1
|
Lu G, Wang W, Zhang S, Yang G, Zhang K, Que Y, Deng L. The first complete mitochondrial genome of Grossulariaceae: Molecular features, structure recombination, and genetic evolution. BMC Genomics 2024; 25:744. [PMID: 39080514 PMCID: PMC11290076 DOI: 10.1186/s12864-024-10654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Mitochondria play crucial roles in the growth, development, and adaptation of plants. Blackcurrant (Ribes nigrum L.) stands out as a significant berry species due to its rich nutritional profile, medicinal properties, and health benefits. Despite its importance, the mitochondrial genome of blackcurrant remains unassembled. RESULTS This study presents the first assembly of the mitochondrial genome of R. nigrum in the Grossulariaceae family. The genome spans 450,227 base pairs (bp) and encompasses 39 protein-coding genes (PCGs), 19 transfer RNAs (tRNAs), and three ribosomal RNAs (rRNAs). Protein-coding regions constitute 8.88% of the entire genome. Additionally, we identified 180 simple sequence repeats, 12 tandem repeats, and 432 pairs of dispersed repeats. Notably, the dispersed sequence R1 (cotig3, 1,129 bp) mediated genome recombination, resulting in the formation of two major conformations, namely master and double circles. Furthermore, we identified 731 C-to-U RNA editing sites within the PCGs. Among these, cox1-2, nad1-2, and nad4L-2 were associated with the creation of start codons, whereas atp6-718 and rps10-391 were linked to termination codons. We also detected fourteen plastome fragments within the mitogenome, constituting 1.11% of the total length. Phylogenetic analysis suggests that R. nigrum might have undergone multiple genomic reorganization and/or gene transfer events, resulting in the loss of two PCGs (rps2 and rps11) during its evolutionary history. CONCLUSIONS This investigation unveils the molecular characteristics of the R. nigrum mitogenome, shedding light on its evolutionary trajectory and phylogenetic implications. Furthermore, it serves as a valuable reference for evolutionary research and germplasm identification within the genus.
Collapse
Affiliation(s)
- Guilong Lu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 890032, China
| | - Wenhua Wang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 890032, China
| | - Shanshan Zhang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 890032, China
| | - Guang Yang
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Kun Zhang
- Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Youxiong Que
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lan Deng
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 890032, China.
| |
Collapse
|
2
|
Wang Y, Jia L, Tian G, Dong Y, Zhang X, Zhou Z, Luo X, Li Y, Yao W. shinyCircos-V2.0: Leveraging the creation of Circos plot with enhanced usability and advanced features. IMETA 2023; 2:e109. [PMID: 38868422 PMCID: PMC10989951 DOI: 10.1002/imt2.109] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 06/14/2024]
Abstract
We previously developed shinyCircos, an interactive web application for creating Circos diagrams, which has been widely recognized for its graphical user interface and ease of use. Here, we introduce shinyCircos-V2.0, an upgraded version of shinyCircos that includes a new user interface with enhanced usability and many new features for creating advanced Circos plots. To help users get started with shinyCircos-V2.0, we provide detailed tutorials and example input data sets. The application is available online at https://venyao.xyz/shinyCircos/ and https://asiawang.shinyapps.io/shinyCircos/, or can be installed locally using the source code deposited in GitHub (https://github.com/YaoLab-Bioinfo/shinyCircos-V2.0).
Collapse
Affiliation(s)
- Yazhou Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Lihua Jia
- National Key Laboratory of Wheat and Maize Crop Science, College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Ge Tian
- National Key Laboratory of Wheat and Maize Crop Science, College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Yihan Dong
- National Key Laboratory of Wheat and Maize Crop Science, College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Xiao Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Zhengfu Zhou
- Henan Institute of Crop Molecular BreedingHenan Academy of Agricultural SciencesZhengzhouChina
| | - Xiang Luo
- College of AgricultureHenan UniversityKaifengChina
| | - Yang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
3
|
Chen C, Wu Y, Xia R. A painless way to customize Circos plot: From data preparation to visualization using TBtools. IMETA 2022; 1:e35. [PMID: 38868708 PMCID: PMC10989971 DOI: 10.1002/imt2.35] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 06/14/2024]
Abstract
Circos plots enable scientists to easily inspect big biological data genome-widely on a macroscopic scale, but cumbersome preparation of input data and complex parameter configuration limits its application. We have developed the "Advanced Circos" function in TBtools, to provide a simple way to construct Circos plots. As an out-of-the-box combo toolkit, TBtools has integrated a set of functions convenient for input data preparation. The "Advanced Circos" function is supplied with a user-friendly interface for the customization of parameter settings and can be deployed to visualize all kinds of genomic data, such as genomic associations, alignment data, gene density, and QTL locations. In the present article, we introduce the main features of "Advance Circos" and the protocols of upstream data preparation, aiming to endow more users with the ability to use Circos plots in big genomic data exploration.
Collapse
Affiliation(s)
- Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Ya Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- School of Geography and ResourcesGuizhou Education UniversityGuiyangChina
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
4
|
Systematic Analysis and Functional Characterization of R2R3-MYB Genes in Scutellaria baicalensis Georgi. Int J Mol Sci 2022; 23:ijms23169342. [PMID: 36012606 PMCID: PMC9408826 DOI: 10.3390/ijms23169342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022] Open
Abstract
R2R3-MYB transcription factors participate in multiple critical biological processes, particularly as relates to the regulation of secondary metabolites. The dried root of Scutellaria baicalensis Georgi is a traditional Chinese medicine and possesses various bioactive attributes including anti-inflammation, anti-HIV, and anti-COVID-19 properties due to its flavonoids. In the current study, a total of 95 R2R3-MYB genes were identified in S. baicalensis and classified into 34 subgroups, as supported by similar exon–intron structures and conserved motifs. Among them, 93 R2R3-SbMYBs were mapped onto nine chromosomes. Collinear analysis revealed that segmental duplications were primarily responsible for driving the evolution and expansion of the R2R3-SbMYB gene family. Synteny analyses showed that the ortholog numbers of the R2R3-MYB genes between S. baicalensis and other dicotyledons had a higher proportion compared to that which is found from the monocotyledons. RNA-seq data indicated that the expression patterns of R2R3-SbMYBs in different tissues were different. Quantitative reverse transcriptase-PCR (qRT-PCR) analysis showed that 36 R2R3-SbMYBs from different subgroups exhibited specific expression profiles under various conditions, including hormone stimuli treatments (methyl jasmonate and abscisic acid) and abiotic stresses (drought and cold shock treatments). Further investigation revealed that SbMYB18/32/46/60/70/74 localized in the nucleus, and SbMYB18/32/60/70 possessed transcriptional activation activity, implying their potential roles in the regulatory mechanisms of various biological processes. This study provides a comprehensive understanding of the R2R3-SbMYBs gene family and lays the foundation for further investigation of their biological function.
Collapse
|
5
|
van Rengs WMJ, Schmidt MHW, Effgen S, Le DB, Wang Y, Zaidan MWAM, Huettel B, Schouten HJ, Usadel B, Underwood CJ. A chromosome scale tomato genome built from complementary PacBio and Nanopore sequences alone reveals extensive linkage drag during breeding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:572-588. [PMID: 35106855 DOI: 10.1111/tpj.15690] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 05/16/2023]
Abstract
The assembly and scaffolding of plant crop genomes facilitate the characterization of genetically diverse cultivated and wild germplasm. The cultivated tomato (Solanum lycopersicum) has been improved through the introgression of genetic material from related wild species, including resistance to pandemic strains of tobacco mosaic virus (TMV) from Solanum peruvianum. Here we applied PacBio HiFi and ONT Nanopore sequencing to develop independent, highly contiguous and complementary assemblies of an inbred TMV-resistant tomato variety. We show specific examples of how HiFi and ONT datasets can complement one another to improve assembly contiguity. We merged the HiFi and ONT assemblies to generate a long-read-only assembly where all 12 chromosomes were represented as 12 contiguous sequences (N50 = 68.5 Mbp). This chromosome scale assembly did not require scaffolding using an orthogonal data type. The merged assembly was validated by chromosome conformation capture data and is highly consistent with previous tomato genome assemblies that made use of genetic maps and Hi-C for scaffolding. Our long-read-only assembly reveals that a complex series of structural variants linked to the TMV resistance gene likely contributed to linkage drag of a 64.1-Mbp region of the S. peruvianum genome during tomato breeding. Through marker studies and ONT-based comprehensive haplotyping we show that this minimal introgression region is present in six cultivated tomato hybrid varieties developed in three commercial breeding programs. Our results suggest that complementary long read technologies can facilitate the rapid generation of near-complete genome sequences.
Collapse
Affiliation(s)
- Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | | | - Sieglinde Effgen
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Duyen Bao Le
- Heinrich Heine University Düsseldorf, Institute of Biological Data Science, Düsseldorf, Germany
| | - Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Mohd Waznul Adly Mohd Zaidan
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Bruno Huettel
- Max Planck-Genome-center Cologne, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Henk J Schouten
- Department of Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700, AJ, Wageningen, The Netherlands
| | - Björn Usadel
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
- Heinrich Heine University Düsseldorf, Institute of Biological Data Science, Düsseldorf, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
6
|
Cui Z, Cui Y, Zang T, Wang Y. interacCircos: an R package based on JavaScript libraries for the generation of interactive Circos plots. Bioinformatics 2021; 37:3642-3644. [PMID: 33830205 DOI: 10.1093/bioinformatics/btab232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 11/14/2022] Open
Abstract
SUMMARY JavaScript-based Circos libraries have been widely implemented to generate interactive Circos plots in web applications. However, these libraries require either local installation, which requires the compilation of extra libraries, or extra data processing procedures to prepare input and configuration for each track of plot, which limits the utility and capability of integration with powerful R packages. In this report, we present interacCircos, an R package for creating interactive Circos plots through the integration of JavaScript-based libraries. interacCircos can simply and flexibly implement 14 track-plot functions and 7 auxiliary functions for presenting large-scale genomic data in interactive Circos plots. AVAILABILITY AND IMPLEMENTATION InteracCircos and its manual are freely available at https://github.com/mrcuizhe/interacCircos. The online documentation is available at https://mrcuizhe.github.io/interacCircos_documentation/index.html under the GPL license. We thank the teams of BioCircos.js, BioCircos.R, NGCircos and circosJS for sharing the code.
Collapse
Affiliation(s)
- Zhe Cui
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Ya Cui
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyi Zang
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yadong Wang
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| |
Collapse
|