1
|
Berezovsky A, Nuga O, Datta I, Bergman K, Sabedot T, Gurdziel K, Irtenkauf S, Hasselbach L, Meng Y, Mueller C, . Petricoin EF, Brown S, Purandare N, Aras S, Mikkelsen T, Poisson L, Noushmehr H, Ruden D, deCarvalho AC. Impact of developmental state, p53 status, and interferon signaling on glioblastoma cell response to radiation and temozolomide treatment. PLoS One 2025; 20:e0315171. [PMID: 39919036 PMCID: PMC11805374 DOI: 10.1371/journal.pone.0315171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/21/2024] [Indexed: 02/09/2025] Open
Abstract
Glioblastoma (GBM) tumors exhibit extensive genomic, epigenomic, and transcriptional diversity, with significant intratumoral heterogeneity, complicating standard treatment approaches involving radiation (RT) and the DNA-alkylating agent temozolomide (TMZ). In this study, we employed an integrative multi-omics approach, including targeted proteomics, transcriptomics, genomics, and DNA methylation profiling, to investigate the response of a representative panel of GBM patient-derived cancer stem cells (CSCs) to astrocytic differentiation and RT and TMZ treatments. Differentiated CSC progenies retained the expression of key stemness genes and survival pathways, while activating the BMP-Smad signaling pathway and upregulating extracellular matrix components. This was associated with increased resistance to TMZ, though not to RT, across all models. We identified TP53 status as a critical determinant of transcriptional response to both RT and TMZ, which was also modulated by the differentiation state and treatment modality in wildtype (wt) p53 GBM cells. Both mutant and wt p53 models exhibited significant activation of the DNA-damage associated interferon (IFN) response in CSCs and differentiated cells, implicating this pathway in the GBM response to therapy. We observed that activation of NF-κB was positively correlated with the levels of O-6-methylguanine-DNA methyltransferase (MGMT) protein, a direct DNA repair enzyme leading to TMZ resistance, regardless of MGMT promoter methylation status, further supporting the clinical potential for inhibition of NF-kB signaling in GBM treatment. Our integrative analysis of the impact of GBM cell developmental states, in the context of genomic and molecular diversity of patient-derived models, provides valuable insights for pre-clinical studies aimed at optimizing treatment strategies.
Collapse
Affiliation(s)
- Artem Berezovsky
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
| | - Oluwademilade Nuga
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan, United States of America
- Department of Pharmacology, Wayne State University, Detroit, Michigan, United States of America
| | - Indrani Datta
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan, United States of America
| | - Kimberly Bergman
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan, United States of America
| | - Thais Sabedot
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan, United States of America
| | - Katherine Gurdziel
- Department of Pharmacology, Wayne State University, Detroit, Michigan, United States of America
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Susan Irtenkauf
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan, United States of America
| | - Laura Hasselbach
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan, United States of America
| | - Yuling Meng
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan, United States of America
| | - Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Emanuel F. . Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Stephen Brown
- Department of Radiation Oncology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Neeraja Purandare
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Sidhesh Aras
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Tom Mikkelsen
- Precision Medicine Program, Henry Ford Health, Detroit, Michigan, United States of America
| | - Laila Poisson
- Department of Public Health, Henry Ford Health, Detroit, Michigan, United States of America
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan, United States of America
| | - Douglas Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Ana C. deCarvalho
- Department of Neurosurgery, Henry Ford Health, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University, Detroit, Michigan, United States of America
- Department of Pharmacology, Wayne State University, Detroit, Michigan, United States of America
- Department of Physiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
2
|
Nakamura K, Kitahashi T, Kogawa R, Yoshino Y, Ogura I. Definition of Synovial Mesenchymal Stem Cells for Meniscus Regeneration by the Mechanism of Action and General Amp1200 Gene Expression. Int J Mol Sci 2024; 25:10510. [PMID: 39408838 PMCID: PMC11476826 DOI: 10.3390/ijms251910510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The quality control (QC) of pharmaceutical-grade cell-therapy products, such as mesenchymal stem cells (MSCs), is challenging. Attempts to develop such products have been hampered by difficulties defining cell-type-specific characteristics and therapeutic mechanisms of action (MoAs). Although we have developed a cell therapy product, FF-31501, consisting of human synovial MSCs (SyMSCs), it was difficult to find specific markers for SyMSCs and to define the cells separately from other MSCs. The purpose of this study was to create a method for identifying and defining SyMSCs from other tissue-derived MSCs and to delve deeper into the mechanism of action of SyMSC-induced meniscus regeneration. Specifically, as a cell-type-dependent approach, we constructed a set of 1143 genes (Amp1200) reported to be associated with MSCs and established a method to evaluate them by correlating gene expression patterns. As a result, it was possible to define SyMSCs separately from other tissue-derived MSCs and non-MSCs. In addition, the gene expression analysis also highlighted TNSF-15. The in vivo rat model of meniscus injury found TNSF-15 to be an essential molecule for meniscus regeneration via SyMSC administration. This molecule and previously reported MoA molecules allowed an MoA-dependent approach to define the mechanism of action for SyMSCs. Therefore, SyMSCs for meniscus regeneration were defined by means of two approaches: the method to separate them from other MSCs and the identification of the MoA molecules. These approaches would be useful for the QC of cell therapy products.
Collapse
Affiliation(s)
- Kentaro Nakamura
- Bioscience & Engineering Laboratory, FUJIFILM Corporation, Ashigarakamigun 258-8577, Kanagawa, Japan; (T.K.); (R.K.); (Y.Y.); (I.O.)
| | | | | | | | | |
Collapse
|
3
|
Berezovsky A, Nuga O, Datta I, Bergman K, Sabedot T, Gurdziel K, Irtenkauf S, Hasselbach L, Meng Y, Mueller C, Petricoin EF, Brown S, Purandare N, Aras S, Mikkelsen T, Poisson L, Noushmehr H, Ruden D, deCarvalho AC. Impact of genomic background and developmental state on signaling pathways and response to therapy in glioblastoma patient-derived cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585115. [PMID: 39386580 PMCID: PMC11463645 DOI: 10.1101/2024.03.14.585115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Glioblastoma (GBM) tumors represents diverse genomic epigenomic, and transcriptional landscapes, with significant intratumoral heterogeneity that challenges standard of care treatments involving radiation (RT) and the DNA-alkylating agent temozolomide (TMZ). In this study, we employed targeted proteomics to assess the response of a genomically-diverse panel of GBM patient-derived cancer stem cells (CSCs) to astrocytic differentiation, growth factor withdrawal and traditional high fetal bovine serum culture. Our findings revealed a complex crosstalk and co-activation of key oncogenic signaling in CSCs and diverse patterns of response to these external stimuli. Using RNA sequencing and DNA methylation, we observed common adaptations in response to astrocytic differentiation of CSCs across genomically distinct models, including BMP-Smad pathway activation, reduced cholesterol biosynthesis, and upregulation of extracellular matrix components. Notably, we observed that these differentiated CSC progenies retained a subset of stemness genes and the activation of cell survival pathways. We also examined the impact of differentiation state and genomic background on GBM cell sensitivity and transcriptional response to TMZ and RT. Differentiation of CSCs increased resistance to TMZ but not to RT. While transcriptional responses to these treatments were predominantly regulated by p53 in wild-type p53 GBM cells, its transcriptional activity was modulated by the differentiation status and treatment modality. Both mutant and wild-type p53 models exhibited significant activation of a DNA-damage associated interferon response in CSCs and differentiated cells, suggesting this pathway may play a wider role in GBM response to TMZ and RT. Our integrative analysis of the impact of GBM cell developmental states, in the context of genomic and molecular diversity of patient-derived models, provides valuable insights for pre-clinical studies aimed at optimizing treatment strategies.
Collapse
|
4
|
Dhahri H, Saintilnord WN, Chandler D, Fondufe-Mittendorf YN. Beyond the Usual Suspects: Examining the Role of Understudied Histone Variants in Breast Cancer. Int J Mol Sci 2024; 25:6788. [PMID: 38928493 PMCID: PMC11203562 DOI: 10.3390/ijms25126788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The incorporation of histone variants has structural ramifications on nucleosome dynamics and stability. Due to their unique sequences, histone variants can alter histone-histone or histone-DNA interactions, impacting the folding of DNA around the histone octamer and the overall higher-order structure of chromatin fibers. These structural modifications alter chromatin compaction and accessibility of DNA by transcription factors and other regulatory proteins to influence gene regulatory processes such as DNA damage and repair, as well as transcriptional activation or repression. Histone variants can also generate a unique interactome composed of histone chaperones and chromatin remodeling complexes. Any of these perturbations can contribute to cellular plasticity and the progression of human diseases. Here, we focus on a frequently overlooked group of histone variants lying within the four human histone gene clusters and their contribution to breast cancer.
Collapse
Affiliation(s)
- Hejer Dhahri
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | - Wesley N. Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Edison Family Center of Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | | |
Collapse
|
5
|
Mou L, Wang TB, Wang X, Pu Z. Advancing diabetes treatment: the role of mesenchymal stem cells in islet transplantation. Front Immunol 2024; 15:1389134. [PMID: 38605972 PMCID: PMC11007079 DOI: 10.3389/fimmu.2024.1389134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Diabetes mellitus, a prevalent global health challenge, significantly impacts societal and economic well-being. Islet transplantation is increasingly recognized as a viable treatment for type 1 diabetes that aims to restore endogenous insulin production and mitigate complications associated with exogenous insulin dependence. We review the role of mesenchymal stem cells (MSCs) in enhancing the efficacy of islet transplantation. MSCs, characterized by their immunomodulatory properties and differentiation potential, are increasingly seen as valuable in enhancing islet graft survival, reducing immune-mediated rejection, and supporting angiogenesis and tissue repair. The utilization of MSC-derived extracellular vesicles further exemplifies innovative approaches to improve transplantation outcomes. However, challenges such as MSC heterogeneity and the optimization of therapeutic applications persist. Advanced methodologies, including artificial intelligence (AI) and single-cell RNA sequencing (scRNA-seq), are highlighted as potential technologies for addressing these challenges, potentially steering MSC therapy toward more effective, personalized treatment modalities for diabetes. This review revealed that MSCs are important for advancing diabetes treatment strategies, particularly through islet transplantation. This highlights the importance of MSCs in the field of regenerative medicine, acknowledging both their potential and the challenges that must be navigated to fully realize their therapeutic promise.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Endocrinology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Tony Bowei Wang
- Biology Department, Skidmore College, Saratoga Springs, NY, United States
| | - Xinyu Wang
- Department of Endocrinology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| | - Zuhui Pu
- Imaging Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|