1
|
Zahin T, Abrar MH, Jewel MR, Tasnim T, Bayzid MS, Rahman A. An alignment-free method for phylogeny estimation using maximum likelihood. BMC Bioinformatics 2025; 26:77. [PMID: 40055594 PMCID: PMC11887328 DOI: 10.1186/s12859-025-06080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/10/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND While alignment has traditionally been the primary approach for establishing homology prior to phylogenetic inference, alignment-free methods offer a simplified alternative, particularly beneficial when handling genome-wide data involving long sequences and complex events such as rearrangements. Moreover, alignment-free methods become crucial for data types like genome skims, where assembly is impractical. However, despite these benefits, alignment-free techniques have not gained widespread acceptance since they lack the accuracy of alignment-based techniques, primarily due to their reliance on simplified models of pairwise distance calculation. RESULTS Here, we present a likelihood based alignment-free technique for phylogenetic tree construction. We encode the presence or absence of k-mers in genome sequences in a binary matrix, and estimate phylogenetic trees using a maximum likelihood approach. A likelihood based alignment-free method for phylogeny estimation is implemented for the first time in a software named PEAFOWL, which is available at: https://github.com/hasin-abrar/Peafowl-repo . We analyze the performance of our method on seven real datasets and compare the results with the state of the art alignment-free methods. CONCLUSIONS Results suggest that our method is competitive with existing alignment-free tools. This indicates that maximum likelihood based alignment-free methods may in the future be refined to outperform alignment-free methods relying on distance calculation as has been the case in the alignment-based setting.
Collapse
Affiliation(s)
- Tasfia Zahin
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh
| | - Md Hasin Abrar
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh
| | - Mizanur Rahman Jewel
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh
| | - Tahrina Tasnim
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh
| | - Md Shamsuzzoha Bayzid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh
| | - Atif Rahman
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.
| |
Collapse
|
2
|
Mian E, Petrucci E, Pizzi C, Comin M. MISSH: Fast Hashing of Multiple Spaced Seeds. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2330-2339. [PMID: 39320990 DOI: 10.1109/tcbb.2024.3467368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Alignment-free analysis of sequences has revolutionized the high-throughput processing of sequencing data within numerous bioinformatics pipelines. Hashing -mers represents a common function across various alignment-free applications, serving as a crucial tool for indexing, querying, and rapid similarity searching. More recently, spaced seeds, a specialized pattern that accommodates errors or mutations, have become a standard choice over traditional -mers. Spaced seeds offer enhanced sensitivity in many applications when compared to -mers. However, it's important to note that hashing spaced seeds significantly increases computational time. Furthermore, if multiple spaced seeds are employed, accuracy can be further improved, albeit at the expense of longer processing times. This paper addresses the challenge of efficiently hashing multiple spaced seeds. The proposed algorithms leverage the similarity of adjacent spaced seed hash values within an input sequence, allowing for the swift computation of subsequent hashes. Our experimental results, conducted across various tests, demonstrate a remarkable performance improvement over previously suggested algorithms, with potential speedups of up to 20 times. Additionally, we apply these efficient spaced seed hashing algorithms to a metagenomic application, specifically the classification of reads using Clark-S (Ounit and Lonardi, 2016). Our findings reveal a substantial speedup, effectively mitigating the slowdown caused by the utilization of multiple spaced seeds.
Collapse
|
3
|
Islam R, Rahman A. An alignment-free method for detection of missing regions for phylogenetic analysis. Heliyon 2024; 10:e32227. [PMID: 38933968 PMCID: PMC11200290 DOI: 10.1016/j.heliyon.2024.e32227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Phylogenetic tree estimation using conventional approaches usually requires pairwise or multiple sequence alignment. However, sequence alignment has difficulties related to scalability and accuracy in case of long sequences such as whole genomes, low sequence identity, and in presence of genomic rearrangements. To address these issues, alignment-free approaches have been proposed. While these methods have demonstrated promising results, many of these lead to errors when regions are missing from the sequences of one or more species that are trivially detected in alignment-based methods. Here, we present an alignment-free method for detecting missing regions in sequences of species for which phylogeny is to be estimated. It is based on counts of k-mers and can be used to filter out k-mers belonging to regions in one species that are missing in one or more of the other species. We perform experiments with real and simulated datasets containing missing regions and find that it can successfully detect a large fraction of such k-mers and can lead to improvements in the estimated phylogenies. Our method can be used in k-mer based alignment-free phylogeny estimation methods to filter out k-mers corresponding to missing regions.
Collapse
Affiliation(s)
- Rubyeat Islam
- Department of Computer Science and Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | - Atif Rahman
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
4
|
Bohnsack KS, Kaden M, Abel J, Villmann T. Alignment-Free Sequence Comparison: A Systematic Survey From a Machine Learning Perspective. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:119-135. [PMID: 34990369 DOI: 10.1109/tcbb.2022.3140873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The encounter of large amounts of biological sequence data generated during the last decades and the algorithmic and hardware improvements have offered the possibility to apply machine learning techniques in bioinformatics. While the machine learning community is aware of the necessity to rigorously distinguish data transformation from data comparison and adopt reasonable combinations thereof, this awareness is often lacking in the field of comparative sequence analysis. With realization of the disadvantages of alignments for sequence comparison, some typical applications use more and more so-called alignment-free approaches. In light of this development, we present a conceptual framework for alignment-free sequence comparison, which highlights the delineation of: 1) the sequence data transformation comprising of adequate mathematical sequence coding and feature generation, from 2) the subsequent (dis-)similarity evaluation of the transformed data by means of problem-specific but mathematically consistent proximity measures. We consider coding to be an information-loss free data transformation in order to get an appropriate representation, whereas feature generation is inevitably information-lossy with the intention to extract just the task-relevant information. This distinction sheds light on the plethora of methods available and assists in identifying suitable methods in machine learning and data analysis to compare the sequences under these premises.
Collapse
|
5
|
Silva JM, Pratas D, Caetano T, Matos S. The complexity landscape of viral genomes. Gigascience 2022; 11:giac079. [PMID: 35950839 PMCID: PMC9366995 DOI: 10.1093/gigascience/giac079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/25/2022] [Accepted: 07/26/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Viruses are among the shortest yet highly abundant species that harbor minimal instructions to infect cells, adapt, multiply, and exist. However, with the current substantial availability of viral genome sequences, the scientific repertory lacks a complexity landscape that automatically enlights viral genomes' organization, relation, and fundamental characteristics. RESULTS This work provides a comprehensive landscape of the viral genome's complexity (or quantity of information), identifying the most redundant and complex groups regarding their genome sequence while providing their distribution and characteristics at a large and local scale. Moreover, we identify and quantify inverted repeats abundance in viral genomes. For this purpose, we measure the sequence complexity of each available viral genome using data compression, demonstrating that adequate data compressors can efficiently quantify the complexity of viral genome sequences, including subsequences better represented by algorithmic sources (e.g., inverted repeats). Using a state-of-the-art genomic compressor on an extensive viral genomes database, we show that double-stranded DNA viruses are, on average, the most redundant viruses while single-stranded DNA viruses are the least. Contrarily, double-stranded RNA viruses show a lower redundancy relative to single-stranded RNA. Furthermore, we extend the ability of data compressors to quantify local complexity (or information content) in viral genomes using complexity profiles, unprecedently providing a direct complexity analysis of human herpesviruses. We also conceive a features-based classification methodology that can accurately distinguish viral genomes at different taxonomic levels without direct comparisons between sequences. This methodology combines data compression with simple measures such as GC-content percentage and sequence length, followed by machine learning classifiers. CONCLUSIONS This article presents methodologies and findings that are highly relevant for understanding the patterns of similarity and singularity between viral groups, opening new frontiers for studying viral genomes' organization while depicting the complexity trends and classification components of these genomes at different taxonomic levels. The whole study is supported by an extensive website (https://asilab.github.io/canvas/) for comprehending the viral genome characterization using dynamic and interactive approaches.
Collapse
Affiliation(s)
- Jorge Miguel Silva
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diogo Pratas
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Department of Electronics Telecommunications and Informatics, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
- Department of Virology, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Tânia Caetano
- Department of Biology, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Sérgio Matos
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Department of Electronics Telecommunications and Informatics, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Birth N, Dencker T, Morgenstern B. Insertions and deletions as phylogenetic signal in an alignment-free context. PLoS Comput Biol 2022; 18:e1010303. [PMID: 35939516 PMCID: PMC9387925 DOI: 10.1371/journal.pcbi.1010303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 08/18/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Most methods for phylogenetic tree reconstruction are based on sequence alignments; they infer phylogenies from substitutions that may have occurred at the aligned sequence positions. Gaps in alignments are usually not employed as phylogenetic signal. In this paper, we explore an alignment-free approach that uses insertions and deletions (indels) as an additional source of information for phylogeny inference. For a set of four or more input sequences, we generate so-called quartet blocks of four putative homologous segments each. For pairs of such quartet blocks involving the same four sequences, we compare the distances between the two blocks in these sequences, to obtain hints about indels that may have happened between the blocks since the respective four sequences have evolved from their last common ancestor. A prototype implementation that we call Gap-SpaM is presented to infer phylogenetic trees from these data, using a quartet-tree approach or, alternatively, under the maximum-parsimony paradigm. This approach should not be regarded as an alternative to established methods, but rather as a complementary source of phylogenetic information. Interestingly, however, our software is able to produce phylogenetic trees from putative indels alone that are comparable to trees obtained with existing alignment-free methods. Phylogenetic tree inference based on DNA or protein sequence comparison is a fundamental task in computational biology. Given a multiple alignment of a set of input sequences, most approaches compare aligned sequence positions to each other, to find a suitable tree, based on a model of molecular evolution. Insertions and deletions that may have happened since the input sequences evolved from their last common ancestor are ignored by most phylogeny methods. Herein, we show that insertions and deletions can provide an additional source of information for phylogeny inference, and that such information can be obtained with a simple alignment-free approach. We provide an implementation of this idea that we call Gap-SpaM. The proposed approach is complementary to existing phylogeny methods since it is based on a completely different source of information. It is, thus, not meant to be an alternative to those existing methods but rather as a possible additional source of information for tree inference.
Collapse
Affiliation(s)
- Niklas Birth
- Department of Bioinformatics, Institute of Microbiology and Genetics, Universisät Göttingen, Göttingen, Germany
| | - Thomas Dencker
- Department of Bioinformatics, Institute of Microbiology and Genetics, Universisät Göttingen, Göttingen, Germany
| | - Burkhard Morgenstern
- Department of Bioinformatics, Institute of Microbiology and Genetics, Universisät Göttingen, Göttingen, Germany
- Göttingen Center of Molecular Biosciences (GZMB), Göttingen, Germany
- Campus-Institute Data Science (CIDAS), Göttingen, Germany
- * E-mail:
| |
Collapse
|
7
|
Sequence Comparison Without Alignment: The SpaM Approaches. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2231:121-134. [PMID: 33289890 DOI: 10.1007/978-1-0716-1036-7_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sequence alignment is at the heart of DNA and protein sequence analysis. For the data volumes that are nowadays produced by massively parallel sequencing technologies, however, pairwise and multiple alignment methods are often too slow. Therefore, fast alignment-free approaches to sequence comparison have become popular in recent years. Most of these approaches are based on word frequencies, for words of a fixed length, or on word-matching statistics. Other approaches are using the length of maximal word matches. While these methods are very fast, most of them rely on ad hoc measures of sequences similarity or dissimilarity that are hard to interpret. In this chapter, I describe a number of alignment-free methods that we developed in recent years. Our approaches are based on spaced-word matches ("SpaM"), i.e. on inexact word matches, that are allowed to contain mismatches at certain pre-defined positions. Unlike most previous alignment-free approaches, our approaches are able to accurately estimate phylogenetic distances between DNA or protein sequences using a stochastic model of molecular evolution.
Collapse
|
8
|
Petrillo UF, Palini F, Cattaneo G, Giancarlo R. Alignment-free Genomic Analysis via a Big Data Spark Platform. Bioinformatics 2021; 37:1658-1665. [PMID: 33471066 DOI: 10.1093/bioinformatics/btab014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Alignment-free distance and similarity functions (AF functions, for short) are a well established alternative to pairwise and multiple sequence alignments for many genomic, metagenomic and epigenomic tasks. Due to data-intensive applications, the computation of AF functions is a Big Data problem, with the recent literature indicating that the development of fast and scalable algorithms computing AF functions is a high-priority task. Somewhat surprisingly, despite the increasing popularity of Big Data technologies in computational biology, the development of a Big Data platform for those tasks has not been pursued, possibly due to its complexity. RESULTS We fill this important gap by introducing FADE, the first extensible, efficient and scalable Spark platform for alignment-free genomic analysis. It supports natively eighteen of the best performing AF functions coming out of a recent hallmark benchmarking study. FADE development and potential impact comprises novel aspects of interest. Namely, (a) a considerable effort of distributed algorithms, the most tangible result being a much faster execution time of reference methods like MASH and FSWM; (b) a software design that makes FADE user-friendly and easily extendable by Spark non-specialists; (c) its ability to support data- and compute-intensive tasks. About this, we provide a novel and much needed analysis of how informative and robust AF functions are, in terms of the statistical significance of their output. Our findings naturally extend the ones of the highly regarded benchmarking study, since the functions that can really be used are reduced to a handful of the eighteen included in FADE. AVAILABILITY The software and the datasets are available at https://github.com/fpalini/fade. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Francesco Palini
- Dipartimento di Scienze Statistiche, Università di Roma - La Sapienza, Rome, 00185, Italy
| | - Giuseppe Cattaneo
- Dipartimento di Informatica, Università di Salerno, Fisciano (SA), 84084, Italy
| | - Raffaele Giancarlo
- Dipartimento di Matematica ed Informatica, Università di Palermo, Palermo, 90133, Italy
| |
Collapse
|
9
|
Röhling S, Linne A, Schellhorn J, Hosseini M, Dencker T, Morgenstern B. The number of k-mer matches between two DNA sequences as a function of k and applications to estimate phylogenetic distances. PLoS One 2020; 15:e0228070. [PMID: 32040534 PMCID: PMC7010260 DOI: 10.1371/journal.pone.0228070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
We study the number Nk of length-k word matches between pairs of evolutionarily related DNA sequences, as a function of k. We show that the Jukes-Cantor distance between two genome sequences-i.e. the number of substitutions per site that occurred since they evolved from their last common ancestor-can be estimated from the slope of a function F that depends on Nk and that is affine-linear within a certain range of k. Integers kmin and kmax can be calculated depending on the length of the input sequences, such that the slope of F in the relevant range can be estimated from the values F(kmin) and F(kmax). This approach can be generalized to so-called Spaced-word Matches (SpaM), where mismatches are allowed at positions specified by a user-defined binary pattern. Based on these theoretical results, we implemented a prototype software program for alignment-free sequence comparison called Slope-SpaM. Test runs on real and simulated sequence data show that Slope-SpaM can accurately estimate phylogenetic distances for distances up to around 0.5 substitutions per position. The statistical stability of our results is improved if spaced words are used instead of contiguous words. Unlike previous alignment-free methods that are based on the number of (spaced) word matches, Slope-SpaM produces accurate results, even if sequences share only local homologies.
Collapse
Affiliation(s)
- Sophie Röhling
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
| | - Alexander Linne
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
| | - Jendrik Schellhorn
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
| | | | - Thomas Dencker
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
| | - Burkhard Morgenstern
- University of Göttingen, Department of Bioinformatics, Göttingen, Germany
- Göttingen Center of Molecular Biosciences (GZMB), Göttingen, Germany
| |
Collapse
|