1
|
Brodsky V, Ullah E, Bychkov A, Song AH, Walk EE, Louis P, Rasool G, Singh RS, Mahmood F, Bui MM, Parwani AV. Generative Artificial Intelligence in Anatomic Pathology. Arch Pathol Lab Med 2025; 149:298-318. [PMID: 39836377 DOI: 10.5858/arpa.2024-0215-ra] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
CONTEXT.— Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities. OBJECTIVE.— To explore the applications, benefits, and challenges of generative AI in anatomic pathology, with a focus on its impact on diagnostic processes, workflow efficiency, education, and research. DATA SOURCES.— A comprehensive review of current literature and recent advancements in the application of generative AI within anatomic pathology, categorized into unimodal and multimodal applications, and evaluated for clinical utility, ethical considerations, and future potential. CONCLUSIONS.— Generative AI demonstrates significant promise in various domains of anatomic pathology, including diagnostic accuracy enhanced through AI-driven image analysis, virtual staining, and synthetic data generation; workflow efficiency, with potential for improvement by automating routine tasks, quality control, and reflex testing; education and research, facilitated by AI-generated educational content, synthetic histology images, and advanced data analysis methods; and clinical integration, with preliminary surveys indicating cautious optimism for nondiagnostic AI tasks and growing engagement in academic settings. Ethical and practical challenges require rigorous validation, prompt engineering, federated learning, and synthetic data generation to help ensure trustworthy, reliable, and unbiased AI applications. Generative AI can potentially revolutionize anatomic pathology, enhancing diagnostic accuracy, improving workflow efficiency, and advancing education and research. Successful integration into clinical practice will require continued interdisciplinary collaboration, careful validation, and adherence to ethical standards to ensure the benefits of AI are realized while maintaining the highest standards of patient care.
Collapse
Affiliation(s)
- Victor Brodsky
- From the Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, Missouri (Brodsky)
| | - Ehsan Ullah
- the Department of Surgery, Health New Zealand, Counties Manukau, New Zealand (Ullah)
| | - Andrey Bychkov
- the Department of Pathology, Kameda Medical Center, Kamogawa City, Chiba Prefecture, Japan (Bychkov)
- the Department of Pathology, Nagasaki University, Nagasaki, Japan (Bychkov)
| | - Andrew H Song
- the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Song, Mahmood)
| | - Eric E Walk
- Office of the Chief Medical Officer, PathAI, Boston, Massachusetts (Walk)
| | - Peter Louis
- the Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey (Louis)
| | - Ghulam Rasool
- the Department of Oncologic Sciences, Morsani College of Medicine and Department of Electrical Engineering, University of South Florida, Tampa (Rasool)
- the Department of Machine Learning, Moffitt Cancer Center and Research Institute, Tampa, Florida (Rasool)
- Department of Machine Learning, Neuro-Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida (Rasool)
| | - Rajendra S Singh
- Dermatopathology and Digital Pathology, Summit Health, Berkley Heights, New Jersey (Singh)
| | - Faisal Mahmood
- the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Song, Mahmood)
| | - Marilyn M Bui
- Department of Machine Learning, Pathology, Moffitt Cancer Center and Research Institute, Tampa, Florida (Bui)
| | - Anil V Parwani
- the Department of Pathology, The Ohio State University, Columbus (Parwani)
| |
Collapse
|
2
|
Refahi M, Sokhansanj BA, Mell JC, Brown JR, Yoo H, Hearne G, Rosen GL. Enhancing nucleotide sequence representations in genomic analysis with contrastive optimization. Commun Biol 2025; 8:517. [PMID: 40155693 PMCID: PMC11953366 DOI: 10.1038/s42003-025-07902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/07/2025] [Indexed: 04/01/2025] Open
Abstract
Analysis of genomic and metagenomic sequences is inherently more challenging than that of amino acid sequences due to the higher divergence among evolutionarily related nucleotide sequences, variable k-mer and codon usage within and among genomes of diverse species, and poorly understood selective constraints. We introduce Scorpio (Sequence Contrastive Optimization for Representation and Predictive Inference on DNA), a versatile framework designed for nucleotide sequences that employ contrastive learning to improve embeddings. By leveraging pre-trained genomic language models and k-mer frequency embeddings, Scorpio demonstrates competitive performance in diverse applications, including taxonomic and gene classification, antimicrobial resistance (AMR) gene identification, and promoter detection. A key strength of Scorpio is its ability to generalize to novel DNA sequences and taxa, addressing a significant limitation of alignment-based methods. Scorpio has been tested on multiple datasets with DNA sequences of varying lengths (long and short) and shows robust inference capabilities. Additionally, we provide an analysis of the biological information underlying this representation, including correlations between codon adaptation index as a gene expression factor, sequence similarity, and taxonomy, as well as the functional and structural information of genes.
Collapse
Affiliation(s)
| | - Bahrad A Sokhansanj
- Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Joshua C Mell
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - James R Brown
- Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Hyunwoo Yoo
- Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Gavin Hearne
- Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - Gail L Rosen
- Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Herazo-Álvarez J, Mora M, Cuadros-Orellana S, Vilches-Ponce K, Hernández-García R. A review of neural networks for metagenomic binning. Brief Bioinform 2025; 26:bbaf065. [PMID: 40131312 PMCID: PMC11934572 DOI: 10.1093/bib/bbaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/02/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
One of the main goals of metagenomic studies is to describe the taxonomic diversity of microbial communities. A crucial step in metagenomic analysis is metagenomic binning, which involves the (supervised) classification or (unsupervised) clustering of metagenomic sequences. Various machine learning models have been applied to address this task. In this review, the contributions of artificial neural networks (ANN) in the context of metagenomic binning are detailed, addressing both supervised, unsupervised, and semi-supervised approaches. 34 ANN-based binning tools are systematically compared, detailing their architectures, input features, datasets, advantages, disadvantages, and other relevant aspects. The findings reveal that deep learning approaches, such as convolutional neural networks and autoencoders, achieve higher accuracy and scalability than traditional methods. Gaps in benchmarking practices are highlighted, and future directions are proposed, including standardized datasets and optimization of architectures, for third-generation sequencing. This review provides support to researchers in identifying trends and selecting suitable tools for the metagenomic binning problem.
Collapse
Affiliation(s)
- Jair Herazo-Álvarez
- Doctorado en Modelamiento Matemático Aplicado, Universidad Católica del Maule, Talca, Maule 3480564, Chile
- Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule, Talca, Maule 3480564, Chile
| | - Marco Mora
- Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule, Talca, Maule 3480564, Chile
- Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca, Maule 3480564, Chile
| | - Sara Cuadros-Orellana
- Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule, Talca, Maule 3480564, Chile
- Centro de Biotecnología de los Recursos Naturales (CENBio), Universidad Católica del Maule, Talca, Maule 3480564, Chile
| | - Karina Vilches-Ponce
- Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule, Talca, Maule 3480564, Chile
| | - Ruber Hernández-García
- Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule, Talca, Maule 3480564, Chile
- Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca, Maule 3480564, Chile
| |
Collapse
|
4
|
Duan C, Zang Z, Xu Y, He H, Li S, Liu Z, Lei Z, Zheng JS, Li SZ. FGeneBERT: function-driven pre-trained gene language model for metagenomics. Brief Bioinform 2025; 26:bbaf149. [PMID: 40211978 PMCID: PMC11986344 DOI: 10.1093/bib/bbaf149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/22/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025] Open
Abstract
Metagenomic data, comprising mixed multi-species genomes, are prevalent in diverse environments like oceans and soils, significantly impacting human health and ecological functions. However, current research relies on K-mer, which limits the capture of structurally and functionally relevant gene contexts. Moreover, these approaches struggle with encoding biologically meaningful genes and fail to address the one-to-many and many-to-one relationships inherent in metagenomic data. To overcome these challenges, we introduce FGeneBERT, a novel metagenomic pre-trained model that employs a protein-based gene representation as a context-aware and structure-relevant tokenizer. FGeneBERT incorporates masked gene modeling to enhance the understanding of inter-gene contextual relationships and triplet enhanced metagenomic contrastive learning to elucidate gene sequence-function relationships. Pre-trained on over 100 million metagenomic sequences, FGeneBERT demonstrates superior performance on metagenomic datasets at four levels, spanning gene, functional, bacterial, and environmental levels and ranging from 1 to 213 k input sequences. Case studies of ATP synthase and gene operons highlight FGeneBERT's capability for functional recognition and its biological relevance in metagenomic research.
Collapse
Affiliation(s)
- Chenrui Duan
- College of Computer Science and Technology, Zhejiang University, No. 866, Yuhangtang Road, 310058 Zhejiang, P. R. China
- School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| | - Zelin Zang
- Centre for Artificial Intelligence and Robotics (CAIR), HKISI-CAS Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 310000, China
| | - Yongjie Xu
- College of Computer Science and Technology, Zhejiang University, No. 866, Yuhangtang Road, 310058 Zhejiang, P. R. China
- School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| | - Hang He
- School of Medicine and School of Life Sciences, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| | - Siyuan Li
- College of Computer Science and Technology, Zhejiang University, No. 866, Yuhangtang Road, 310058 Zhejiang, P. R. China
- School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| | - Zihan Liu
- College of Computer Science and Technology, Zhejiang University, No. 866, Yuhangtang Road, 310058 Zhejiang, P. R. China
- School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| | - Zhen Lei
- Centre for Artificial Intelligence and Robotics (CAIR), HKISI-CAS Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 310000, China
- State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS), Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Ju-Sheng Zheng
- School of Medicine and School of Life Sciences, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| | - Stan Z Li
- School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P. R. China
| |
Collapse
|
5
|
Przymus P, Rykaczewski K, Martín-Segura A, Truu J, Carrillo De Santa Pau E, Kolev M, Naskinova I, Gruca A, Sampri A, Frohme M, Nechyporenko A. Deep learning in microbiome analysis: a comprehensive review of neural network models. Front Microbiol 2025; 15:1516667. [PMID: 39911715 PMCID: PMC11794229 DOI: 10.3389/fmicb.2024.1516667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 02/07/2025] Open
Abstract
Microbiome research, the study of microbial communities in diverse environments, has seen significant advances due to the integration of deep learning (DL) methods. These computational techniques have become essential for addressing the inherent complexity and high-dimensionality of microbiome data, which consist of different types of omics datasets. Deep learning algorithms have shown remarkable capabilities in pattern recognition, feature extraction, and predictive modeling, enabling researchers to uncover hidden relationships within microbial ecosystems. By automating the detection of functional genes, microbial interactions, and host-microbiome dynamics, DL methods offer unprecedented precision in understanding microbiome composition and its impact on health, disease, and the environment. However, despite their potential, deep learning approaches face significant challenges in microbiome research. Additionally, the biological variability in microbiome datasets requires tailored approaches to ensure robust and generalizable outcomes. As microbiome research continues to generate vast and complex datasets, addressing these challenges will be crucial for advancing microbiological insights and translating them into practical applications with DL. This review provides an overview of different deep learning models in microbiome research, discussing their strengths, practical uses, and implications for future studies. We examine how these models are being applied to solve key problems and highlight potential pathways to overcome current limitations, emphasizing the transformative impact DL could have on the field moving forward.
Collapse
Affiliation(s)
- Piotr Przymus
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń, Toruń, Pomeranian, Poland
| | - Krzysztof Rykaczewski
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń, Toruń, Pomeranian, Poland
| | | | - Jaak Truu
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | - Mikhail Kolev
- Department of Mathematics, University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria
- Department of Applied Computer Science and Mathematical Modeling, Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Irina Naskinova
- Department of Mathematics, University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria
| | - Aleksandra Gruca
- Department of Computer Networks and Systems, Silesian University of Technology, Gliwice, Poland
| | - Alexia Sampri
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Marcus Frohme
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Brandenburg, Germany
| | - Alina Nechyporenko
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Brandenburg, Germany
- Department of System Engineering, Kharkiv National University of Radioelectronics, Kharkiv, Ukraine
| |
Collapse
|
6
|
Kutuzova S, Nielsen M, Piera P, Nissen JN, Rasmussen S. Taxometer: Improving taxonomic classification of metagenomics contigs. Nat Commun 2024; 15:8357. [PMID: 39333501 PMCID: PMC11437175 DOI: 10.1038/s41467-024-52771-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
For taxonomy based classification of metagenomics assembled contigs, current methods use sequence similarity to identify their most likely taxonomy. However, in the related field of metagenomic binning, contigs are routinely clustered using information from both the contig sequences and their abundance. We introduce Taxometer, a neural network based method that improves the annotations and estimates the quality of any taxonomic classifier using contig abundance profiles and tetra-nucleotide frequencies. We apply Taxometer to five short-read CAMI2 datasets and find that it increases the average share of correct species-level contig annotations of the MMSeqs2 tool from 66.6% to 86.2%. Additionally, it reduce the share of wrong species-level annotations in the CAMI2 Rhizosphere dataset by an average of two-fold for Metabuli, Centrifuge, and Kraken2. Futhermore, we use Taxometer for benchmarking taxonomic classifiers on two complex long-read metagenomics data sets where ground truth is not known. Taxometer is available as open-source software and can enhance any taxonomic annotation of metagenomic contigs.
Collapse
Affiliation(s)
- Svetlana Kutuzova
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, Copenhagen, 2100, Denmark
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3A, Copenhagen, 2200, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, Copenhagen, 2200, Denmark
| | - Mads Nielsen
- Department of Computer Science, University of Copenhagen, Universitetsparken 1, Copenhagen, 2100, Denmark
| | - Pau Piera
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3A, Copenhagen, 2200, Denmark
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, Copenhagen, 2200, Denmark
| | - Jakob Nybo Nissen
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3A, Copenhagen, 2200, Denmark.
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, Copenhagen, 2200, Denmark.
| | - Simon Rasmussen
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3A, Copenhagen, 2200, Denmark.
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, Copenhagen, 2200, Denmark.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA.
| |
Collapse
|
7
|
Schmidt B, Hildebrandt A. From GPUs to AI and quantum: three waves of acceleration in bioinformatics. Drug Discov Today 2024; 29:103990. [PMID: 38663581 DOI: 10.1016/j.drudis.2024.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
The enormous growth in the amount of data generated by the life sciences is continuously shifting the field from model-driven science towards data-driven science. The need for efficient processing has led to the adoption of massively parallel accelerators such as graphics processing units (GPUs). Consequently, the development of bioinformatics methods nowadays often heavily depends on the effective use of these powerful technologies. Furthermore, progress in computational techniques and architectures continues to be highly dynamic, involving novel deep neural network models and artificial intelligence (AI) accelerators, and potentially quantum processing units in the future. These are expected to be disruptive for the life sciences as a whole and for drug discovery in particular. Here, we identify three waves of acceleration and their applications in a bioinformatics context: (i) GPU computing, (ii) AI and (iii) next-generation quantum computers.
Collapse
Affiliation(s)
- Bertil Schmidt
- Institut für Informatik, Johannes Gutenberg University, Mainz, Germany.
| | | |
Collapse
|