1
|
Propp JP, Castor DO, Spies MA. Real Way to Target Gram-Negative Pathogens: Discovery of a Novel Helicobacter pylori Antibiotic Class. J Med Chem 2025; 68:10128-10138. [PMID: 40163413 DOI: 10.1021/acs.jmedchem.5c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In an era of escalating antibiotic resistance, there is a pressing need for innovative strategies to develop novel antibiotics. Gram-negative bacteria, characterized by their robust dual-membrane, are intrinsically resistant to a wide range of antibiotics and can readily develop new resistances. Members of this bacterial class comprise numerous pathogenic organisms, including the primary cause of gastric cancer, Helicobacter pylori. In this study, we used the Giga-sized collection of theoretical molecules inside Enamine's REAL Space to identify inhibitors for H. pylori glutamate racemase. These compounds displayed a diverse range of activity in preventing H. pylori growth, with our most potent hits capable of selective full growth inhibition for metronidazole and clarithromycin resistant H. pylori strains. Alongside the introduction of a novel antibiotic class for this carcinogenic pathogen, our unique implementation of REAL Space holds great promise for Gram-negative antibiotic development as a whole.
Collapse
Affiliation(s)
- Jonah Pascal Propp
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa College of Pharmacy, Iowa City, Iowa 52242, United States
| | - Damien Oz Castor
- Department of Biochemistry, Carver College of Medicine, The University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa 52242-1109, United States
| | - M Ashley Spies
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa College of Pharmacy, Iowa City, Iowa 52242, United States
- Department of Biochemistry, Carver College of Medicine, The University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, Iowa 52242-1109, United States
| |
Collapse
|
2
|
Honda M, Razzaghi M, Gaur P, Malacaria E, Marozzi G, Di Biagi L, Aiello FA, Paintsil EA, Stanfield AJ, Deppe BJ, Gakhar L, Schnicker NJ, Spies MA, Pichierri P, Spies M. The RAD52 double-ring remodels replication forks restricting fork reversal. Nature 2025; 641:512-519. [PMID: 40175552 DOI: 10.1038/s41586-025-08753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/06/2025] [Indexed: 04/04/2025]
Abstract
Human RAD52 is a multifunctional DNA repair protein involved in several cellular events that support genome stability, including protection of stalled DNA replication forks from excessive degradation1-4. In its gatekeeper role, RAD52 binds to and stabilizes stalled replication forks during replication stress, protecting them from reversal by SMARCAL1 motor3. The structural and molecular mechanism of the RAD52-mediated fork protection remains elusive. Here, using P1 nuclease sensitivity, biochemical and single-molecule analyses, we show that RAD52 dynamically remodels replication forks through its strand exchange activity. The presence of the single-stranded DNA binding protein RPA at the fork modulates the kinetics of the strand exchange without impeding the reaction outcome. Mass photometry and single-particle cryo-electron microscopy show that the replication fork promotes a unique nucleoprotein structure containing head-to-head arrangement of two undecameric RAD52 rings with an extended positively charged surface that accommodates all three arms of the replication fork. We propose that the formation and continuity of this surface is important for the strand exchange reaction and for competition with SMARCAL1.
Collapse
Affiliation(s)
- Masayoshi Honda
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mortezaali Razzaghi
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Paras Gaur
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Eva Malacaria
- Mechanisms, Biomarkers and Models section, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgia Marozzi
- Mechanisms, Biomarkers and Models section, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ludovica Di Biagi
- Mechanisms, Biomarkers and Models section, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Antonella Aiello
- Mechanisms, Biomarkers and Models section, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Emeleeta A Paintsil
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andrew J Stanfield
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Bailey J Deppe
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Lokesh Gakhar
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, USA
- PAQ Therapeutics, Burlington, MA, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - M Ashley Spies
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA, USA
| | - Pietro Pichierri
- Mechanisms, Biomarkers and Models section, Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
3
|
Debiasi-Anders G, Qiao C, Salim A, Li N, Mir-Sanchis I. Phage parasites targeting phage homologous recombinases provide antiviral immunity. Nat Commun 2025; 16:1889. [PMID: 39987160 PMCID: PMC11846896 DOI: 10.1038/s41467-025-57156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025] Open
Abstract
Bacteria often carry multiple genes encoding anti-phage defense systems, clustered in defense islands and phage satellites. Various unrelated anti-phage defense systems target phage-encoded homologous recombinases (HRs) through unclear mechanisms. Here, we show that the phage satellite SaPI2, which does not encode orthodox anti-phage defense systems, provides antiviral immunity mediated by Stl2, the SaPI2-encoded transcriptional repressor. Stl2 targets and inhibits phage-encoded HRs, including Sak and Sak4, two HRs from the Rad52-like and Rad51-like superfamilies. Remarkably, apo Stl2 forms a collar of dimers oligomerizing as closed rings and as filaments, mimicking the quaternary structure of its targets. Stl2 decorates both Sak rings and Sak4 filaments. The oligomerization of Stl2 as a collar of dimers is necessary for its inhibitory activity both in vitro and in vivo. Our results shed light on the mechanisms underlying antiviral immunity against phages carrying divergent HRs.
Collapse
Affiliation(s)
- Gianluca Debiasi-Anders
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå, Sweden
| | - Cuncun Qiao
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå, Sweden
| | - Amrita Salim
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå, Sweden
| | - Na Li
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå, Sweden
| | - Ignacio Mir-Sanchis
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå, Sweden.
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, Spain.
| |
Collapse
|
4
|
Luo J, Li Y, Zhang Y, Wu D, Ren Y, Liu J, Wang C, Zhang J. An update on small molecule compounds targeting synthetic lethality for cancer therapy. Eur J Med Chem 2024; 278:116804. [PMID: 39241482 DOI: 10.1016/j.ejmech.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Targeting cancer-specific vulnerabilities through synthetic lethality (SL) is an emerging paradigm in precision oncology. A SL strategy based on PARP inhibitors has demonstrated clinical efficacy. Advances in DNA damage response (DDR) uncover novel SL gene pairs. Beyond BRCA-PARP, emerging SL targets like ATR, ATM, DNA-PK, CHK1, WEE1, CDK12, RAD51, and RAD52 show clinical promise. Selective and bioavailable small molecule inhibitors have been developed to induce SL, but optimization for potency, specificity, and drug-like properties remains challenging. This article illuminated recent progress in the field of medicinal chemistry centered on the rational design of agents capable of eliciting SL specifically in neoplastic cells. It is envisioned that innovative strategies harnessing SL for small molecule design may unlock novel prospects for targeted cancer therapeutics going forward.
Collapse
Affiliation(s)
- Jiaxiang Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengdi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Rinaldi F, Girotto S. Structure-based approaches in synthetic lethality strategies. Curr Opin Struct Biol 2024; 88:102895. [PMID: 39137490 DOI: 10.1016/j.sbi.2024.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
Evolution has fostered robust DNA damage response (DDR) mechanisms to combat DNA lesions. However, disruptions in this intricate machinery can render cells overly reliant on the remaining functional but often less accurate DNA repair pathways. This increased dependence on error-prone pathways may result in improper repair and the accumulation of mutations, fostering genomic instability and facilitating the uncontrolled cell proliferation characteristic of cancer initiation and progression. Strategies based on the concept of synthetic lethality (SL) leverage the inherent genomic instability of cancer cells by targeting alternative pathways, thereby inducing selective death of cancer cells. This review emphasizes recent advancements in structural investigations of pivotal SL targets. The significant contribution of structure-based methodologies to SL research underscores their potential impact in characterizing the growing number of SL targets, largely due to advances in next-generation sequencing. Harnessing these approaches is essential for advancing the development of precise and personalized SL therapeutic strategies.
Collapse
Affiliation(s)
- Francesco Rinaldi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Stefania Girotto
- Structural Biophysics Facility, Istituto Italiano di Tecnologia, 16163 Genoa, Italy.
| |
Collapse
|
6
|
Honda M, Razzaghi M, Gaur P, Malacaria E, Marozzi G, Biagi LD, Aiello FA, Paintsil EA, Stanfield AJ, Deppe BJ, Gakhar L, Schnicker NJ, Ashley Spies M, Pichierri P, Spies M. A double-ring of human RAD52 remodels replication forks restricting fork reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.566657. [PMID: 38014173 PMCID: PMC10680749 DOI: 10.1101/2023.11.14.566657] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Human RAD52 1,2 is a multifunctional DNA repair protein involved in several cellular events that support genome stability including protection of stalled DNA replication forks from excessive degradation 3-7 . In its gatekeeper role, RAD52 binds to and stabilizes stalled replication forks during replication stress protecting them from reversal by SMARCAL1 5 . The structural and molecular mechanism of the RAD52-mediated fork protection remains elusive. Here, using P1 nuclease sensitivity, biochemical and single-molecule analyses we show that RAD52 dynamically remodels replication forks through its strand exchange activity. The presence of the ssDNA binding protein RPA at the fork modulates the kinetics of the strand exchange without impeding the reaction outcome. Mass photometry and single-particle cryo-electron microscopy show that the replication fork promotes a unique nucleoprotein structure containing head-to-head arrangement of two undecameric RAD52 rings with an extended positively charged surface that accommodates all three arms of the replication fork. We propose that the formation and continuity of this surface is important for the strand exchange reaction and for competition with SMARCAL1. One Sentence Summary Using cryo-EM, biochemical and single-molecule approaches we show that the structure of stalled DNA replication fork promotes a unique two-ring organization of human RAD52 protein which remodels the fork via DNA strand exchange.
Collapse
|
7
|
Previtali V, Bagnolini G, Ciamarone A, Ferrandi G, Rinaldi F, Myers SH, Roberti M, Cavalli A. New Horizons of Synthetic Lethality in Cancer: Current Development and Future Perspectives. J Med Chem 2024; 67:11488-11521. [PMID: 38955347 DOI: 10.1021/acs.jmedchem.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In recent years, synthetic lethality has been recognized as a solid paradigm for anticancer therapies. The discovery of a growing number of synthetic lethal targets has led to a significant expansion in the use of synthetic lethality, far beyond poly(ADP-ribose) polymerase inhibitors used to treat BRCA1/2-defective tumors. In particular, molecular targets within DNA damage response have provided a source of inhibitors that have rapidly reached clinical trials. This Perspective focuses on the most recent progress in synthetic lethal targets and their inhibitors, within and beyond the DNA damage response, describing their design and associated therapeutic strategies. We will conclude by discussing the current challenges and new opportunities for this promising field of research, to stimulate discussion in the medicinal chemistry community, allowing the investigation of synthetic lethality to reach its full potential.
Collapse
Affiliation(s)
- Viola Previtali
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Ciamarone
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Giovanni Ferrandi
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Francesco Rinaldi
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Samuel Harry Myers
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
8
|
Liang CC, Greenhough LA, Masino L, Maslen S, Bajrami I, Tuppi M, Skehel M, Taylor IA, West SC. Mechanism of single-stranded DNA annealing by RAD52-RPA complex. Nature 2024; 629:697-703. [PMID: 38658755 PMCID: PMC11096129 DOI: 10.1038/s41586-024-07347-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
RAD52 is important for the repair of DNA double-stranded breaks1,2, mitotic DNA synthesis3-5 and alternative telomere length maintenance6,7. Central to these functions, RAD52 promotes the annealing of complementary single-stranded DNA (ssDNA)8,9 and provides an alternative to BRCA2/RAD51-dependent homologous recombination repair10. Inactivation of RAD52 in homologous-recombination-deficient BRCA1- or BRCA2-defective cells is synthetically lethal11,12, and aberrant expression of RAD52 is associated with poor cancer prognosis13,14. As a consequence, RAD52 is an attractive therapeutic target against homologous-recombination-deficient breast, ovarian and prostate cancers15-17. Here we describe the structure of RAD52 and define the mechanism of annealing. As reported previously18-20, RAD52 forms undecameric (11-subunit) ring structures, but these rings do not represent the active form of the enzyme. Instead, cryo-electron microscopy and biochemical analyses revealed that ssDNA annealing is driven by RAD52 open rings in association with replication protein-A (RPA). Atomic models of the RAD52-ssDNA complex show that ssDNA sits in a positively charged channel around the ring. Annealing is driven by the RAD52 N-terminal domains, whereas the C-terminal regions modulate the open-ring conformation and RPA interaction. RPA associates with RAD52 at the site of ring opening with critical interactions occurring between the RPA-interacting domain of RAD52 and the winged helix domain of RPA2. Our studies provide structural snapshots throughout the annealing process and define the molecular mechanism of ssDNA annealing by the RAD52-RPA complex.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcel Tuppi
- The Francis Crick Institute, London, UK
- Abcam, Cambridge Biomedical Campus, Cambridge, UK
| | | | | | | |
Collapse
|