were discovered: CviJI, SetI and FaiI. Therefore, we have previously developed two artificial enzymatic specificities, cleaving DNA approximately every ~ 3-bp: TspGWI/sinefungin (SIN) and TaqII/SIN. Results In this paper we present the third developed specificity: TthHB27I/SIN(SAM) - a new genomic tool, based on Type IIS/IIC/IIG Thermus-family REases-methyltransferases (MTases). In the presence of dimethyl sulfoxide (DMSO) and S-adenosyl-L-methionine (SAM) or its analogue SIN, the 6-bp cognate TthHB27I recognition sequence 5’-CAARCA-3′ is converted into a combined 3.2–3.0-bp ‘site’ or its statistical equivalent, while a cleavage distance of 11/9 nt is retained. Protocols for various modes of limited DNA digestions were developed. Conclusions In the presence of DMSO and SAM or SIN, TthHB27I is transformed from rare 6-bp cutter to a very frequent one, approximately 3-bp. Thus, TthHB27I/SIN(SAM) comprises a new tool in the very low-represented segment of such prototype REases specificities. Moreover, this modified TthHB27I enzyme is uniquely suited for controlled DNA fragmentation, due to partial DNA cleavage, which is an inherent feature of the Thermus-family enzymes. Such tool can be used for quasi-random libraries generation as well as for other DNA manipulations, requiring high frequency cleavage and uniform distribution of cuts along DNA. Electronic supplementary material The online version of this article (10.1186/s12864-018-4748-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria Krefft
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Aliaksei Papkov
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Maciej Prusinowski
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
3
|
Thermostable proteins bioprocesses: The activity of restriction endonuclease-methyltransferase from Thermus thermophilus (RM.TthHB27I) cloned in Escherichia coli is critically affected by the codon composition of the synthetic gene. PLoS One 2017; 12:e0186633. [PMID: 29040308 PMCID: PMC5645126 DOI: 10.1371/journal.pone.0186633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/04/2017] [Indexed: 11/25/2022] Open
Abstract
Obtaining thermostable enzymes (thermozymes) is an important aspect of biotechnology. As thermophiles have adapted their genomes to high temperatures, their cloned genes’ expression in mesophiles is problematic. This is mainly due to their high GC content, which leads to the formation of unfavorable secondary mRNA structures and codon usage in Escherichia coli (E. coli). RM.TthHB27I is a member of a family of bifunctional thermozymes, containing a restriction endonuclease (REase) and a methyltransferase (MTase) in a single polypeptide. Thermus thermophilus HB27 (T. thermophilus) produces low amounts of RM.TthHB27I with a unique DNA cleavage specificity. We have previously cloned the wild type (wt) gene into E. coli, which increased the production of RM.TthHB27I over 100-fold. However, its enzymatic activities were extremely low for an ORF expressed under a T7 promoter. We have designed and cloned a fully synthetic tthHB27IRM gene, using a modified ‘codon randomization’ strategy. Codons with a high GC content and of low occurrence in E. coli were eliminated. We incorporated a stem-loop circuit, devised to negatively control the expression of this highly toxic gene by partially hiding the ribosome-binding site (RBS) and START codon in mRNA secondary structures. Despite having optimized 59% of codons, the amount of produced RM.TthHB27I protein was similar for both recombinant tthHB27IRM gene variants. Moreover, the recombinant wt RM.TthHB27I is very unstable, while the RM.TthHB27I resulting from the expression of the synthetic gene exhibited enzymatic activities and stability equal to the native thermozyme isolated from T. thermophilus. Thus, we have developed an efficient purification protocol using the synthetic tthHB27IRM gene variant only. This suggests the effect of co-translational folding kinetics, possibly affected by the frequency of translational errors. The availability of active RM.TthHB27I is of practical importance in molecular biotechnology, extending the palette of available REase specificities.
Collapse
|
4
|
Skowron PM, Anton BP, Czajkowska E, Zebrowska J, Sulecka E, Krefft D, Jezewska-Frackowiak J, Zolnierkiewicz O, Witkowska M, Morgan RD, Wilson GG, Fomenkov A, Roberts RJ, Zylicz-Stachula A. The third restriction-modification system from Thermus aquaticus YT-1: solving the riddle of two TaqII specificities. Nucleic Acids Res 2017; 45:9005-9018. [PMID: 28911108 PMCID: PMC5587805 DOI: 10.1093/nar/gkx599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/04/2017] [Indexed: 11/12/2022] Open
Abstract
Two restriction-modification systems have been previously discovered in Thermus aquaticus YT-1. TaqI is a 263-amino acid (aa) Type IIP restriction enzyme that recognizes and cleaves within the symmetric sequence 5'-TCGA-3'. TaqII, in contrast, is a 1105-aa Type IIC restriction-and-modification enzyme, one of a family of Thermus homologs. TaqII was originally reported to recognize two different asymmetric sequences: 5'-GACCGA-3' and 5'-CACCCA-3'. We previously cloned the taqIIRM gene, purified the recombinant protein from Escherichia coli, and showed that TaqII recognizes the 5'-GACCGA-3' sequence only. Here, we report the discovery, isolation, and characterization of TaqIII, the third R-M system from T. aquaticus YT-1. TaqIII is a 1101-aa Type IIC/IIL enzyme and recognizes the 5'-CACCCA-3' sequence previously attributed to TaqII. The cleavage site is 11/9 nucleotides downstream of the A residue. The enzyme exhibits striking biochemical similarity to TaqII. The 93% identity between their aa sequences suggests that they have a common evolutionary origin. The genes are located on two separate plasmids, and are probably paralogs or pseudoparalogs. Putative positions and aa that specify DNA recognition were identified and recognition motifs for 6 uncharacterized Thermus-family enzymes were predicted.
Collapse
Affiliation(s)
- Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Brian P Anton
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Edyta Czajkowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Joanna Zebrowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Ewa Sulecka
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Daria Krefft
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Joanna Jezewska-Frackowiak
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Olga Zolnierkiewicz
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Malgorzata Witkowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | | | | - Alexey Fomenkov
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
5
|
Zebrowska J, Zolnierkiewicz O, Skowron MA, Zylicz-Stachula A, Jezewska-Frackowiak J, Skowron PM. A putative Type IIS restriction endonuclease GeoICI from Geobacillus sp.--A robust, thermostable alternative to mezophilic prototype BbvI. J Biosci 2016; 41:27-38. [PMID: 26949085 DOI: 10.1007/s12038-016-9595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Screening of extreme environments in search for novel microorganisms may lead to the discovery of robust enzymes with either new substrate specificities or thermostable equivalents of those already found in mesophiles, better suited for biotechnology applications. Isolates from Iceland geysers' biofilms, exposed to a broad range of temperatures, from ambient to close to water boiling point, were analysed for the presence of DNA-interacting proteins, including restriction endonucleases (REases). GeoICI, a member of atypical Type IIS REases, is the most thermostable isoschizomer of the prototype BbvI, recognizing/cleaving 5'-GCAGC(N8/12)-3'DNA sequences. As opposed to the unstable prototype, which cleaves DNA at 30°C, GeoICI is highly active at elevated temperatures, up to 73°C and over a very wide salt concentration range. Recognition/cleavage sites were determined by: (i) digestion of plasmid and bacteriophage lambda DNA (Λ); (ii) cleavage of custom PCR substrates, (iii) run-off sequencing of GeoICI cleavage products and (iv) shotgun cloning and sequencing of Λ DNA fragmented with GeoICI. Geobacillus sp. genomic DNA was PCR-screened for the presence of other specialized REases-MTases and as a result, another putative REase- MTase, GeoICII, related to the Thermus sp. family of bifunctional REases-methyltransferases (MTases) was detected.
Collapse
Affiliation(s)
- Joanna Zebrowska
- Department of Molecular Biotechnology, Institute for Environment and Human Health Protection, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
6
|
Zylicz-Stachula A, Zebrowska J, Czajkowska E, Wrese W, Sulecka E, Skowron PM. Engineering TaqII bifunctional endonuclease DNA recognition fidelity: the effect of a single amino acid substitution within the methyltransferase catalytic site. Mol Biol Rep 2016; 43:269-82. [PMID: 26886214 DOI: 10.1007/s11033-016-3949-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/08/2016] [Indexed: 01/04/2023]
Abstract
The aim of this study was to improve a useful molecular tool-TaqII restriction endonuclease-methyltransferase-by rational protein engineering, as well as to show an application of our novel method of restriction endonuclease activity modulation through a single amino acid change in the NPPY motif of methyltransferase. An amino acid change was introduced using site-directed mutagenesis into the taqIIRM gene. The mutated gene was expressed in Escherichia coli. The protein variant was purified and characterized. Previously, we described a TspGWI variant with an amino acid change in the methyltransferase motif IV. Here, we investigate a complex, pleiotropic effect of an analogous amino acid change on its homologue-TaqII. The methyltransferase activity is reduced, but not abolished, while TaqII restriction endonuclease can be reactivated by sinefungin, with an increased DNA recognition fidelity. The general method for engineering of the IIS/IIC/IIG restriction endonuclease activity/fidelity is developed along with the generation of an improved TaqII enzyme for biotechnological applications. A successful application of our novel strategy for restriction endonuclease activity/fidelity alteration, based on bioinformatics analyses, mutagenesis and the use of cofactor-analogue activity modulation, is presented.
Collapse
Affiliation(s)
- Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Joanna Zebrowska
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Edyta Czajkowska
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Weronika Wrese
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Ewa Sulecka
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
7
|
Krefft D, Zylicz-Stachula A, Mulkiewicz E, Papkov A, Jezewska-Frackowiak J, Skowron PM. Two-stage gene assembly/cloning of a member of the TspDTI subfamily of bifunctional restriction endonucleases, TthHB27I. J Biotechnol 2014; 194:67-80. [PMID: 25486633 DOI: 10.1016/j.jbiotec.2014.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
The Thermus sp. family of bifunctional type IIS/IIG/IIC restriction endonucleases (REase)-methyltransferases (MTase) comprises thermo-stable TaqII, TspGWI, TspDTI, TsoI, Tth111II/TthHB27I enzymes as well as a number of putative enzymes/open reading frames (ORFs). All of the family members share properties including a large protein size (ca. 120kDa), amino acid (aa) sequence homologies, enzymatic activity modulation by S-adenosylmethionine (SAM), recognition of similar asymmetric cognate DNA sites and cleavage at a distance of 11/9 nt. Analysis of the enzyme aa sequences and domain/motif organisation led to further Thermus sp. family division into the TspDTI and TspGWI subfamilies. The latter exhibits an unprecedented phenomenon of DNA recognition change upon substitution of SAM by its analogue, sinefungin (SIN), towards a very frequent DNA cleavage. We report cloning in Escherichia coli (E. coli), using a two-stage procedure and a putative tthHB27IRM gene, detected by bioinformatics analysis of the Thermus thermophilus HB27 (T. thermophilus) genome. The functionality of a 3366 base pair (bp)-/1121 aa-long, high GC content ORF was validated experimentally through the expression in E. coli. Protein features corroborated with the reclassification of TthHB27I into the TspDTI subfamily, which manifested in terms of aa-sequence/motif homologies and insensitivity to SIN-induced specificity shift. However, both SAM and SIN stimulated the REase DNA cleavage activity by at least 16-32 times; the highest was observed for the Thermus sp. family. The availability of TthHB27I and the need to include SAM or SIN in the reaction in order to convert the enzyme from "hibernation" status to efficient DNA cleavage is of practical significance in molecular biotechnology, extending the palette of available REase specificities.
Collapse
Affiliation(s)
- Daria Krefft
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Ewa Mulkiewicz
- Department of Environment Analysis, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Aliaksei Papkov
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Joanna Jezewska-Frackowiak
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| |
Collapse
|
8
|
Jezewska-Frackowiak J, Lubys A, Vitkute J, Zakareviciene L, Zebrowska J, Krefft D, Skowron MA, Zylicz-Stachula A, Skowron PM. A new prototype IIS/IIC/IIG endonuclease-methyltransferase TsoI from the thermophile Thermus scotoductus, recognising 5'-TARCCA(N11/9)-3' sequences. J Biotechnol 2014; 194:19-26. [PMID: 25481098 DOI: 10.1016/j.jbiotec.2014.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 11/26/2022]
Abstract
The Thermus sp. family of IIS/IIG/IIC enzymes includes the thermostable, bifunctional, fused restriction endonuclease (REase)-methyltransferases (MTase): TaqII, Tth111II/TthHB27I, TspGWI, TspDTI and TsoI. The enzymes are large proteins (approximately 120kDa), their enzymatic activities are affected by S-adenosylmethionine (SAM), they recognise similar asymmetric cognate sites and cleave at a distance of 11/9 nucleotides (nt). The enzymes exhibit similarities of their amino acid (aa) sequences and DNA catalytic motifs. Thermus sp. enzymes are an example of functional aa sequence homologies among REases recognising different, yet related DNA sequences. The family consists of TspGWI- and TspDTI-subfamilies. TsoI appears to be a non-identical 'triplet', related to TspDTI and Tth111II/TthHB27I. The discovery of TsoI, purified from Thermus scotoductus, is described. This prototype, displaying a novel specificity, which was determined by: (i) cleavage of a reference plasmid and bacteriophage DNA, (ii) cleavage of custom PCR DNA substrates, (iii) run-off sequencing of cleavage products and (iv) shotgun cloning and sequencing of bacteriophage lambda (λ) DNA digested with TsoI. The enzyme recognises a degenerated 5'-TARCCA-3' sequence, whereas DNA strands are cut 11/9 nt downstream. The discovery of the TsoI prototype is of practical importance in biotechnology, as it extends the palette of cleavage specificities for gene cloning.
Collapse
Affiliation(s)
- Joanna Jezewska-Frackowiak
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Arvydas Lubys
- Thermo Fisher Scientific Baltics UAB, V.A. Graiciuno 8, LT-02241 Vilnius, Lithuania; Department of Botany and Genetics, Vilnius University, M.K. Ciurlionio 21/27, LT-03101 Vilnius, Lithuania.
| | - Jolanta Vitkute
- Thermo Fisher Scientific Baltics UAB, V.A. Graiciuno 8, LT-02241 Vilnius, Lithuania.
| | - Laimute Zakareviciene
- Thermo Fisher Scientific Baltics UAB, V.A. Graiciuno 8, LT-02241 Vilnius, Lithuania.
| | - Joanna Zebrowska
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Daria Krefft
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Marta A Skowron
- Department of Molecular Biology, Division of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| |
Collapse
|
9
|
Zhu Z, Guan S, Robinson D, El Fezzazi H, Quimby A, Xu SY. Characterization of cleavage intermediate and star sites of RM.Tth111II. Sci Rep 2014; 4:3838. [PMID: 24452415 PMCID: PMC3899748 DOI: 10.1038/srep03838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/03/2014] [Indexed: 11/09/2022] Open
Abstract
Tth111II is a thermostable Type IIGS restriction enzyme that recognizes DNA sites CAARCA (R = A or G) and cleaves downstream at N11/N9. Here, the tth111IIRM gene was cloned and expressed in E. coli, and Tth111II was purified. The purified enzyme contains internally-bound S-adenosylmethionine (SAM). When the internal SAM was removed, the endonuclease activity was stimulated by adding SAM or its analog sinefungin. The cleavage intermediate is mostly top-strand nicked DNA on a single-site plasmid. Addition of duplex oligos with a cognate site stimulates cleavage activity of the one-site substrate. Tth111II cleaves a two-site plasmid DNA with equal efficiency regardless of site orientation. We propose the top-strand nicking is carried out by a Tth111II monomer and bottom-strand cleavage is carried out by a transient dimer. Tth111II methylates cleavage product-like duplex oligos CAAACAN9, but the modification rate is estimated to be much slower than the top-strand nicking rate. We cloned and sequenced a number of Tth111II star sites which are 1-bp different from the cognate sites. A biochemical pathway is proposed for the restriction and methylation activities of Tth111II.
Collapse
Affiliation(s)
- Zhenyu Zhu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Shengxi Guan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Derek Robinson
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Hanna El Fezzazi
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Aine Quimby
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Shuang-yong Xu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
10
|
Zylicz-Stachula A, Jeżewska-Frąckowiak J, Skowron PM. Cofactor analogue-induced chemical reactivation of endonuclease activity in a DNA cleavage/methylation deficient TspGWI N₄₇₃A variant in the NPPY motif. Mol Biol Rep 2014; 41:2313-23. [PMID: 24442320 PMCID: PMC3968444 DOI: 10.1007/s11033-014-3085-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 01/04/2014] [Indexed: 11/26/2022]
Abstract
We reported previously that TspGWI, a prototype enzyme of a new Thermus sp. family of restriction endonucleases-methyltransferases (REases-MTases), undergoes the novel phenomenon of sinefungin (SIN)-caused specificity transition. Here we investigated mutant TspGWI N473A, containing a single amino acid (aa) substitution in the NPPY motif of the MTase. Even though the aa substitution is located within the MTase polypeptide segment, DNA cleavage and modification are almost completely abolished, indicating that the REase and MTase are intertwined. Remarkably, the TspGWI N473A REase functionality can be completely reconstituted by the addition of SIN. We hypothesize that SIN binds specifically to the enzyme and restores the DNA cleavage-competent protein tertiary structure. This indicates the significant role of allosteric effectors in DNA cleavage in Thermus sp. enzymes. This is the first case of REase mutation suppression by an S-adenosylmethionine (SAM) cofactor analogue. Moreover, the TspGWI N473A clone strongly affects E. coli division control, acting as a ‘selfish gene’. The mutant lacks the competing MTase activity and therefore might be useful for applications in DNA manipulation. Here we present a case study of a novel strategy for REase activity/specificity alteration by a single aa substitution, based on the bioinformatic analysis of active motif locations, combining (a) aa sequence engineering (b) the alteration of protein enzymatic properties, and (c) the use of cofactor–analogue cleavage reconstitution and stimulation.
Collapse
Affiliation(s)
- Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-952 Gdansk, Poland
| | - Joanna Jeżewska-Frąckowiak
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-952 Gdansk, Poland
| | - Piotr M. Skowron
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-952 Gdansk, Poland
| |
Collapse
|
11
|
Zylicz-Stachula A, Zolnierkiewicz O, Sliwinska K, Jezewska-Frackowiak J, Skowron PM. Modified 'one amino acid-one codon' engineering of high GC content TaqII-coding gene from thermophilic Thermus aquaticus results in radical expression increase. Microb Cell Fact 2014; 13:7. [PMID: 24410856 PMCID: PMC3893498 DOI: 10.1186/1475-2859-13-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An industrial approach to protein production demands maximization of cloned gene expression, balanced with the recombinant host's viability. Expression of toxic genes from thermophiles poses particular difficulties due to high GC content, mRNA secondary structures, rare codon usage and impairing the host's coding plasmid replication.TaqII belongs to a family of bifunctional enzymes, which are a fusion of the restriction endonuclease (REase) and methyltransferase (MTase) activities in a single polypeptide. The family contains thermostable REases with distinct specificities: TspGWI, TaqII, Tth111II/TthHB27I, TspDTI and TsoI and a few enzymes found in mesophiles. While not being isoschizomers, the enzymes exhibit amino acid (aa) sequence homologies, having molecular sizes of ~120 kDa share common modular architecture, resemble Type-I enzymes, cleave DNA 11/9 nt from the recognition sites, their activity is affected by S-adenosylmethionine (SAM). RESULTS We describe the taqIIRM gene design, cloning and expression of the prototype TaqII. The enzyme amount in natural hosts is extremely low. To improve expression of the taqIIRM gene in Escherichia coli (E. coli), we designed and cloned a fully synthetic, low GC content, low mRNA secondary structure taqIIRM, codon-optimized gene under a bacteriophage lambda (λ) PR promoter. Codon usage based on a modified 'one amino acid-one codon' strategy, weighted towards low GC content codons, resulted in approximately 10-fold higher expression of the synthetic gene. 718 codons of total 1105 were changed, comprising 65% of the taqIIRM gene. The reason for we choose a less effective strategy rather than a resulting in high expression yields 'codon randomization' strategy, was intentional, sub-optimal TaqII in vivo production, in order to decrease the high 'toxicity' of the REase-MTase protein. CONCLUSIONS Recombinant wt and synthetic taqIIRM gene were cloned and expressed in E. coli. The modified 'one amino acid-one codon' method tuned for thermophile-coded genes was applied to obtain overexpression of the 'toxic' taqIIRM gene. The method appears suited for industrial production of thermostable 'toxic' enzymes in E. coli. This novel variant of the method biased toward increasing a gene's AT content may provide economic benefits for industrial applications.
Collapse
Affiliation(s)
| | | | | | | | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| |
Collapse
|
12
|
Skowron PM, Vitkute J, Ramanauskaite D, Mitkaite G, Jezewska-Frackowiak J, Zebrowska J, Zylicz-Stachula A, Lubys A. Three-stage biochemical selection: cloning of prototype class IIS/IIC/IIG restriction endonuclease-methyltransferase TsoI from the thermophile Thermus scotoductus. BMC Mol Biol 2013; 14:17. [PMID: 23919831 PMCID: PMC3751577 DOI: 10.1186/1471-2199-14-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 07/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In continuing our research into the new family of bifunctional restriction endonucleases (REases), we describe the cloning of the tsoIRM gene. Currently, the family includes six thermostable enzymes: TaqII, Tth111II, TthHB27I, TspGWI, TspDTI, TsoI, isolated from various Thermus sp. and two thermolabile enzymes: RpaI and CchII, isolated from mesophilic bacteria Rhodopseudomonas palustris and Chlorobium chlorochromatii, respectively. The enzymes have several properties in common. They are large proteins (molecular size app. 120 kDa), coded by fused genes, with the REase and methyltransferase (MTase) in a single polypeptide, where both activities are affected by S-adenosylmethionine (SAM). They recognize similar asymmetric cognate sites and cleave at a distance of 11/9 nt from the recognition site. Thus far, we have cloned and characterised TaqII, Tth111II, TthHB27I, TspGWI and TspDTI. RESULTS TsoI REase, which originate from thermophilic Thermus scotoductus RFL4 (T. scotoductus), was cloned in Escherichia coli (E. coli) using two rounds of biochemical selection of the T. scotoductus genomic library for the TsoI methylation phenotype. DNA sequencing of restriction-resistant clones revealed the common open reading frame (ORF) of 3348 bp, coding for a large polypeptide of 1116 aminoacid (aa) residues, which exhibited a high level of similarity to Tth111II (50% identity, 60% similarity). The ORF was PCR-amplified, subcloned into a pET21 derivative under the control of a T7 promoter and was subjected to the third round of biochemical selection in order to isolate error-free clones. Induction experiments resulted in synthesis of an app. 125 kDa protein, exhibiting TsoI-specific DNA cleavage. Also, the wild-type (wt) protein was purified and reaction optima were determined. CONCLUSIONS Previously we identified and cloned the Thermus family RM genes using a specially developed method based on partial proteolysis of thermostable REases. In the case of TsoI the classic biochemical selection method was successful, probably because of the substantially lower optimal reaction temperature of TsoI (app. 10-15°C). That allowed for sufficient MTase activity in vivo in recombinant E. coli. Interestingly, TsoI originates from bacteria with a high optimum growth temperature of 67°C, which indicates that not all bacterial enzymes match an organism's thermophilic nature, and yet remain functional cell components. Besides basic research advances, the cloning and characterisation of the new prototype REase from the Thermus sp. family enzymes is also of practical importance in gene manipulation technology, as it extends the range of available DNA cleavage specificities.
Collapse
Affiliation(s)
- Piotr M Skowron
- Division of Molecular Biotechnology, Department of Chemistry, Institute for Environmental and Human Health Protection, University of Gdansk, Gdansk, Poland
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zylicz-Stachula A, Zolnierkiewicz O, Jasiecki J, Skowron PM. A new genomic tool, ultra-frequently cleaving TaqII/sinefungin endonuclease with a combined 2.9-bp recognition site, applied to the construction of horse DNA libraries. BMC Genomics 2013; 14:370. [PMID: 23724933 PMCID: PMC3681635 DOI: 10.1186/1471-2164-14-370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 05/23/2013] [Indexed: 12/22/2022] Open
Abstract
Background Genomics and metagenomics are currently leading research areas, with DNA sequences accumulating at an exponential rate. Although enormous advances in DNA sequencing technologies are taking place, progress is frequently limited by factors such as genomic contig assembly and generation of representative libraries. A number of DNA fragmentation methods, such as hydrodynamic sharing, sonication or DNase I fragmentation, have various drawbacks, including DNA damage, poor fragmentation control, irreproducibility and non-overlapping DNA segment representation. Improvements in these limited DNA scission methods are consequently needed. An alternative method for obtaining higher quality DNA fragments involves partial digestion with restriction endonucleases (REases). We have shown previously that class-IIS/IIC/IIG TspGWI REase, the prototype member of the Thermus sp. enzyme family, can be chemically relaxed by a cofactor analogue, allowing it to recognize very short DNA sequences of 3-bp combined frequency. Such frequently cleaving REases are extremely rare, with CviJI/CviJI*, SetI and FaiI the only other ones found in nature. Their unusual features make them very useful molecular tools for the development of representative DNA libraries. Results We constructed a horse genomic library and a deletion derivative library of the butyrylcholinesterase cDNA coding region using a novel method, based on TaqII, Thermus sp. family bifunctional enzyme exhibiting cofactor analogue specificity relaxation. We used sinefungin (SIN) – an S-adenosylmethionine (SAM) analogue with reversed charge pattern, and dimethylsulfoxide (DMSO), to convert the 6-bp recognition site TaqII (5′-GACCGA-3′ [11/9]) into a theoretical 2.9-bp REase, with 70 shortened variants of the canonical recognition sequence detected. Because partial DNA cleavage is an inherent feature of the Thermus sp. enzyme family, this modified TaqII is uniquely suited to quasi-random library generation. Conclusions In the presence of SIN/DMSO, TaqII REase is transformed from cleaving every 4096 bp on average to cleaving every 58 bp. TaqII SIN/DMSO thus extends the palette of available REase prototype specificities. This phenomenon, employed under partial digestion conditions, was applied to quasi-random DNA fragmentation. Further applications include high sensitivity probe generation and metagenomic DNA amplification.
Collapse
|
14
|
Zylicz-Stachula A, Zolnierkiewicz O, Lubys A, Ramanauskaite D, Mitkaite G, Bujnicki JM, Skowron PM. Related bifunctional restriction endonuclease-methyltransferase triplets: TspDTI, Tth111II/TthHB27I and TsoI with distinct specificities. BMC Mol Biol 2012; 13:13. [PMID: 22489904 PMCID: PMC3384240 DOI: 10.1186/1471-2199-13-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/10/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We previously defined a family of restriction endonucleases (REases) from Thermus sp., which share common biochemical and biophysical features, such as the fusion of both the nuclease and methyltransferase (MTase) activities in a single polypeptide, cleavage at a distance from the recognition site, large molecular size, modulation of activity by S-adenosylmethionine (SAM), and incomplete cleavage of the substrate DNA. Members include related thermophilic REases with five distinct specificities: TspGWI, TaqII, Tth111II/TthHB27I, TspDTI and TsoI. RESULTS TspDTI, TsoI and isoschizomers Tth111II/TthHB27I recognize different, but related sequences: 5'-ATGAA-3', 5'-TARCCA-3' and 5'-CAARCA-3' respectively. Their amino acid sequences are similar, which is unusual among REases of different specificity. To gain insight into this group of REases, TspDTI, the prototype member of the Thermus sp. enzyme family, was cloned and characterized using a recently developed method for partially cleaving REases. CONCLUSIONS TspDTI, TsoI and isoschizomers Tth111II/TthHB27I are closely related bifunctional enzymes. They comprise a tandem arrangement of Type I-like domains, like other Type IIC enzymes (those with a fusion of a REase and MTase domains), e.g. TspGWI, TaqII and MmeI, but their sequences are only remotely similar to these previously characterized enzymes. The characterization of TspDTI, a prototype member of this group, extends our understanding of sequence-function relationships among multifunctional restriction-modification enzymes.
Collapse
|
15
|
Zylicz-Stachula A, Zołnierkiewicz O, Sliwińska K, Jeżewska-Frąckowiak J, Skowron PM. Bifunctional TaqII restriction endonuclease: redefining the prototype DNA recognition site and establishing the Fidelity Index for partial cleaving. BMC BIOCHEMISTRY 2011; 12:62. [PMID: 22141927 PMCID: PMC3280180 DOI: 10.1186/1471-2091-12-62] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/05/2011] [Indexed: 01/06/2023]
Abstract
Background The TaqII enzyme is a member of the Thermus sp. enzyme family that we propounded previously within Type IIS restriction endonucleases, containing related thermophilic bifunctional endonucleases-methyltransferases from various Thermus sp.: TaqII, Tth111II, TthHB27I, TspGWI, TspDTI and TsoI. These enzymes show significant nucleotide and amino acid sequence similarities, a rare phenomenon among restriction endonucleases, along with similarities in biochemical properties, molecular size, DNA recognition sequences and cleavage sites. They also feature some characteristics of Types I and III. Results Barker et al. reported the Type IIS/IIC restriction endonuclease TaqII as recognizing two distinct cognate site variants (5'-GACCGA-3' and 5'-CACCCA-3') while cleaving 11/9 nucleotides downstream. We used four independent methods, namely, shotgun cloning and sequencing, restriction pattern analysis, digestion of particular custom substrates and GeneScan analysis, to demonstrate that the recombinant enzyme recognizes only 5'-GACCGA-3' sites and cleaves 11/9 nucleotides downstream. We did not observe any 5'-CACCCA-3' cleavage under a variety of conditions and site arrangements tested. We also characterized the enzyme biochemically and established new digestion conditions optimal for practical enzyme applications. Finally, we developed and propose a new version of the Fidelity Index - the Fidelity Index for Partial Cleavage (FI-PC). Conclusions The DNA recognition sequence of the bifunctional prototype TaqII endonuclease-methyltransferase from Thermus aquaticus has been redefined as recognizing only 5'-GACCGA-3' cognate sites. The reaction conditions (pH and salt concentrations) were designed either to minimize (pH = 8.0 and 10 mM ammonium sulphate) or to enhance star activity (pH = 6.0 and no salt). Redefinition of the recognition site and reaction conditions makes this prototype endonuclease a useful tool for DNA manipulation; as yet, this enzyme has no practical applications. The extension of the Fidelity Index will be helpful for DNA manipulation with enzymes only partially cleaving DNA.
Collapse
Affiliation(s)
- Agnieszka Zylicz-Stachula
- Institute for Environmental and Human Health Protection, Department of Chemistry University of Gdańsk, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
16
|
Chemically-induced affinity star restriction specificity: a novel TspGWI/sinefungin endonuclease with theoretical 3-bp cleavage frequency. Biotechniques 2011; 50:397-406. [PMID: 21781040 DOI: 10.2144/000113685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 05/04/2011] [Indexed: 11/23/2022] Open
Abstract
The type IIS/IIC restriction endonuclease TspGWI recognizes the sequence 5'-ACGGA-3', cleaving DNA 11/9 nucleotides downstream. Here we show that sinefungin, a cofactor analog of S-adenosyl methionine, induces a unique type of relaxation in DNA recognition specificity. In the presence of sinefungin, TspGWI recognizes and cleaves at least 12 degenerate variants of the original recognition sequence that vary by single base pair changes from the original 5-bp restriction site with only a single degeneracy per variant appearing to be allowed. In addition, sinefungin was found to have a stimulatory effect on cleavage at these nondegenerate TspGWI recognition sites, irrespective of their number or the DNA topology. Interestingly, no fixed "core" could be identified among the new recognition sequences. Theoretically, TspGWI cleaves DNA every 1024 bp, while sinefungin-induced activity cleaves every 78.8 bp, corresponding to a putative 3-bp long recognition site. Thus, the combination of sinefungin and TspGWI represents a novel frequent cutter, next only to CviJI/CviJI*, that should prove useful in DNA cloning methodologies.
Collapse
|
17
|
Morgan RD, Dwinell EA, Bhatia TK, Lang EM, Luyten YA. The MmeI family: type II restriction-modification enzymes that employ single-strand modification for host protection. Nucleic Acids Res 2009; 37:5208-21. [PMID: 19578066 PMCID: PMC2731913 DOI: 10.1093/nar/gkp534] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The type II restriction endonucleases form one of the largest families of biochemically-characterized proteins. These endonucleases typically share little sequence similarity, except among isoschizomers that recognize the same sequence. MmeI is an unusual type II restriction endonuclease that combines endonuclease and methyltransferase activities in a single polypeptide. MmeI cuts DNA 20 bases from its recognition sequence and modifies just one DNA strand for host protection. Using MmeI as query we have identified numerous putative genes highly similar to MmeI in database sequences. We have cloned and characterized 20 of these MmeI homologs. Each cuts DNA at the same distance as MmeI and each modifies a conserved adenine on only one DNA strand for host protection. However each enzyme recognizes a unique DNA sequence, suggesting these enzymes are undergoing rapid evolution of DNA specificity. The MmeI family thus provides a rich source of novel endonucleases while affording an opportunity to observe the evolution of DNA specificity. Because the MmeI family enzymes employ modification of only one DNA strand for host protection, unlike previously described type II systems, we propose that such single-strand modification systems be classified as a new subgroup, the type IIL enzymes, for Lone strand DNA modification.
Collapse
|
18
|
Zylicz-Stachula A, Bujnicki JM, Skowron PM. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family. BMC Mol Biol 2009; 10:52. [PMID: 19480701 PMCID: PMC2700111 DOI: 10.1186/1471-2199-10-52] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 05/29/2009] [Indexed: 01/09/2023] Open
Abstract
Background Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases), however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Results Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family – TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase) and methyltransferase (MTase) activities of wild type (wt) TspGWI (either recombinant or isolated from Thermus sp.) are dependent on the presence of divalent cations. Conclusion TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/E)XK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module of the HsdR subunit and the additional domains that are involved in subunit-subunit interactions in Type I systems. The MTase and REase activities of TspGWI are autonomous and can be uncoupled. Structurally and functionally, the TspGWI protomer appears to be a streamlined 'half' of a Type I enzyme.
Collapse
Affiliation(s)
- Agnieszka Zylicz-Stachula
- Division of Environmental Molecular Biotechnology, Department of Chemistry, University of Gdansk, Sobieskiego 18, Gdansk 80-952, Poland.
| | | | | |
Collapse
|
19
|
Lin TL, Shun CT, Chang KC, Wang JT. Isolation and characterization of a HpyC1I restriction-modification system in Helicobacter pylori. J Biol Chem 2004; 279:11156-62. [PMID: 14711809 DOI: 10.1074/jbc.m311639200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Using transposon shuttle mutagenesis, we identified six Helicobacter pylori mutants from the NTUH-C1 strain that exhibited decreased adherence and cell elongation. Inverse polymerase chain reaction and DNA sequencing revealed that the same locus was interrupted in these six mutants. Nucleotide and amino acid sequences showed no homologies with H. pylori 26695 and J99 strains. This novel open reading frame contained 1617 base pairs. The amino acid sequence shared 24% identity with a putative nicking enzyme in Bacillus halodurans and 23 and 20% identity with type IIS restriction endonucleases PleI and MlyI, respectively. The purified protein, HpyC1I, showed endonuclease activity with the recognition and cleavage site 5'-CCATC(4/5)-3'. Two open reading frames were located upstream of the gene encoding HpyC1I. Together, HpyC1I and these two putative methyltransferases (M1.HpyC1I and M2.HpyC1I) function as a restriction-modification (R-M) system. The HpyC1I R-M genes were found in 9 of the 15 H. pylori strains tested. When compared with the full genome, significantly lower G + C content of HpyC1I R-M genes implied that these genes might have been acquired by horizontal gene transfer. Plasmid DNA transformation efficiencies and chromosomal DNA digestion assays demonstrated protection from HpyC1I digestion by the R-M system. In conclusion, we have identified a novel R-M system present in approximately 60% of H. pylori strains. Disruption of this R-M system results in cell elongation and susceptibility to HpyC1I digestion.
Collapse
Affiliation(s)
- Tzu-Lung Lin
- Graduate Institute of Microbiology, National Taiwan University, College of Medicine, Taipei 10016, Taiwan
| | | | | | | |
Collapse
|