1
|
Karaglani M, Agorastos A, Panagopoulou M, Parlapani E, Athanasis P, Bitsios P, Tzitzikou K, Theodosiou T, Iliopoulos I, Bozikas VP, Chatzaki E. A novel blood-based epigenetic biosignature in first-episode schizophrenia patients through automated machine learning. Transl Psychiatry 2024; 14:257. [PMID: 38886359 PMCID: PMC11183091 DOI: 10.1038/s41398-024-02946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Schizophrenia (SCZ) is a chronic, severe, and complex psychiatric disorder that affects all aspects of personal functioning. While SCZ has a very strong biological component, there are still no objective diagnostic tests. Lately, special attention has been given to epigenetic biomarkers in SCZ. In this study, we introduce a three-step, automated machine learning (AutoML)-based, data-driven, biomarker discovery pipeline approach, using genome-wide DNA methylation datasets and laboratory validation, to deliver a highly performing, blood-based epigenetic biosignature of diagnostic clinical value in SCZ. Publicly available blood methylomes from SCZ patients and healthy individuals were analyzed via AutoML, to identify SCZ-specific biomarkers. The methylation of the identified genes was then analyzed by targeted qMSP assays in blood gDNA of 30 first-episode drug-naïve SCZ patients and 30 healthy controls (CTRL). Finally, AutoML was used to produce an optimized disease-specific biosignature based on patient methylation data combined with demographics. AutoML identified a SCZ-specific set of novel gene methylation biomarkers including IGF2BP1, CENPI, and PSME4. Functional analysis investigated correlations with SCZ pathology. Methylation levels of IGF2BP1 and PSME4, but not CENPI were found to differ, IGF2BP1 being higher and PSME4 lower in the SCZ group as compared to the CTRL group. Additional AutoML classification analysis of our experimental patient data led to a five-feature biosignature including all three genes, as well as age and sex, that discriminated SCZ patients from healthy individuals [AUC 0.755 (0.636, 0.862) and average precision 0.758 (0.690, 0.825)]. In conclusion, this three-step pipeline enabled the discovery of three novel genes and an epigenetic biosignature bearing potential value as promising SCZ blood-based diagnostics.
Collapse
Affiliation(s)
- Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece
| | - Agorastos Agorastos
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece
- II. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56430, Thessaloniki, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece
| | - Eleni Parlapani
- Ι. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56429, Thessaloniki, Greece
| | - Panagiotis Athanasis
- II. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56430, Thessaloniki, Greece
| | - Panagiotis Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, GR-71500, Heraklion, Greece
| | - Konstantina Tzitzikou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
| | - Theodosis Theodosiou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece
- ABCureD P.C, GR-68131, Alexandroupolis, Greece
| | - Ioannis Iliopoulos
- Division of Basic Sciences, School of Medicine, University of Crete, GR-71003, Heraklion, Greece
| | - Vasilios-Panteleimon Bozikas
- II. Department of Psychiatry, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-56430, Thessaloniki, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, GR-68132, Alexandroupolis, Greece.
- Institute of Agri-food and Life Sciences, University Research & Innovation Center, H.M.U.R.I.C., Hellenic Mediterranean University, GR-71003, Crete, Greece.
- ABCureD P.C, GR-68131, Alexandroupolis, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Greece.
| |
Collapse
|
2
|
Kokoli M, Karatzas E, Baltoumas FA, Schneider R, Pafilis E, Paragkamian S, Doncheva NT, Jensen L, Pavlopoulos G. Arena3D web: interactive 3D visualization of multilayered networks supporting multiple directional information channels, clustering analysis and application integration. NAR Genom Bioinform 2023; 5:lqad053. [PMID: 37260509 PMCID: PMC10227371 DOI: 10.1093/nargab/lqad053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Arena3Dweb is an interactive web tool that visualizes multi-layered networks in 3D space. In this update, Arena3Dweb supports directed networks as well as up to nine different types of connections between pairs of nodes with the use of Bézier curves. It comes with different color schemes (light/gray/dark mode), custom channel coloring, four node clustering algorithms which one can run on-the-fly, visualization in VR mode and predefined layer layouts (zig-zag, star and cube). This update also includes enhanced navigation controls (mouse orbit controls, layer dragging and layer/node selection), while its newly developed API allows integration with external applications as well as saving and loading of sessions in JSON format. Finally, a dedicated Cytoscape app has been developed, through which users can automatically send their 2D networks from Cytoscape to Arena3Dweb for 3D multi-layer visualization. Arena3Dweb is accessible at http://arena3d.pavlopouloslab.info or http://arena3d.org.
Collapse
Affiliation(s)
| | | | - Fotis A Baltoumas
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari16672, Greece
| | - Reinhard Schneider
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Bioinformatics Core, Esch-sur-Alzette, Luxembourg
| | - Evangelos Pafilis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, Heraklion 71003, Greece
| | - Savvas Paragkamian
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, Heraklion 71003, Greece
- Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013 Heraklion, Crete, Greece
| | - Nadezhda T Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | | |
Collapse
|
3
|
Adinew GM, Messeha S, Taka E, Ahmed SA, Soliman KFA. The Role of Apoptotic Genes and Protein-Protein Interactions in Triple-negative Breast Cancer. Cancer Genomics Proteomics 2023; 20:247-272. [PMID: 37093683 PMCID: PMC10148064 DOI: 10.21873/cgp.20379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND/AIM Compared to other breast cancer types, triple-negative breast cancer (TNBC) has historically had few treatment alternatives. Therefore, exploring and pinpointing potentially implicated genes could be used for treating and managing TNBC. By doing this, we will provide essential data to comprehend how the genes are involved in the apoptotic pathways of the cancer cells to identify potential therapeutic targets. Analysis of a single genetic alteration may not reveal the pathogenicity driving TNBC due to the high genomic complexity and heterogeneity of TNBC. Therefore, searching through a large variety of gene interactions enabled the identification of molecular therapeutic genes. MATERIALS AND METHODS This study used integrated bioinformatics methods such as UALCAN, TNM plotter, PANTHER, GO-KEEG and PPIs to assess the gene expression, protein-protein interaction (PPI), and transcription factor interaction of apoptosis-regulated genes. RESULTS Compared to normal breast tissue, gene expressions of BNIP3, TNFRSF10B, MCL1, and CASP4 were downregulated in UALCAN. At the same time, BIK, AKT1, BAD, FADD, DIABLO, and CASP9 was down-regulated in bc-GeneExMiner v4.5 mRNA expression (BCGM) databases. Based on GO term enrichment analysis, the cellular process (GO:0009987), which has about 21 apoptosis-regulated genes, is the top category in the biological processes (BP), followed by biological regulation (GO:0065007). We identified 29 differentially regulated pathways, including the p53 pathway, angiogenesis, apoptosis signaling pathway, and the Alzheimer's disease presenilin pathway. We examined the PPIs between the genes that regulate apoptosis; CASP3 and CASP9 interact with FADD, MCL1, TNF, TNFRSRF10A, and TNFRSF10; additionally, CASP3 significantly forms PPIs with CASP9, DFFA, and TP53, and CASP9 with DIABLO. In the top 10 transcription factors, the androgen receptor (AR) interacts with five apoptosis-regulated genes (p<0.0001; q<0.01), followed by retinoic acid receptor alpha (RARA) (p<0.0001; q<0.01) and ring finger protein (RNF2) (p<0.0001; q<0.01). Overall, the gene expression profile, PPIs, and the apoptosis-TF interaction findings suggest that the 27 apoptosis-regulated genes might be used as promising targets in treating and managing TNBC. Furthermore, from a total of 27 key genes, CASP2, CASP3, DAPK1, TNF, TRAF2, and TRAF3 were significantly correlated with poor overall survival in TNBC (p-value <0.05); they could play important roles in the progression of TNBC and provide attractive therapeutic targets that may offer new candidate molecules for targeted therapy. CONCLUSION Our findings demonstrate that CASP2, CASP3, DAPK1, TNF, TRAF2, and TRAF3 were substantially associated with the overall survival rate (OS) difference of TNBC patients out of a total of 27 specific genes used in this study, which may play crucial roles in the development of TNBC and offer promising therapeutic interventions.
Collapse
Affiliation(s)
- Getinet M Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Samia Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Shade A Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
4
|
Prediction and Ranking of Biomarkers Using multiple UniReD. Int J Mol Sci 2022; 23:ijms231911112. [PMID: 36232413 PMCID: PMC9569535 DOI: 10.3390/ijms231911112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
Protein–protein interactions (PPIs) are of key importance for understanding how cells and organisms function. Thus, in recent decades, many approaches have been developed for the identification and discovery of such interactions. These approaches addressed the problem of PPI identification either by an experimental point of view or by a computational one. Here, we present an updated version of UniReD, a computational prediction tool which takes advantage of biomedical literature aiming to extract documented, already published protein associations and predict undocumented ones. The usefulness of this computational tool has been previously evaluated by experimentally validating predicted interactions and by benchmarking it against public databases of experimentally validated PPIs. In its updated form, UniReD allows the user to provide a list of proteins of known implication in, e.g., a particular disease, as well as another list of proteins that are potentially associated with the proteins of the first list. UniReD then automatically analyzes both lists and ranks the proteins of the second list by their association with the proteins of the first list, thus serving as a potential biomarker discovery/validation tool.
Collapse
|
5
|
Karaglani M, Panagopoulou M, Baltsavia I, Apalaki P, Theodosiou T, Iliopoulos I, Tsamardinos I, Chatzaki E. Tissue-Specific Methylation Biosignatures for Monitoring Diseases: An In Silico Approach. Int J Mol Sci 2022; 23:2959. [PMID: 35328380 PMCID: PMC8952417 DOI: 10.3390/ijms23062959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue-specific gene methylation events are key to the pathogenesis of several diseases and can be utilized for diagnosis and monitoring. Here, we established an in silico pipeline to analyze high-throughput methylome datasets to identify specific methylation fingerprints in three pathological entities of major burden, i.e., breast cancer (BrCa), osteoarthritis (OA) and diabetes mellitus (DM). Differential methylation analysis was conducted to compare tissues/cells related to the pathology and different types of healthy tissues, revealing Differentially Methylated Genes (DMGs). Highly performing and low feature number biosignatures were built with automated machine learning, including: (1) a five-gene biosignature discriminating BrCa tissue from healthy tissues (AUC 0.987 and precision 0.987), (2) three equivalent OA cartilage-specific biosignatures containing four genes each (AUC 0.978 and precision 0.986) and (3) a four-gene pancreatic β-cell-specific biosignature (AUC 0.984 and precision 0.995). Next, the BrCa biosignature was validated using an independent ccfDNA dataset showing an AUC and precision of 1.000, verifying the biosignature's applicability in liquid biopsy. Functional and protein interaction prediction analysis revealed that most DMGs identified are involved in pathways known to be related to the studied diseases or pointed to new ones. Overall, our data-driven approach contributes to the maximum exploitation of high-throughput methylome readings, helping to establish specific disease profiles to be applied in clinical practice and to understand human pathology.
Collapse
Affiliation(s)
- Makrina Karaglani
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Ismini Baltsavia
- Department of Basic Sciences, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (I.B.); (I.I.)
| | - Paraskevi Apalaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Theodosis Theodosiou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
| | - Ioannis Iliopoulos
- Department of Basic Sciences, School of Medicine, University of Crete, GR-71003 Heraklion, Greece; (I.B.); (I.I.)
| | - Ioannis Tsamardinos
- JADBio Gnosis DA S.A., Science and Technology Park of Crete, GR-70013 Heraklion, Greece;
- Department of Computer Science, University of Crete, GR-70013 Heraklion, Greece
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology—Hellas, GR-70013 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.K.); (M.P.); (P.A.); (T.T.)
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, GR-71410 Heraklion, Greece
| |
Collapse
|
6
|
Panagopoulou M, Karaglani M, Manolopoulos VG, Iliopoulos I, Tsamardinos I, Chatzaki E. Deciphering the Methylation Landscape in Breast Cancer: Diagnostic and Prognostic Biosignatures through Automated Machine Learning. Cancers (Basel) 2021; 13:1677. [PMID: 33918195 PMCID: PMC8037759 DOI: 10.3390/cancers13071677] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation plays an important role in breast cancer (BrCa) pathogenesis and could contribute to driving its personalized management. We performed a complete bioinformatic analysis in BrCa whole methylome datasets, analyzed using the Illumina methylation 450 bead-chip array. Differential methylation analysis vs. clinical end-points resulted in 11,176 to 27,786 differentially methylated genes (DMGs). Innovative automated machine learning (AutoML) was employed to construct signatures with translational value. Three highly performing and low-feature-number signatures were built: (1) A 5-gene signature discriminating BrCa patients from healthy individuals (area under the curve (AUC): 0.994 (0.982-1.000)). (2) A 3-gene signature identifying BrCa metastatic disease (AUC: 0.986 (0.921-1.000)). (3) Six equivalent 5-gene signatures diagnosing early disease (AUC: 0.973 (0.920-1.000)). Validation in independent patient groups verified performance. Bioinformatic tools for functional analysis and protein interaction prediction were also employed. All protein encoding features included in the signatures were associated with BrCa-related pathways. Functional analysis of DMGs highlighted the regulation of transcription as the main biological process, the nucleus as the main cellular component and transcription factor activity and sequence-specific DNA binding as the main molecular functions. Overall, three high-performance diagnostic/prognostic signatures were built and are readily available for improving BrCa precision management upon prospective clinical validation. Revisiting archived methylomes through novel bioinformatic approaches revealed significant clarifying knowledge for the contribution of gene methylation events in breast carcinogenesis.
Collapse
Affiliation(s)
- Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (M.K.); (V.G.M.)
| | - Makrina Karaglani
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (M.K.); (V.G.M.)
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (M.K.); (V.G.M.)
| | - Ioannis Iliopoulos
- Department of Basic Sciences, School of Medicine, University of Crete, GR-71003 Heraklion, Greece;
| | - Ioannis Tsamardinos
- JADBio, Gnosis Data Analysis PC, Science and Technology Park of Crete, GR-70013 Heraklion, Greece;
- Department of Computer Science, University of Crete, GR-70013 Heraklion, Greece
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology–Hellas, GR-70013 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (M.P.); (M.K.); (V.G.M.)
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, GR-71410 Heraklion, Greece
| |
Collapse
|
7
|
Savvaki M, Kafetzis G, Kaplanis SI, Ktena N, Theodorakis K, Karagogeos D. Neuronal, but not glial, Contactin 2 negatively regulates axon regeneration in the injured adult optic nerve. Eur J Neurosci 2021; 53:1705-1721. [PMID: 33469963 DOI: 10.1111/ejn.15121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/26/2020] [Accepted: 01/17/2021] [Indexed: 01/09/2023]
Abstract
Mammalian adult neurons of the central nervous system (CNS) display limited ability to regrow axons after trauma. The developmental decline in their regenerative ability has been attributed to both intrinsic and extrinsic factors, including postnatal suppression of transcription factors and non-neuronal inhibitory components, respectively. The cell adhesion molecule Contactin 2 (CNTN2) is expressed in neurons and oligodendrocytes in the CNS. Neuronal CNTN2 is highly regulated during development and plays critical roles in axon growth and guidance and neuronal migration. On the other hand, CNTN2 expressed by oligodendrocytes interferes with the myelination process, with its ablation resulting in hypomyelination. In the current study, we investigate the role of CNTN2 in neuronal survival and axon regeneration after trauma, in the murine optic nerve crush (ONC) model. We unveil distinct roles for neuronal and glial CNTN2 in regenerative responses. Surprisingly, our data show a conflicting role of neuronal and glial CNTN2 in axon regeneration. Although glial CNTN2 as well as hypomyelination are dispensable for both neuronal survival and axon regeneration following ONC, the neuronal counterpart comprises a negative regulator of regeneration. Specifically, we reveal a novel mechanism of action for neuronal CNTN2, implicating the inhibition of Akt signalling pathway. The in vitro analysis indicates a BDNF-independent mode of action and biochemical data suggest the implication of the truncated form of TrkB neurotrophin receptor. In conclusion, CNTN2 expressed in CNS neurons serves as an inhibitor of axon regeneration after trauma and its mechanism of action involves the neutralization of Akt-mediated neuroprotective effects.
Collapse
Affiliation(s)
- Maria Savvaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece.,Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| | - George Kafetzis
- Department of Biology, University of Crete, Crete, Greece.,School of Life Sciences, University of Sussex, Brighton, UK
| | - Stefanos-Ioannis Kaplanis
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece.,Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| | - Niki Ktena
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece.,Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| | - Kostas Theodorakis
- Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete, Crete, Greece.,Institute of Molecular Biology & Biotechnology - FoRTH, Heraklion, Crete, Greece
| |
Collapse
|
8
|
Kalafatakis I, Kalafatakis K, Tsimpolis A, Giannakeas N, Tsipouras M, Tzallas A, Karagogeos D. Using the Allen gene expression atlas of the adult mouse brain to gain further insight into the physiological significance of TAG-1/Contactin-2. Brain Struct Funct 2020; 225:2045-2056. [PMID: 32601750 DOI: 10.1007/s00429-020-02108-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/21/2020] [Indexed: 12/11/2022]
Abstract
The anatomic gene expression atlas (AGEA) of the adult mouse brain of the Allen Institute for Brain Science is a transcriptome-based atlas of the adult C57Bl/6 J mouse brain, based on the extensive in situ hybridization dataset of the Institute. This spatial mapping of the gene expression levels of mice under baseline conditions could assist in the formation of new, reasonable transcriptome-derived hypotheses on brain structure and underlying biochemistry, which could also have functional implications. The aim of this work is to use the data of the AGEA (in combination with Tabula Muris, a compendium of single cell transcriptome data collected from mice, enabling direct and controlled comparison of gene expression among cell types) to provide further insights into the physiology of TAG-1/Contactin-2 and its interactions, by presenting the expression of the corresponding gene across the adult mouse brain under baseline conditions and to investigate any spatial genomic correlations between TAG-1/Contactin-2 and its interacting proteins and markers of mature and immature oligodendrocytes, based on the pre-existing experimental or bibliographical evidence. The across-brain correlation analysis on the gene expression intensities showed a positive spatial correlation of TAG-1/Contactin-2 with the gene expression of Plp1, Myrf, Mbp, Mog, Cldn11, Bace1, Kcna1, Kcna2, App and Nfasc and a negative spatial correlation with the gene expression of Cspg4, Pdgfra, L1cam, Ncam1, Ncam2 and Ptprz1. Spatially correlated genes are mainly expressed by mature oligodendrocytes (like Cntn2), while spatially anticorrelated genes are mainly expressed by oligodendrocyte precursor cells. According to the data presented in this work, we propose that even though Contactin-2 expression during development correlates with high plasticity events, such as neuritogenesis, in adulthood it correlates with pathways characterized by low plasticity.
Collapse
Affiliation(s)
- Ilias Kalafatakis
- Faculty of Medicine, University of Crete & Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Crete, Greece.
| | - Konstantinos Kalafatakis
- Faculty of Medicine, University of Crete & Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Arta, Greece
| | - Alexandros Tsimpolis
- Faculty of Medicine, University of Crete & Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Crete, Greece
| | - Nikos Giannakeas
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Arta, Greece
| | - Markos Tsipouras
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Arta, Greece
| | - Alexandros Tzallas
- Department of Informatics and Telecommunications, School of Informatics and Telecommunications, University of Ioannina, Arta, Greece
| | - Domna Karagogeos
- Faculty of Medicine, University of Crete & Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Crete, Greece
| |
Collapse
|