1
|
Ogura Y, Sun X, Zhang Z, Kawata K, Wu J, Matsubara R, Ozeki AN, Taniue K, Onoguchi-Mizutani R, Adachi S, Nakayama K, Goda N, Akimitsu N. Fragile X messenger ribonucleoprotein 1 (FMRP) regulates glycolytic gene expression under chronic hypoxia in HCT116 cells. Sci Rep 2025; 15:13273. [PMID: 40246883 PMCID: PMC12006372 DOI: 10.1038/s41598-025-91828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/24/2025] [Indexed: 04/19/2025] Open
Abstract
Oxygen shortage, known as hypoxia, occurs commonly in both physiological and pathological conditions. Transcriptional regulation by hypoxia-inducible factors is a dominant regulatory mechanism controlling hypoxia-responsive genes during acute hypoxia; however, recent studies suggest that post-transcriptional regulation, including RNA degradation, also involves hypoxia-induced gene expression during the chronic hypoxia. In this study, we developed a method to quantify the contributions of RNA synthesis and degradation to differential gene expression, and identified 102 genes mainly regulated via RNA degradation under chronic hypoxia in HCT116 cells. Bioinformatics analysis showed that the genes mainly regulated by RNA degradation were involved in glycolysis. We examined changes in the RNA-binding ability of RNA-binding proteins by RNA interactome capture and statistical analysis using public databases. We identified fragile X messenger ribonucleoprotein 1 (FMRP) as an RNA-binding protein involved in the chronic hypoxia-induced increase in mRNAs encoding rate-limiting enzymes. This study emphasizes the importance of post-transcriptional gene regulation under chronic hypoxia in HCT116 cells.
Collapse
Affiliation(s)
- Yoko Ogura
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Xiaoning Sun
- Advanced Interdisciplinary Studies, Engineering Department, The University of Tokyo, Tokyo, Japan
| | - Zaijun Zhang
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kentaro Kawata
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Jinyu Wu
- Department of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ryuma Matsubara
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | | | - Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | | | - Shungo Adachi
- Department of Proteomics, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Koh Nakayama
- Department of Pharmacology, School of Medicine, Asahikawa Medical University, Hokkaido, 078-8510, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, 162-8480, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
2
|
Yan B, Chen Y, Wang Z, Li J, Wang R, Pan X, Li B, Li R. Analysis and identification of mRNAsi‑related expression signatures via RNA sequencing in lung cancer. Oncol Lett 2024; 28:549. [PMID: 39319211 PMCID: PMC11420643 DOI: 10.3892/ol.2024.14682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
High stemness index scores are associated with poor survival in patients with lung cancer. Studies on the mRNA expression-based stemness index (mRNAsi) are typically conducted using tumor tissues; however, mRNAsi-related expression signatures based on cell-free RNA (cfRNA) are yet to be comprehensively investigated. The present study aimed to elucidate the gene expression profiles of tumor stemness in lung cancer tissues and corresponding cfRNAs in blood, and to assess their links with immune infiltration. Tumor tissue, paracancerous tissue, peripheral blood and lymph node samples were collected from patients with stage I-III non-small cell lung cancer and RNA sequencing was performed. The TCGAbiolinks package was used to calculate the mRNAsi for each of these four types of sample. Weighted gene co-expression network analysis and differentially expressed gene analyses were performed to investigate mRNAsi-related genes, and pathway enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology-based annotation system. In addition, the STAR-Fusion tool was used to detect fusion variants, and CIBERSORT was used to analyze the correlations of stemness signatures in tissues and blood with immune cell infiltration. The mRNAsi values in peripheral blood and lymph nodes were found to be higher than those in cancer tissues. 'Hematopoietic cell lineage' was the only KEGG pathway enriched in mRNAsi-related genes in both lung cancer tissues and peripheral blood. In addition, the protein tyrosine phosphatase receptor type C associated protein gene was the only gene commonly associated with the mRNAsi in these two types of sample. The expression of mRNAsi-related genes was increased in the dendritic and Treg cells in tumor tissues, but was elevated in Treg and CD8 cells in the blood. In conclusion, cfRNAs in the blood exhibit unique stemness signatures that have potential for use in the diagnosis of lung cancer.
Collapse
Affiliation(s)
- Bo Yan
- Clinical Research Unit, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200050, P.R. China
| | - Yong Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200050, P.R. China
| | - Zhouyu Wang
- Berry Oncology Corporation, Beijing 100102, P.R. China
| | - Jing Li
- Berry Oncology Corporation, Beijing 100102, P.R. China
| | - Ruiru Wang
- Berry Oncology Corporation, Beijing 100102, P.R. China
| | - Xufeng Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200050, P.R. China
| | - Boyi Li
- Kanghui Biotechnology Corporation, Shenyang, Liaoning 110042, P.R. China
| | - Rong Li
- Clinical Research Unit, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200050, P.R. China
| |
Collapse
|
3
|
Xiao H, Xu J, Liu Y, Feng W, Pang B, Tao J, Zhang H. Integration of a Cas12a-mediated DNAzyme actuator with efficient RNA extraction for ultrasensitive colorimetric detection of viral RNA. Biosens Bioelectron 2024; 260:116429. [PMID: 38838573 DOI: 10.1016/j.bios.2024.116429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Developing highly sensitive and specific on-site tests is imperative to strengthen preparedness against future emerging infectious diseases. Here, we describe the construction of a Cas12a-mediated DNAzyme actuator capable of converting the recognition of a specific DNA sequence into an amplified colorimetric signal. To address viral RNA extraction challenges for on-site applications, we developed a rapid and efficient method capable of lysing the viral particles, preserving the released viral RNA, and concentrating the viral RNA. Integration of the DNAzyme actuator with the viral RNA extraction method and loop-mediated isothermal amplification enables a streamlined colorimetric assay for highly sensitive colorimetric detection of respiratory RNA viruses in gargle and saliva. This assay can detect as few as 83 viral particles/100 μL in gargle and 166 viral particles/100 μL in saliva. The entire assay, from sample processing to visual detection, was completed within 1 h at a single controlled temperature. We validated the assay by detecting SARS-CoV-2 in 207 gargle and saliva samples, achieving a clinical sensitivity of 96.3 % and specificity of 100%. The assay is adaptable for detecting specific nucleic acid sequences in other pathogens and is suitable for resource-limited settings.
Collapse
Affiliation(s)
- Huyan Xiao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - JingYang Xu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Wei Feng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Bo Pang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jeffrey Tao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
4
|
Lenk R, Kleindienst W, Szabó GT, Baiersdörfer M, Boros G, Keller JM, Mahiny AJ, Vlatkovic I. Understanding the impact of in vitro transcription byproducts and contaminants. Front Mol Biosci 2024; 11:1426129. [PMID: 39050733 PMCID: PMC11266732 DOI: 10.3389/fmolb.2024.1426129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The success of messenger (m)RNA-based vaccines against SARS-CoV-2 during the COVID-19 pandemic has led to rapid growth and innovation in the field of mRNA-based therapeutics. However, mRNA production, whether in small amounts for research or large-scale GMP-grade for biopharmaceutics, is still based on the In Vitro Transcription (IVT) reaction developed in the early 1980s. The IVT reaction exploits phage RNA polymerase to catalyze the formation of an engineered mRNA that depends on a linearized DNA template, nucleotide building blocks, as well as pH, temperature, and reaction time. But depending on the IVT conditions and subsequent purification steps, diverse byproducts such as dsRNA, abortive RNAs and RNA:DNA hybrids might form. Unwanted byproducts, if not removed, could be formulated together with the full-length mRNA and cause an immune response in cells by activating host pattern recognition receptors. In this review, we summarize the potential types of IVT byproducts, their known biological activity, and how they can impact the efficacy and safety of mRNA therapeutics. In addition, we briefly overview non-nucleotide-based contaminants such as RNases, endotoxin and metal ions that, when present in the IVT reaction, can also influence the activity of mRNA-based drugs. We further discuss current approaches aimed at adjusting the IVT reaction conditions or improving mRNA purification to achieve optimal performance for medical applications.
Collapse
|
5
|
Zhang J, Liu Y, Li C, Xiao Q, Zhang D, Chen Y, Rosenecker J, Ding X, Guan S. Recent Advances and Innovations in the Preparation and Purification of In Vitro-Transcribed-mRNA-Based Molecules. Pharmaceutics 2023; 15:2182. [PMID: 37765153 PMCID: PMC10536309 DOI: 10.3390/pharmaceutics15092182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic poses a disruptive impact on public health and the global economy. Fortunately, the development of COVID-19 vaccines based on in vitro-transcribed messenger RNA (IVT mRNA) has been a breakthrough in medical history, benefiting billions of people with its high effectiveness, safety profile, and ease of large-scale production. This success is the result of decades of continuous RNA research, which has led to significant improvements in the stability and expression level of IVT mRNA through various approaches such as sequence optimization and improved preparation processes. IVT mRNA sequence optimization has been shown to have a positive effect on enhancing the mRNA expression level. The innovation of IVT mRNA purification technology is also indispensable, as the purity of IVT mRNA directly affects the success of downstream vaccine preparation processes and the potential for inducing unwanted side effects in therapeutic applications. Despite the progress made, challenges related to IVT mRNA sequence design and purification still require further attention to enhance the quality of IVT mRNA in the future. In this review, we discuss the latest innovative progress in IVT mRNA design and purification to further improve its clinical efficacy.
Collapse
Affiliation(s)
- Jingjing Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chao Li
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Qin Xiao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Dandan Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Yang Chen
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China; (J.Z.); (Y.L.); (C.L.); (Q.X.); (D.Z.); (Y.C.)
| |
Collapse
|
6
|
Mavila S, Culver HR, Anderson AJ, Prieto TR, Bowman CN. Athermal, Chemically Triggered Release of RNA from Thioester Nucleic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sudheendran Mavila
- Department of Chemical and Biological Engineering University of Colorado—Boulder Boulder CO 80309 USA
| | - Heidi R. Culver
- Department of Chemical and Biological Engineering University of Colorado—Boulder Boulder CO 80309 USA
| | - Alex J. Anderson
- Department of Chemical and Biological Engineering University of Colorado—Boulder Boulder CO 80309 USA
| | - Tania R. Prieto
- Department of Chemical and Biological Engineering University of Colorado—Boulder Boulder CO 80309 USA
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering University of Colorado—Boulder Boulder CO 80309 USA
| |
Collapse
|
7
|
Mavila S, Culver HR, Anderson AJ, Prieto TR, Bowman CN. Athermal, Chemically Triggered Release of RNA from Thioester Nucleic Acids. Angew Chem Int Ed Engl 2022; 61:e202110741. [PMID: 34697873 DOI: 10.1002/anie.202110741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 12/21/2022]
Abstract
An athermal approach to mRNA enrichment from total RNA using a self-immolative thioester linked nucleic acids (TENA) is described. Oligo(thymine) (oT) TENA has a six-atom spacing between bases which allowed TENA to selectively base-pair with polyadenine RNA. As a result of the neutral backbone of TENA and the hydrophobicity of the octanethiol end group, oT TENA is water insoluble and efficiently pulled down 93±2 % of EGFP mRNA at a concentration of 10 ng μL-1 . Self-immolative degradation of TENA upon ambient temperature exposure to nucleophilic buffer components (Tris, DTT) allowed recovery of 55±27 ng of mRNA from 3.1 μg of total RNA, which was not statistically different from the amount recovered using Dynabeads® mRNA DIRECT Kit (89±24 ng). Gene expression as measured by RT-qPCR was comparable for both enrichment methods, suggesting that the mild conditions required for enrichment of mRNA using oT TENA are compatible with RT-qPCR and other downstream molecular biology applications.
Collapse
Affiliation(s)
- Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO, 80309, USA
| | - Heidi R Culver
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO, 80309, USA
| | - Alex J Anderson
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO, 80309, USA
| | - Tania R Prieto
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO, 80309, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
8
|
Anderson AJ, Culver HR, Prieto TR, Martinez PJ, Sinha J, Bryant SJ, Bowman CN. Messenger RNA enrichment using synthetic oligo(T) click nucleic acids. Chem Commun (Camb) 2020; 56:13987-13990. [PMID: 33094748 PMCID: PMC7891491 DOI: 10.1039/d0cc05815g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enrichment of mRNA is a key step in a number of molecular biology techniques, particularly in the rapidly growing field of transcriptomics. Currently, mRNA is isolated using oligo(thymine) DNA (oligo(dT)) immobilized on solid supports, which binds to the poly(A) tail of mRNA to pull the mRNA out of solution through the use of magnets or centrifugal filters. Here, a simple method to isolate mRNA by complexing it with synthetic click nucleic acids (CNAs) is described. Oligo(T) CNA bound efficiently to mRNA, and because of the insolubility of CNA in water, >90% of mRNA was readily removed from solution using this method. Simple washing, buffer exchange, and heating steps enabled mRNA's enrichment from total RNA, with a yield of 3.1 ± 1.5% of the input total RNA by mass, comparable to the yield from commercially available mRNA enrichment beads. Further, the integrity and activity of mRNA after CNA-facilitated pulldown and release was evaluated through two assays. In vitro translation of EGFP mRNA confirmed the translatability of mRNA into functional protein and RT-qPCR was used to amplify enriched mRNA from total RNA extracts and compare gene expression to results obtained using commercially available products.
Collapse
Affiliation(s)
- Alex J Anderson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80303, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang Z, Tang D, Sun L, Shi X, Liu R, Guo H, Tang B. Comparative transcriptome analysis in the hepatopancreas of Helice tientsinensis exposed to the toxic metal cadmium. Genes Genomics 2018; 41:417-429. [DOI: 10.1007/s13258-018-0774-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
|
10
|
Perez-Perri JI, Rogell B, Schwarzl T, Stein F, Zhou Y, Rettel M, Brosig A, Hentze MW. Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nat Commun 2018; 9:4408. [PMID: 30352994 PMCID: PMC6199288 DOI: 10.1038/s41467-018-06557-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/12/2018] [Indexed: 01/25/2023] Open
Abstract
Following the realization that eukaryotic RNA-binding proteomes are substantially larger than anticipated, we must now understand their detailed composition and dynamics. Methods such as RNA interactome capture (RIC) have begun to address this need. However, limitations of RIC have been reported. Here we describe enhanced RNA interactome capture (eRIC), a method based on the use of an LNA-modified capture probe, which yields numerous advantages including greater specificity and increased signal-to-noise ratios compared to existing methods. In Jurkat cells, eRIC reduces the rRNA and DNA contamination by >10-fold compared to RIC and increases the detection of RNA-binding proteins. Due to its low background, eRIC also empowers comparative analyses of changes of RNA-bound proteomes missed by RIC. For example, in cells treated with dimethyloxalylglycine, which inhibits RNA demethylases, eRIC identifies m6A-responsive RNA-binding proteins that escape RIC. eRIC will facilitate the unbiased characterization of RBP dynamics in response to biological and pharmacological cues. RNA interactome capture allows the detailed investigation of RNA-bound proteomes. Here the authors describe enhanced RNA-interactome capture using LNA-modified probes for increased sensitivity and specificity.
Collapse
Affiliation(s)
- Joel I Perez-Perri
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Birgit Rogell
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Thomas Schwarzl
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Yang Zhou
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Annika Brosig
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany. .,Molecular Medicine Partnership Unit (MMPU), Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Beverly M, Hagen C, Slack O. Poly A tail length analysis of in vitro transcribed mRNA by LC-MS. Anal Bioanal Chem 2018; 410:1667-1677. [PMID: 29313076 DOI: 10.1007/s00216-017-0840-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/03/2017] [Accepted: 11/17/2017] [Indexed: 11/29/2022]
Abstract
The 3'-polyadenosine (poly A) tail of in vitro transcribed (IVT) mRNA was studied using liquid chromatography coupled to mass spectrometry (LC-MS). Poly A tails were cleaved from the mRNA using ribonuclease T1 followed by isolation with dT magnetic beads. Extracted tails were then analyzed by LC-MS which provided tail length information at single-nucleotide resolution. A 2100-nt mRNA with plasmid-encoded poly A tail lengths of either 27, 64, 100, or 117 nucleotides was used for these studies as enzymatically added poly A tails showed significant length heterogeneity. The number of As observed in the tails closely matched Sanger sequencing results of the DNA template, and even minor plasmid populations with sequence variations were detected. When the plasmid sequence contained a discreet number of poly As in the tail, analysis revealed a distribution that included tails longer than the encoded tail lengths. These observations were consistent with transcriptional slippage of T7 RNAP taking place within a poly A sequence. The type of RNAP did not alter the observed tail distribution, and comparison of T3, T7, and SP6 showed all three RNAPs produced equivalent tail length distributions. The addition of a sequence at the 3' end of the poly A tail did, however, produce narrower tail length distributions which supports a previously described model of slippage where the 3' end can be locked in place by having a G or C after the poly nucleotide region. Graphical abstract Determination of mRNA poly A tail length using magnetic beads and LC-MS.
Collapse
Affiliation(s)
- Michael Beverly
- Novartis Institutes of Biomedical Research, 700 Main Street, Cambridge, MA, 02139, USA.
| | - Caitlin Hagen
- Novartis Institutes of Biomedical Research, 700 Main Street, Cambridge, MA, 02139, USA
| | - Olga Slack
- Novartis Institutes of Biomedical Research, 700 Main Street, Cambridge, MA, 02139, USA
| |
Collapse
|
12
|
High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc Natl Acad Sci U S A 2016; 113:14456-14461. [PMID: 27911841 DOI: 10.1073/pnas.1617699113] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Highly multiplexed single-molecule FISH has emerged as a promising approach to spatially resolved single-cell transcriptomics because of its ability to directly image and profile numerous RNA species in their native cellular context. However, background-from off-target binding of FISH probes and cellular autofluorescence-can become limiting in a number of important applications, such as increasing the degree of multiplexing, imaging shorter RNAs, and imaging tissue samples. Here, we developed a sample clearing approach for FISH measurements. We identified off-target binding of FISH probes to cellular components other than RNA, such as proteins, as a major source of background. To remove this source of background, we embedded samples in polyacrylamide, anchored RNAs to this polyacrylamide matrix, and cleared cellular proteins and lipids, which are also sources of autofluorescence. To demonstrate the efficacy of this approach, we measured the copy number of 130 RNA species in cleared samples using multiplexed error-robust FISH (MERFISH). We observed a reduction both in the background because of off-target probe binding and in the cellular autofluorescence without detectable loss in RNA. This process led to an improved detection efficiency and detection limit of MERFISH, and an increased measurement throughput via extension of MERFISH into four color channels. We further demonstrated MERFISH measurements of complex tissue samples from the mouse brain using this matrix-imprinting and -clearing approach. We envision that this method will improve the performance of a wide range of in situ hybridization-based techniques in both cell culture and tissues.
Collapse
|
13
|
Rakszewska A, Stolper RJ, Kolasa AB, Piruska A, Huck WTS. Quantitative Single-Cell mRNA Analysis in Hydrogel Beads. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Agata Rakszewska
- Institute for Molecules and Materials; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Rosa J. Stolper
- Institute for Molecules and Materials; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Anna B. Kolasa
- Warsaw University of Life Sciences-SGGW; Nowoursynowska 166 ST 02-787 Warszawa Poland
| | - Aigars Piruska
- Institute for Molecules and Materials; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and Materials; Radboud University Nijmegen; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
14
|
Rakszewska A, Stolper RJ, Kolasa AB, Piruska A, Huck WTS. Quantitative Single-Cell mRNA Analysis in Hydrogel Beads. Angew Chem Int Ed Engl 2016; 55:6698-701. [PMID: 27075637 DOI: 10.1002/anie.201601969] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 01/05/2023]
Abstract
In recent years, technologies capable of analyzing single cells have emerged that are transforming many fields of biological research. Herein we report how DNA-functionalized hydrogel beads can serve as a matrix to capture mRNA from lysed single cells. mRNA quantification free of pre-amplification bias is ensured by using padlock probes and rolling circle amplification followed by hybridization with fluorescent probes. The number of transcripts in individual cells is assessed by simply counting fluorescent dots inside gel beads. The method extends the potential of existing techniques and provides a general platform for capturing molecules of interest from single cells.
Collapse
Affiliation(s)
- Agata Rakszewska
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Rosa J Stolper
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Anna B Kolasa
- Warsaw University of Life Sciences-SGGW, Nowoursynowska 166 ST, 02-787, Warszawa, Poland
| | - Aigars Piruska
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands.
| |
Collapse
|
15
|
Ho JJ, Skoff DR, Ghosh A, Zanni MT. Structural Characterization of Single-Stranded DNA Monolayers Using Two-Dimensional Sum Frequency Generation Spectroscopy. J Phys Chem B 2015. [PMID: 26222775 DOI: 10.1021/acs.jpcb.5b07078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA-covered materials are important in technological applications such as biosensors and microarrays, but obtaining structural information on surface-bound biomolecules is experimentally challenging. In this paper, we structurally characterize single-stranded DNA monolayers of poly(thymine) from 10 to 25 bases in length with an emerging surface technique called two-dimensional sum frequency generation (2D SFG) spectroscopy. These experiments are carried out by adding a mid-IR pulse shaper to a femtosecond broad-band SFG spectrometer. Cross peaks and 2D line shapes in the 2D SFG spectra provide information about structure and dynamics. Because the 2D SFG spectra are heterodyne detected, the monolayer spectra can be directly compared to 2D infrared (2D IR) spectra of poly(thymine) in solution, which aids interpretation. We simulate the 2D SFG spectra using DFT calculations and an excitonic Hamiltonian that relates the molecular geometry to the vibrational coupling. Intrabase cross peaks help define the orientation of the bases and interbase cross peaks, created by coupling between bases, and resolves features not observed in 1D SFG spectra that constrain the relative geometries of stacked bases. We present a structure for the poly(T) oligomer that is consistent with the 2D SFG data. These experiments provide insight into the DNA monolayer structure and set precedent for studying complex biomolecules on surfaces with 2D SFG spectroscopy.
Collapse
Affiliation(s)
- Jia-Jung Ho
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David R Skoff
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ayanjeet Ghosh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Kauppinen S, Vester B, Wengel J. Locked nucleic acid (LNA): High affinity targeting of RNA for diagnostics and therapeutics. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 2:287-90. [PMID: 24981949 PMCID: PMC7105916 DOI: 10.1016/j.ddtec.2005.08.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Locked nucleic acid (LNA) is a nucleic acid analogue containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA mimicking sugar conformation. This conformational restriction results in unprecedented hybridization affinity towards complementary single stranded RNA and thus, makes LNA uniquely suited for mimicking RNA structures and sequence specific targeting of RNA in vitro or in vivo. The focus of this paper is on LNA-antisense, LNA-modified siRNA (siLNA), and detection and analysis of microRNAs by LNA-modified oligonucleotide probes. Steve Gullans – RxGen, Inc., New Haven, CT, USA Robert Zivin – Johnson and Johnson, New Brunswick, NJ, USA
Collapse
Affiliation(s)
- Sakari Kauppinen
- Wilhelm Johannsen Centre for Functional Genome Research, Institute of Medical Biochemistry and Genetics, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Birte Vester
- Nucleic Acid Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Jesper Wengel
- Nucleic Acid Center, Department of Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
17
|
Simultaneous isolation of mRNA and native protein from minute samples of cells. Biotechniques 2014; 56:229-37. [PMID: 24806223 DOI: 10.2144/000114165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/04/2014] [Indexed: 11/23/2022] Open
Abstract
Precious biological samples often lack a sufficient number of cells for multiple procedures, such as extraction of mRNA while maintaining protein in a non-denatured state suitable for subsequent characterization. Here we present a new method for the simultaneous purification of mRNA and native proteins from samples containing small numbers of cells. Our approach utilizes oligodeoxythymidylate [oligo(dT)25]-coated paramagnetic beads in an optimized reaction buffer to isolate mRNA comparable in quantity and quality to mRNA isolated with existing methods, while maintaining the proteins in their native state for traditional protein assays. We validated the procedure using neonatal rat ovaries and small numbers of human granulosa cells, demonstrating the extraction of mRNA suitable for gene expression analysis with simultaneous isolation of native proteins suitable for downstream characterization using different protein assays.
Collapse
|
18
|
Walter SR, Young KL, Holland JG, Gieseck RL, Mirkin CA, Geiger FM. Counting the number of magnesium ions bound to the surface-immobilized thymine oligonucleotides that comprise spherical nucleic acids. J Am Chem Soc 2013; 135:17339-48. [PMID: 24156735 DOI: 10.1021/ja406551k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Label-free studies carried out under aqueous phase conditions quantify the number of Mg(2+) ions binding to surface-immobilized T40 sequences, the subsequent reordering of DNA on the surface, and the consequences of Mg(2+) binding for DNA-DNA interactions. Second harmonic generation measurements indicate that, within error, 18-20 Mg(2+) ions are bound to the T40 strand at saturation and that the metal-DNA interaction is associated with a near 30% length contraction of the strand. Structural reordering, evaluated using vibrational sum frequency generation, atomic force microscopy, and dynamic light scattering, is attributed to increased charge screening as the Mg(2+) ions bind to the negatively charged DNA, reducing repulsive Coulomb forces between nucleotides and allowing the DNA single strands to collapse or coil upon themselves. The impact of Mg(2+) binding on DNA hybridization and duplex stability is assessed with spherical nucleic acid (SNA) gold nanoparticle conjugates in order to determine an optimal working range of Mg(2+) concentrations for DNA-DNA interactions in the absence of NaCl. The findings are consistent with a charge titration effect in which, in the absence of NaCl, (1) hybridization does not occur at room temperature if an average of 17.5 or less Mg(2+) ions are bound per T40 strand, which is not reached until the bulk Mg(2+) concentration approaches 0.5 mM; (2) hybridization proceeds, albeit with low duplex stability having an average Tm of 31(3)°C, if an average of 17.5-18.0 Mg(2+) ions are bound; and (3) highly stable duplexes having a Tm of 64(2)°C form if 18.5-19.0 Mg(2+) ions are bound, corresponding to saturation of the T40 strand.
Collapse
Affiliation(s)
- Stephanie R Walter
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | | | | | |
Collapse
|
19
|
Jacobsen N, Eriksen J, Nielsen PS. Efficient poly(A)+ RNA selection using LNA oligo(T) capture. Methods Mol Biol 2011; 703:43-51. [PMID: 21125482 DOI: 10.1007/978-1-59745-248-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This chapter describes a method for the isolation of intact polyadenylated mRNA using LNA oligo(T) capture. The method enables efficient isolation of poly(A)(+) RNA directly from guanidinium thiocyanate (GuSCN)-containing cell or tissue extract by combining the design of biotinylated LNA oligo(T) capture probes with subsequent immobilization of the captured poly(A)(+) RNA onto streptavidin-coated magnetic particles. In contrast to DNA oligo-dT and polyT PNA based mRNA isolation techniques, the LNA oligo(T) capture method allows poly(A) selection in the presence of 4 M GuSCN cell lysis buffer, which is needed for efficient inactivation of endogenous RNases. In addition, LNA oligo(T) facilitates highly efficient poly(A)(+) isolation at elevated temperatures compared to standard oligo(dT) technology. The successful use of the LNA oligo(T) capture method in recovery of mRNA from human cells and the subsequent use of the mRNA in northern blotting analysis, RT-PCR and qRT-PCR are demonstrated.
Collapse
|
20
|
Chatterjee A, Mirer PL, Zaldivar Santamaria E, Klapperich C, Sharon A, Sauer-Budge AF. RNA Isolation from Mammalian Cells Using Porous Polymer Monoliths: An Approach for High-Throughput Automation. Anal Chem 2010; 82:4344-56. [DOI: 10.1021/ac100063f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anirban Chatterjee
- Departments of Mechanical Engineering and Biomedical Engineering, Boston University, Boston, Massachusetts 02215, and Center for Manufacturing Innovation, Fraunhofer USA, Brookline, Massachusetts 02446
| | - Paul L. Mirer
- Departments of Mechanical Engineering and Biomedical Engineering, Boston University, Boston, Massachusetts 02215, and Center for Manufacturing Innovation, Fraunhofer USA, Brookline, Massachusetts 02446
| | - Elvira Zaldivar Santamaria
- Departments of Mechanical Engineering and Biomedical Engineering, Boston University, Boston, Massachusetts 02215, and Center for Manufacturing Innovation, Fraunhofer USA, Brookline, Massachusetts 02446
| | - Catherine Klapperich
- Departments of Mechanical Engineering and Biomedical Engineering, Boston University, Boston, Massachusetts 02215, and Center for Manufacturing Innovation, Fraunhofer USA, Brookline, Massachusetts 02446
| | - Andre Sharon
- Departments of Mechanical Engineering and Biomedical Engineering, Boston University, Boston, Massachusetts 02215, and Center for Manufacturing Innovation, Fraunhofer USA, Brookline, Massachusetts 02446
| | - Alexis F. Sauer-Budge
- Departments of Mechanical Engineering and Biomedical Engineering, Boston University, Boston, Massachusetts 02215, and Center for Manufacturing Innovation, Fraunhofer USA, Brookline, Massachusetts 02446
| |
Collapse
|
21
|
Stankiewicz N, Gold A, Yüksel Y, Berensmeier S, Schwartz T. In vivo labeling and specific magnetic bead separation of RNA for biofilm characterization and stress-induced gene expression analysis in bacteria. J Microbiol Methods 2009; 79:344-52. [PMID: 19837116 DOI: 10.1016/j.mimet.2009.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 11/26/2022]
Abstract
The method of in vivo labeling and separation of bacterial RNA was developed as an approach to elucidating the stress response of natural bacterial populations. This technique is based on the incorporation of digoxigenin-11-uridine-5'-triphosphate (DIG-11-UTP) in the RNA of active bacteria. The digoxigenin fulfills a dual role as a label of de novo synthesized RNA and a target for magnetic bead separation from a total RNA extract. Depending on the growth conditions and the population's composition, the assembly rate of DIG-11-UTP ranged from 1.2% to 12.5% of the total RNA in gram-positive and gram-negative reference bacteria as well as in natural biofilms from drinking water, surface water, and lake sediment. Separation of DIG-RNA from total RNA extracts was performed with a biotinylated anti-digoxigenin antibody and streptavidin-functionalized magnetic particles. The average separation yield from total RNA extracts was about 95% of labeled RNA. The unspecific bindings of non-labeled nucleic acids were smaller than 0.2%, as was evaluated by spiking experiments with an unmarked DNA amplicon. Applicability of the method developed was demonstrated by rRNA-directed PCR-DGGE population analysis of natural biofilms and expression profiling of two stress-induced genes (vanA and rpoS) in reference bacteria.
Collapse
Affiliation(s)
- Nikolai Stankiewicz
- Karlsruhe Institute of Technology - KIT (former: Forschungszentrum Karlsruhe), Institute of Functional Interfaces (IFG), Microbiology of Natural and Technical Interfaces Department, P.O. Box 3640, D-76021 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
22
|
Hepatitis C virus RNA quantitation in venous and capillary small-volume whole-blood samples. J Clin Microbiol 2009; 47:3231-40. [PMID: 19692560 DOI: 10.1128/jcm.00925-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Quantitation of hepatitis C virus (HCV) RNA in plasma and serum samples is a costly procedure in both time and reagents. Additionally, cell-associated viral RNA may not be detected. This study evaluated the accuracy of HCV RNA quantitation in small-volume whole-blood (WB) samples, which would be appropriate for point-of-care diagnostic devices. HCV RNA was extracted from 222 clinical plasma and WB samples of 82 patients with chronic hepatitis C by a specific locked nucleic acid-mediated capture method and quantified by real-time reverse transcription-PCR. The results were compared to the reference plasma viral load determined with the COBAS AmpliPrep/TaqMan (CAP/CTM) HCV test. This assay had an analytical sensitivity of 9 IU per 10-microl sample (95% limit of detection [95% LOD]), a linearity range of 500 to 5 x 10(6) IU/ml, and was accurate in testing 10 HCV subtypes (<0.22 log10 unit) in plasma. The assay was matrix equivalent for plasma and WB samples (coefficient of determination [R2] of 0.943) and had a specificity of 100% (n = 20) in WB samples. The HCV RNA concentration in clinical WB samples exceeded the estimated hematocrit-corrected plasma viral loads by 0.22 log10 unit, but absolute quantitation results in plasma and WB samples were identical (95% confidence interval, -0.06 to 0.04 log10 unit). The sensitivity in WB samples was 100% (n = 141) for plasma concentrations above the 95% LOD. Quantitation results in 10-microl WB samples correlated linearly with the CAP/CTM HCV plasma test results (R2 = 0.919; n = 140) and did not differ between capillary and venous samples (R2 = 0.960; n = 40). This study shows that HCV RNA quantitation in 10-microl WB samples is appropriate for monitoring viral loads of >900 IU/ml, although the use of WB does not increase the diagnostic sensitivity.
Collapse
|
23
|
Veedu RN, Wengel J. Locked nucleic acid nucleoside triphosphates and polymerases: on the way towards evolution of LNA aptamers. MOLECULAR BIOSYSTEMS 2009; 5:787-92. [PMID: 19603111 DOI: 10.1039/b905513b] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Among numerous nucleic acid analogs reported in the past decades, locked nucleic acid (LNA) has received substantial attention and has become a significant tool within chemical biology disciplines like molecular biology research, diagnostics and therapeutic development. However, despite their obvious structurally unique properties, LNA-based aptamers for diagnostic and therapeutic applications remain largely unexplored. Future evolution of LNA oligonucleotide aptamers will depend on scientific breakthroughs relating to enzymatic polymerization using LNA nucleoside triphosphates as substrates. Herein, we highlight recent developments in this direction using various polymerases.
Collapse
Affiliation(s)
- Rakesh N Veedu
- Department of Physics and Chemistry, Nucleic Acid Center, University of Southern Denmark, Campusvej 55, Odense M, Denmark
| | | |
Collapse
|
24
|
Gill P, Ghalami M, Ghaemi A, Mosavari N, Abdul-Tehrani H, Sadeghizadeh M. Nanodiagnostic Method for Colorimetric Detection of Mycobacterium tuberculosis 16S rRNA. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s12030-009-9021-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Tanaka A, Harikai N, Saito S, Yakabe T, Funaoka S, Yokoyama K, Fujiwara K, Iwao-Koizumi K, Murata S, Kinoshita K. All-in-one tube method for quantitative gene expression analysis in oligo-dT(30) immobilized PCR tube coated with MPC polymer. ANAL SCI 2009; 25:109-14. [PMID: 19139583 DOI: 10.2116/analsci.25.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this report, we have developed a novel quantitative RT-PCR protocol in which the procedure including mRNA purification can be performed in an all-in-one tube. To simplify gene expression analysis, oligo-dT(30) immobilized PCR tubes were used serially to capture mRNA, synthesize solid-phase cDNA, and amplify specific genes. The immobilized oligo-dT(30) can efficiently capture mRNA directly from crude human cell lysates. The captured mRNA is then amplified by one-step reverse transcription PCR (RT-PCR) with initial cDNA synthesis followed by PCR. In RT-PCR, this new reusable PCR tube device can be employed for multiple PCR amplifications with different primer sets from a solid-phase oligo-dT(30) primed cDNA library. This paper introduces a novel and highly reliable all-in-one tube method for rapid cell lysis, followed by quantitative preparation and expression analysis of target mRNA molecules with small amounts of sample. This procedure allows all steps to be carried out by sequential dilution in a single tube, without chemical extraction. We demonstrate the utility of this novel method by quantification of two housekeeping genes, beta-actin and GAPDH, in HeLa cells. We believe this new PCR device can be useful as a platform for various mRNA expression analyses, including basic research, drug screening, and molecular toxicology, as well as for molecular pathological diagnostics.
Collapse
Affiliation(s)
- Atsuko Tanaka
- School of Pharmaceutical Sciences, Mukogawa Women's University, Koshien, Nishinomiya 663-8179, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat Protoc 2008; 2:2520-8. [PMID: 17947994 DOI: 10.1038/nprot.2007.313] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability to determine spatial and temporal microRNA (miRNA) accumulation at the tissue, cell and subcellular levels is essential for understanding the biological roles of miRNAs and miRNA-associated gene regulatory networks. This protocol describes a method for fast and effective detection of miRNAs in frozen tissue sections using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA)-modified oligonucleotide probes with FISH using the tyramide signal amplification (TSA) technology. Although both approaches have previously been shown to increase detection sensitivity in FISH, combining these techniques into one protocol significantly decreases the time needed for miRNA detection in cryosections, while simultaneously retaining high detection sensitivity. Starting with fixation of the tissue sections, this miRNA FISH protocol can be completed within approximately 6 h and allows miRNA detection in a wide variety of animal tissue cryosections as well as in human tumor biopsies at high cellular resolution.
Collapse
|
27
|
Kaur H, Babu BR, Maiti S. Perspectives on chemistry and therapeutic applications of Locked Nucleic Acid (LNA). Chem Rev 2007; 107:4672-97. [PMID: 17944519 DOI: 10.1021/cr050266u] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Harleen Kaur
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | | | |
Collapse
|
28
|
Satterfield BC, Stern S, Caplan MR, Hukari KW, West JAA. Microfluidic purification and preconcentration of mRNA by flow-through polymeric monolith. Anal Chem 2007; 79:6230-5. [PMID: 17625914 DOI: 10.1021/ac0709201] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient and rapid isolation of mRNA is important in the field of genomics as well as in the clinical and pharmaceutical arena. We have developed UV-initiated methacrylate-based porous polymer monoliths (PPM) for microfluidic trapping and concentration of eukaryotic mRNA. PPM are cast-to-shape and are tunable for functionalization using a variety of amine-terminated molecules. Efficient isolation of eukaryotic mRNA from total RNA was first mathematically modeled and then achieved using PPM in capillaries. Purification protocols using oligo dT's, locked nucleic acid substituted dT's, and tetramethylammonium chloride salts were characterized. mRNA yield and purity were compared with mRNA isolated by commercial kits with statistically equivalent yields and purities (determined by qPCR ratio of 18s rRNA and Gusb mRNA markers). Even after extracting 16 microg of mRNA from 315 microg of total RNA, the 0.4-microL volume monolith showed no signs of saturation. Elution volumes were below 20 microL with concentrations up to 1 microg/microL. In addition, the polymeric material exhibited exceptional stability in a range of conditions (pH, temperature, dryness) and was stable for a period of months. All of these characteristics make porous polymer monoliths good candidates for potential microfluidic sample preconcentrators and purifiers.
Collapse
|
29
|
Chen WY, Chen YC. Acceleration of Microwave-Assisted Enzymatic Digestion Reactions by Magnetite Beads. Anal Chem 2007; 79:2394-401. [PMID: 17284012 DOI: 10.1021/ac0614893] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we demonstrated that microwave-assisted enzymatic digestion could be greatly accelerated by multifunctional magnetite beads. The acceleration of microwave-assisted enzymatic digestion by the presence of the magnetite beads was attributable to several features of the beads. Their capacity to absorb microwave radiation leads to rapid heating of the beads. Furthermore, their negatively charged functionalities cause adsorption of proteins with opposite charges onto their surfaces by electrostatic interactions, leading to a concentration on the surfaces of the beads of proteins present in trace amounts in the solution. The adsorbed proteins are denatured and hence rendered vulnerable to enzymatic digestion and are digested on the beads. For microwave heating, 30 s was sufficient for carrying out the tryptic digestion of cytochrome c, in the presence of magnetite beads, while 1 min was adequate for tryptic digestion of myoglobin. The digestion products were characterized by MALDI-MS. This rapid enzymatic digestion allowed the entire time for identification of proteins to be greatly reduced. Furthermore, specific proteins present in trace quantities were enriched from the sample on the magnetite beads and could be rapidly isolated from the sample by employing an external magnetic field. These multiple roles of magnetite beads, as the absorber for microwave irradiation, the concentrating probe, and the agent for unfolding proteins, contributed to their capability of accelerating microwave-assisted enzymatic digestion. We also demonstrated that trypsin immobilized magnetite beads were suitable for use in microwave-assisted enzymatic digestion.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan
| | | |
Collapse
|
30
|
West JAA, Satterfield BC. Fabrication of porous polymer monoliths in microfluidic chips for selective nucleic acid concentration and purification. Methods Mol Biol 2007; 385:9-21. [PMID: 18365701 DOI: 10.1007/978-1-59745-426-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Efficient and rapid isolation of nucleic acids is of significant importance in the field of genomics for a variety of applications. Current techniques for the isolation of specific nucleic acids or genes typically involve multiple rounds of amplification of the target sequence using polymerase chain reaction. Described here is a recent development in the fabrication and modification of porous polymer monoliths for the selective concentration and extraction of nucleic acids sequences. The rigid monoliths are cast to shape and are tunable for functionalization using a variety of amine-terminated molecules including oligonucleotide capture probes. Efficient and rapid isolation of nucleic acids can be performed using polymer monoliths in microchannels in a time frame as short as 2 s. The described materials and methods offer the ability to perform concentration of nucleic acids in solution and elute purified samples in volumes as low as 3 microL without the requirement of altering salt concentration in the wash and elution buffers.
Collapse
|
31
|
Berensmeier S. Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol 2006; 73:495-504. [PMID: 17063328 PMCID: PMC7080036 DOI: 10.1007/s00253-006-0675-0] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/04/2006] [Accepted: 09/12/2006] [Indexed: 11/16/2022]
Abstract
Nucleic acid separation is an increasingly important tool for molecular biology. Before modern technologies could be used, nucleic acid separation had been a time- and work-consuming process based on several extraction and centrifugation steps, often limited by small yields and low purities of the separation products, and not suited for automation and up-scaling. During the last few years, specifically functionalised magnetic particles were developed. Together with an appropriate buffer system, they allow for the quick and efficient purification directly after their extraction from crude cell extracts. Centrifugation steps were avoided. In addition, the new approach provided for an easy automation of the entire process and the isolation of nucleic acids from larger sample volumes. This review describes traditional methods and methods based on magnetic particles for nucleic acid purification. The synthesis of a variety of magnetic particles is presented in more detail. Various suppliers of magnetic particles for nucleic acid separation as well as suppliers offering particle-based kits for a variety of different sample materials are listed. Furthermore, commercially available manual magnetic separators and automated systems for magnetic particle handling and liquid handling are mentioned.
Collapse
Affiliation(s)
- Sonja Berensmeier
- Forschungszentrum Karlsruhe, Institute for Technical Chemistry, Water Technology and Geotechnology Division, Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
32
|
Gill P, Ramezani R, Amiri MVP, Ghaemi A, Hashempour T, Eshraghi N, Ghalami M, Tehrani HA. Enzyme-linked immunosorbent assay of nucleic acid sequence-based amplification for molecular detection of M. tuberculosis. Biochem Biophys Res Commun 2006; 347:1151-7. [PMID: 16870140 DOI: 10.1016/j.bbrc.2006.07.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 07/11/2006] [Indexed: 11/19/2022]
Abstract
An enzyme-linked immunosorbent assay of nucleic acid sequence-based amplification (NASBA-ELISA) was developed for molecular detection of Mycobacterium tuberculosis. The primers targeting 16S rRNA were used for the amplification of bacterial RNA by the isothermal digoxigenin (DIG)-labeling NASBA process, resulting in the accumulation of DIG-labeled RNA amplicons. The amplicons were hybridized with a specific biotinylated DNA probe which was non-covalently immobilized on streptavidin-coated microtiter plate. The RNA-DNA hybrids were colorimetrically detected by the addition of an anti-DIG antibody HRP conjugate and 2,2-azino-di-(3-ethylbenzthiazolinsulfonate) substrate. Using this method, as little as 1 x 10(2) CFU ml(-1) of M. tuberculosis was detected within less than 5h. Results obtained from the clinical specimens showed 85.7% and 96% sensitivity and specificity, respectively. No interference was encountered in the amplification and detection of M. tuberculosis in the presence of non-target bacteria, confirming the specificity of the method.
Collapse
Affiliation(s)
- Pooria Gill
- Maebood Clinical and Molecular Laboratory, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Erdmann V, Barciszewski J, Brosius J. Locked nucleic acid: high-affinity targeting of complementary RNA for RNomics. Handb Exp Pharmacol 2006; 173:405-22. [PMID: 16594628 PMCID: PMC7120141 DOI: 10.1007/3-540-27262-3_21] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Locked nucleic acid (LNA) is a nucleic acid analog containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA-mimicking sugar conformation. This conformational restriction is translated into unprecedented hybridization affinity towards complementary single-stranded RNA molecules. That makes fully modified LNAs, LNA/DNA mixmers, or LNA/RNA mixmers uniquely suited for mimicking RNA structures and for RNA targeting in vitro or in vivo. The focus of this chapter is on LNA antisense, LNA-modified DNAzymes (LNAzymes), LNA-modified small interfering (si)RNA (siLNA), LNA-enhanced expression profiling by real-time RT-PCR and detection and analysis of microRNAs by LNA-modified probes.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
34
|
Jepsen JS, Sørensen MD, Wengel J. Locked nucleic acid: a potent nucleic acid analog in therapeutics and biotechnology. Oligonucleotides 2005; 14:130-46. [PMID: 15294076 DOI: 10.1089/1545457041526317] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA, and LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo. In this review, we briefly describe the basic physiochemical properties of LNA and some of the difficulties that may be encountered when applying LNA technology. The central part of the review focuses on the use of LNA molecules in regulation of gene expression, including delivery to cells, stability, unspecific effects, toxicity, pharmacokinetics, and design of LNA oligonucleotides. The last part evaluates LNA as a diagnostic tool in genotyping.
Collapse
Affiliation(s)
- Jan Stenvang Jepsen
- Department of Tumor Endocrinology, Institute of Cancer Biology, Danish Cancer Society, DK-2100, Copenhagen, Denmark.
| | | | | |
Collapse
|
35
|
Thomsen R, Nielsen PS, Jensen TH. Dramatically improved RNA in situ hybridization signals using LNA-modified probes. RNA (NEW YORK, N.Y.) 2005; 11:1745-8. [PMID: 16177135 PMCID: PMC1370861 DOI: 10.1261/rna.2139705] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In situ detection of RNA by hybridization with complementary probes is a powerful technique. Probe design is a critical parameter in successful target detection. We have evaluated the efficiency of fluorescent DNA oligonucleotides modified to contain locked nucleic acid (LNA) residues. This increases the thermal stability of hybrids formed with RNA. The LNA-based probes detect specific RNAs in fixed yeast cells with an efficiency far better than conventional DNA oligonucleotide probes of the same sequence. Using this probe design, we were also able to detect poly(A)(+) RNA accumulation within the nucleus/ nucleolus of wild-type cells. LNA-based probes should be readily applicable to a diverse array of cells and tissue samples.
Collapse
Affiliation(s)
- Rune Thomsen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, Denmark
| | | | | |
Collapse
|
36
|
Guler MO, Pokorski JK, Appella DH, Stupp SI. Enhanced oligonucleotide binding to self-assembled nanofibers. Bioconjug Chem 2005; 16:501-3. [PMID: 15898715 DOI: 10.1021/bc050053b] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A peptide nucleic acid/peptide amphiphile conjugate (PNA-PA) that self-assembles into fiber-shaped nanostructures was designed to bind oligonucleotides with high affinity and specificity. Oligonucleotide binding to PNA-PA nanofibers was studied using fluorescence polarization, and thermal stability was examined by UV-vis measurement of duplex melting temperatures. The self-assembled PNA-PA DNA system was observed to bind more strongly than the corresponding DNA-DNA duplex. We also observed single base specificity with a 16 degrees C in thermal stability. As expected from the previous PNA studies, PNA-PA RNA binding is also stronger than the corresponding RNA-RNA duplex.
Collapse
Affiliation(s)
- Mustafa O Guler
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
37
|
Paik S, Wu X. Measuring toxic gases generated from reaction of guanidine isothiocyanate-containing reagents with bleach. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.chs.2004.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Nielsen PS, Ohlsson H, Alsbo C, Andersen MS, Kauppinen S. Expression profiling by oligonucleotide microarrays spotted on coated polymer slides. J Biotechnol 2005; 116:125-34. [PMID: 15664076 DOI: 10.1016/j.jbiotec.2004.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 09/24/2004] [Accepted: 10/11/2004] [Indexed: 01/04/2023]
Abstract
We have developed a ready-to-spot polymer microarray slide, which is coated with a uniform layer of reactive electrophilic groups using anthraquinone-mediated photo-coupling chemistry. The slide coating reduces the hydrophobicity of the native polymer significantly, thereby enabling robust and efficient one-step coupling of spotted 5' amino-linked oligonucleotides onto the polymer slide. The utility of the coated polymer slide in gene expression profiling was assessed by fabrication of spotted oligonucleotide microarrays using a collection of 5' amino-linked 70-mer oligonucleotide probes representing 96 yeast genes from Operon. Two-colour hybridizations with labelled cDNA target pools derived from standard grown and heat-shocked wild type yeast cells could reproducibly measure heat shock induced expression of seven different heat shock protein (HSP) genes. Moreover, the observed fold changes were comparable to those reported previously using spotted cDNA arrays and high-density 25-mer oligonucleotide arrays from Affymetrix. The low hybridization signals obtained from the DeltaSSA4 mutant cDNA target, together with the high signal detected in two-colour hybridizations with heat-shocked wild type yeast relative to the DeltaSSA4 mutant strain implies that unspecific binding of cDNA target to the SSA4-specific 70-mer oligonucleotide probes is negligible. Combined, our results indicate that the coated polymer microarray slide represents a robust and cost-effective array platform for pre-spotted oligonucleotide arrays.
Collapse
Affiliation(s)
- Peter S Nielsen
- Department of Functional Genomics, Exiqon, Bygstubben 9, DK-2950 Vedbaek, Denmark.
| | | | | | | | | |
Collapse
|
39
|
Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 2004; 32:e175. [PMID: 15598818 PMCID: PMC545470 DOI: 10.1093/nar/gnh171] [Citation(s) in RCA: 660] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We describe here a new method for highly efficient detection of microRNAs by northern blot analysis using LNA (locked nucleic acid)-modified oligonucleotides. In order to exploit the improved hybridization properties of LNA with their target RNA molecules, we designed several LNA-modified oligonucleotide probes for detection of different microRNAs in animals and plants. By modifying DNA oligonucleotides with LNAs using a design, in which every third nucleotide position was substituted by LNA, we could use the probes in northern blot analysis employing standard end-labelling techniques and hybridization conditions. The sensitivity in detecting mature microRNAs by northern blots was increased by at least 10-fold compared to DNA probes, while simultaneously being highly specific, as demonstrated by the use of different single and double mismatched LNA probes. Besides being highly efficient as northern probes, the same LNA-modified oligonucleotide probes would also be useful for miRNA in situ hybridization and miRNA expression profiling by LNA oligonucleotide microarrays.
Collapse
Affiliation(s)
- Anna Válóczi
- Agricultural Biotechnology Center, Szent-Györgyi Albert ut 4, Gödöll H-2100, Hungary
| | | | | | | | | | | |
Collapse
|
40
|
Vester B, Wengel J. LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. Biochemistry 2004; 43:13233-41. [PMID: 15491130 DOI: 10.1021/bi0485732] [Citation(s) in RCA: 533] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Locked nucleic acid (LNA) is a nucleic acid analogue containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA mimicking sugar conformation. LNA oligonucleotides display unprecedented hybridization affinity toward complementary single-stranded RNA and complementary single- or double-stranded DNA. Structural studies have shown that LNA oligonucleotides induce A-type (RNA-like) duplex conformations. The wide applicability of LNA oligonucleotides for gene silencing and their use for research and diagnostic purposes are documented in a number of recent reports, some of which are described herein.
Collapse
Affiliation(s)
- Birte Vester
- Nucleic Acid Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense.
| | | |
Collapse
|