1
|
Pérez P, Manasova D, Hermann B, Raimondo F, Rohaut B, Bekinschtein TA, Naccache L, Arzi A, Sitt JD. Content-state dimensions characterize different types of neuronal markers of consciousness. Neurosci Conscious 2024; 2024:niae027. [PMID: 39011546 PMCID: PMC11246840 DOI: 10.1093/nc/niae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 07/17/2024] Open
Abstract
Identifying the neuronal markers of consciousness is key to supporting the different scientific theories of consciousness. Neuronal markers of consciousness can be defined to reflect either the brain signatures underlying specific conscious content or those supporting different states of consciousness, two aspects traditionally studied separately. In this paper, we introduce a framework to characterize markers according to their dynamics in both the "state" and "content" dimensions. The 2D space is defined by the marker's capacity to distinguish the conscious states from non-conscious states (on the x-axis) and the content (e.g. perceived versus unperceived or different levels of cognitive processing on the y-axis). According to the sign of the x- and y-axis, markers are separated into four quadrants in terms of how they distinguish the state and content dimensions. We implement the framework using three types of electroencephalography markers: markers of connectivity, markers of complexity, and spectral summaries. The neuronal markers of state are represented by the level of consciousness in (i) healthy participants during a nap and (ii) patients with disorders of consciousness. On the other hand, the neuronal markers of content are represented by (i) the conscious content in healthy participants' perception task using a visual awareness paradigm and (ii) conscious processing of hierarchical regularities using an auditory local-global paradigm. In both cases, we see separate clusters of markers with correlated and anticorrelated dynamics, shedding light on the complex relationship between the state and content of consciousness and emphasizing the importance of considering them simultaneously. This work presents an innovative framework for studying consciousness by examining neuronal markers in a 2D space, providing a valuable resource for future research, with potential applications using diverse experimental paradigms, neural recording techniques, and modeling investigations.
Collapse
Affiliation(s)
- Pauline Pérez
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Hospice Civils de Lyon—HCL, Département anesthésie-réanimation, Hôpital Edouard Herriot
- Neuro ICU, DMU Neurosciences, AP-HP, Hôpital de la Pitié Salpêtrière, Paris 75013, France
| | - Dragana Manasova
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Université Paris Cité, Paris 75006, France
| | - Bertrand Hermann
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Université Paris Cité, Paris 75006, France
- Medical Intensive Care Unit, HEGP Hôpital, Assistance Publique—Hôpitaux de Paris-Centre (APHP-Centre), Paris 75015, France
| | - Federico Raimondo
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich 52428, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Dusseldorf 40225, Germany
| | - Benjamin Rohaut
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Neuro ICU, DMU Neurosciences, AP-HP, Hôpital de la Pitié Salpêtrière, Paris 75013, France
| | - Tristán A Bekinschtein
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Lionel Naccache
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- AP-HP, Hôpital Pitié-Salpêtrière, Service de Neurophysiologie Clinique, Paris 75013, France
| | - Anat Arzi
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
- Consciousness and Cognition Lab, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada and Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacobo D Sitt
- Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, Sorbonne Université, Paris 75013, France
| |
Collapse
|
2
|
Naccache L, Munoz-Musat E. A global neuronal workspace model of functional neurological disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2024; 26:1-23. [PMID: 38767966 PMCID: PMC11107854 DOI: 10.1080/19585969.2024.2340131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/03/2024] [Indexed: 05/22/2024]
Abstract
We introduce here a general model of Functional Neurological Disorders based on the following hypothesis: a Functional Neurological Disorder could correspond to a consciously initiated voluntary top-down process causing involuntary lasting consequences that are consciously experienced and subjectively interpreted by the patient as involuntary. We develop this central hypothesis according to Global Neuronal Workspace theory of consciousness, that is particularly suited to describe interactions between conscious and non-conscious cognitive processes. We then present a list of predictions defining a research program aimed at empirically testing their validity. Finally, this general model leads us to reinterpret the long-debated links between hypnotic suggestion and functional neurological disorders. Driven by both scientific and therapeutic goals, this theoretical paper aims at bringing closer the psychiatric and neurological worlds of functional neurological disorders with the latest developments of cognitive neuroscience of consciousness.
Collapse
Affiliation(s)
- Lionel Naccache
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France- Sorbonne Université, UPMC Univ Paris 06, Faculté de Médecine Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Department of Neurology, AP-HP, Hôpital Groupe hospitalier Pitié-Salpêtrière, DMU Neurosciences, Paris, France
- Department of Clinical Neurophysiology, AP-HP, Hôpital Groupe hospitalier Pitié-Salpêtrière, DMU Neurosciences, Paris, France
| | - Esteban Munoz-Musat
- Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France- Sorbonne Université, UPMC Univ Paris 06, Faculté de Médecine Pitié-Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Bayne T, Seth AK, Massimini M, Shepherd J, Cleeremans A, Fleming SM, Malach R, Mattingley JB, Menon DK, Owen AM, Peters MAK, Razi A, Mudrik L. Tests for consciousness in humans and beyond. Trends Cogn Sci 2024; 28:454-466. [PMID: 38485576 DOI: 10.1016/j.tics.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 05/12/2024]
Abstract
Which systems/organisms are conscious? New tests for consciousness ('C-tests') are urgently needed. There is persisting uncertainty about when consciousness arises in human development, when it is lost due to neurological disorders and brain injury, and how it is distributed in nonhuman species. This need is amplified by recent and rapid developments in artificial intelligence (AI), neural organoids, and xenobot technology. Although a number of C-tests have been proposed in recent years, most are of limited use, and currently we have no C-tests for many of the populations for which they are most critical. Here, we identify challenges facing any attempt to develop C-tests, propose a multidimensional classification of such tests, and identify strategies that might be used to validate them.
Collapse
Affiliation(s)
- Tim Bayne
- Department of Philosophy, Monash University, Melbourne, VIC, Australia; Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada.
| | - Anil K Seth
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Sussex Centre for Consciousness Science and School of Engineering and Informatics, University of Sussex, Brighton, UK
| | - Marcello Massimini
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Department of Biomedical and Clinical Science, University of Milan, Milan, Italy; IRCCS Fondazione Don Gnocchi
| | - Joshua Shepherd
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Universitat Autònoma de Barcelona, Belleterra, Spain; ICREA, Barcelona, Spain
| | - Axel Cleeremans
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Center for Research in Cognition and Neuroscience, ULB Institute of Neuroscience, Université libre de Bruxelles, Brussels, Belgium
| | - Stephen M Fleming
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Department of Experimental Psychology, University College London, London, UK; Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Rafael Malach
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; The Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jason B Mattingley
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Queensland Brain Institute and School of Psychology, The University of Queensland, Brisbane, QLD, Australia
| | - David K Menon
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; University of Western Ontario, London, ON, Canada
| | - Megan A K Peters
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; University of California, Irvine, Irvine, CA, USA
| | - Adeel Razi
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia; Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Liad Mudrik
- Canadian Institute for Advanced Research (CIFAR), Brain, Mind, and Consciousness Program, Toronto, ON, Canada; School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Young MJ. Disorders of Consciousness Rehabilitation: Ethical Dimensions and Epistemic Dilemmas. Phys Med Rehabil Clin N Am 2024; 35:209-221. [PMID: 37993190 DOI: 10.1016/j.pmr.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Patients with disorders of consciousness who survive to discharge following severe acute brain injury may face profoundly complex medical, ethical, and psychosocial challenges during their courses of recovery and rehabilitation. Although issues encountered in caring for such patients during acute hospitalization have received substantial attention, ethical challenges that may arise in subacute and chronic phases have been underexplored. Shedding light on these issues, this article explores the landscape of normative issues in the course of treating and facilitating access to care for persons with disorders of consciousness during rehabilitation and examines potential implications for patients, clinicians, family members, and society.
Collapse
Affiliation(s)
- Michael J Young
- Department of Neurology, Massachusetts General Hospital, Center for Neurotechnology and Neurorecovery, 101 Merrimac Street, Suite 310, Boston, MA 02114, USA.
| |
Collapse
|
5
|
Abstract
Covert consciousness is a state of residual awareness following severe brain injury or neurological disorder that evades routine bedside behavioral detection. Patients with covert consciousness have preserved awareness but are incapable of self-expression through ordinary means of behavior or communication. Growing recognition of the limitations of bedside neurobehavioral examination in reliably detecting consciousness, along with advances in neurotechnologies capable of detecting brain states or subtle signs indicative of consciousness not discernible by routine examination, carry promise to transform approaches to classifying, diagnosing, prognosticating and treating disorders of consciousness. Here we describe and critically evaluate the evolving clinical category of covert consciousness, including approaches to its diagnosis through neuroimaging, electrophysiology, and novel behavioral tools, its prognostic relevance, and open questions pertaining to optimal clinical management of patients with covert consciousness recovering from severe brain injury.
Collapse
Affiliation(s)
- Michael J. Young
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian L. Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yelena G. Bodien
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Sangare A, Quirins M, Marois C, Valente M, Weiss N, Perez P, Ben Salah A, Munoz-Musat E, Demeret S, Rohaut B, Sitt JD, Eymond C, Naccache L. Pupil dilation response elicited by violations of auditory regularities is a promising but challenging approach to probe consciousness at the bedside. Sci Rep 2023; 13:20331. [PMID: 37989756 PMCID: PMC10663629 DOI: 10.1038/s41598-023-47806-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
Pupil dilation response (PDR) has been proposed as a physiological marker of conscious access to a stimulus or its attributes, such as novelty. In a previous study on healthy volunteers, we adapted the auditory "local global" paradigm and showed that violations of global regularity elicited a PDR. Notably without instructions, this global effect was present only in participants who could consciously report violations of global regularities. In the present study, we used a similar approach in 24 non-communicating patients affected with a Disorder of Consciousness (DoC) and compared PDR to ERPs regarding diagnostic and prognostic performance. At the group level, global effect could not be detected in DoC patients. At the individual level, the only patient with a PDR global effect was in a MCS and recovered consciousness at 6 months. Contrasting the most regular trials to the most irregular ones improved PDR's diagnostic and prognostic power in DoC patients. Pupillometry is a promising tool but requires several methodological improvements to enhance the signal-to-noise ratio and make it more robust for probing consciousness and cognition in DoC patients.
Collapse
Affiliation(s)
- Aude Sangare
- Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Charles Foix, Département de Neurophysiologie, Sorbonne Université, Paris, France.
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France.
| | - Marion Quirins
- Département de Neurologie, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Clémence Marois
- AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Département de Neurologie, Unité de Médecine Intensive et Réanimation à Orientation Neurologique & Groupe de Recherche Clinique en REanimation et Soins Intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Sorbonne Université, Paris, France
| | - Mélanie Valente
- Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Charles Foix, Département de Neurophysiologie, Sorbonne Université, Paris, France
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France
| | - Nicolas Weiss
- AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Département de Neurologie, Unité de Médecine Intensive et Réanimation à Orientation Neurologique & Groupe de Recherche Clinique en REanimation et Soins Intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Sorbonne Université, Paris, France
- Brain Liver Pitié-Salpêtrière (BLIPS) Study Group, INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Maladies Métaboliques, Biliaires et Fibro-Inflammatoire du Foie & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Pauline Perez
- Anesthesia and Intensive Care Unit, Lyon Medical Intensive Care Unit, Edouard, Herriot Hospital, Hospices Civils de Lyon, 69437, Lyon, France
| | - Amina Ben Salah
- Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Charles Foix, Département de Neurophysiologie, Sorbonne Université, Paris, France
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France
| | - Esteban Munoz-Musat
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France
| | - Sophie Demeret
- AP-HP.Sorbonne Université, Hôpital Pitié-Salpêtrière, Département de Neurologie, Unité de Médecine Intensive et Réanimation à Orientation Neurologique & Groupe de Recherche Clinique en REanimation et Soins Intensifs du Patient en Insuffisance Respiratoire aiguE (GRC-RESPIRE) Sorbonne Université, Sorbonne Université, Paris, France
| | - Benjamin Rohaut
- Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Charles Foix, Département de Neurophysiologie, Sorbonne Université, Paris, France
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France
| | - Jacobo D Sitt
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France
| | - Cecile Eymond
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France
| | - Lionel Naccache
- Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Charles Foix, Département de Neurophysiologie, Sorbonne Université, Paris, France.
- INSERM U 1127, PICNIC, Lab, Institut du Cerveau et de la Moelle Épinière, ICM, 75013, Paris, France.
| |
Collapse
|
7
|
Candia-Rivera D, Raimondo F, Pérez P, Naccache L, Tallon-Baudry C, Sitt JD. Conscious processing of global and local auditory irregularities causes differentiated heartbeat-evoked responses. eLife 2023; 12:e75352. [PMID: 37888955 PMCID: PMC10651171 DOI: 10.7554/elife.75352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 10/24/2023] [Indexed: 10/28/2023] Open
Abstract
Recent research suggests that brain-heart interactions are associated with perceptual and self-consciousness. In this line, the neural responses to visceral inputs have been hypothesized to play a leading role in shaping our subjective experience. This study aims to investigate whether the contextual processing of auditory irregularities modulates both direct neuronal responses to the auditory stimuli (ERPs) and the neural responses to heartbeats, as measured with heartbeat-evoked responses (HERs). HERs were computed in patients with disorders of consciousness, diagnosed with a minimally conscious state or unresponsive wakefulness syndrome. We tested whether HERs reflect conscious auditory perception, which can potentially provide additional information for the consciousness diagnosis. EEG recordings were taken during the local-global paradigm, which evaluates the capacity of a patient to detect the appearance of auditory irregularities at local (short-term) and global (long-term) levels. The results show that local and global effects produce distinct ERPs and HERs, which can help distinguish between the minimally conscious state and unresponsive wakefulness syndrome patients. Furthermore, we found that ERP and HER responses were not correlated suggesting that independent neuronal mechanisms are behind them. These findings suggest that HER modulations in response to auditory irregularities, especially local irregularities, may be used as a novel neural marker of consciousness and may aid in the bedside diagnosis of disorders of consciousness with a more cost-effective option than neuroimaging methods.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Etudes Cognitives, École Normale Supérieure, INSERM, Université PSLParisFrance
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Federico Raimondo
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum JülichJülichGermany
- Institute of Systems Neuroscience, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Pauline Pérez
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- AP-HP, Hôpital de la Pitié Salpêtrière, Neuro ICU, DMU NeurosciencesParisFrance
| | - Lionel Naccache
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- Pitié-Salpêtrière Faculty of Medicine, Pierre and Marie Curie University, Sorbonne UniversitiesParisFrance
- INSERM, National Institute of Health and Medical ResearchParisFrance
- Department of Neurology, Pitié-Salpêtrière Hospital Group, Public Hospital Network of ParisParisFrance
- Department of Neurophysiology, Pitié-Salpêtrière Hospital Group, Public Hospital Network of ParisParisFrance
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’Etudes Cognitives, École Normale Supérieure, INSERM, Université PSLParisFrance
| | - Jacobo D Sitt
- Sorbonne Université, Paris Brain Institute (ICM), INRIA, CNRS, INSERM, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- INSERM, National Institute of Health and Medical ResearchParisFrance
| |
Collapse
|
8
|
Candia-Rivera D, Machado C. Multidimensional assessment of heartbeat-evoked responses in disorders of consciousness. Eur J Neurosci 2023; 58:3098-3110. [PMID: 37382151 DOI: 10.1111/ejn.16079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Because consciousness does not necessarily translate into overt behaviour, detecting residual consciousness in noncommunicating patients remains a challenge. Bedside diagnostic methods based on EEG are promising and cost-effective alternatives to detect residual consciousness. Recent evidence showed that the cortical activations triggered by each heartbeat, namely, heartbeat-evoked responses (HERs), can detect through machine learning the presence of minimal consciousness and distinguish between overt and covert minimal consciousness. In this study, we explore different markers to characterize HERs to investigate whether different dimensions of the neural responses to heartbeats provide complementary information that is not typically found under standard event-related potential analyses. We evaluated HERs and EEG average non-locked to heartbeats in six types of participants: healthy state, locked-in syndrome, minimally conscious state, vegetative state/unresponsive wakefulness syndrome, comatose and brain-dead patients. We computed a series of markers from HERs that can generally separate the unconscious from the conscious. Our findings indicate that HER variance and HER frontal segregation tend to be higher in the presence of consciousness. These indices, when combined with heart rate variability, have the potential to enhance the differentiation between different levels of awareness. We propose that a multidimensional evaluation of brain-heart interactions could be included in a battery of tests to characterize disorders of consciousness. Our results may motivate further exploration of markers in brain-heart communication for the detection of consciousness at the bedside. The development of diagnostic methods based on brain-heart interactions may be translated into more feasible methods for clinical practice.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Paris Brain Institute - ICM, CNRS, INRIA, INSERM, AP-HP, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Calixto Machado
- Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery, Havana, Cuba
| |
Collapse
|
9
|
Buccellato A, Çatal Y, Bisiacchi P, Zang D, Zilio F, Wang Z, Qi Z, Zheng R, Xu Z, Wu X, Del Felice A, Mao Y, Northoff G. Probing Intrinsic Neural Timescales in EEG with an Information-Theory Inspired Approach: Permutation Entropy Time Delay Estimation (PE-TD). ENTROPY (BASEL, SWITZERLAND) 2023; 25:1086. [PMID: 37510033 PMCID: PMC10378026 DOI: 10.3390/e25071086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Time delays are a signature of many physical systems, including the brain, and considerably shape their dynamics; moreover, they play a key role in consciousness, as postulated by the temporo-spatial theory of consciousness (TTC). However, they are often not known a priori and need to be estimated from time series. In this study, we propose the use of permutation entropy (PE) to estimate time delays from neural time series as a more robust alternative to the widely used autocorrelation window (ACW). In the first part, we demonstrate the validity of this approach on synthetic neural data, and we show its resistance to regimes of nonstationarity in time series. Mirroring yet another example of comparable behavior between different nonlinear systems, permutation entropy-time delay estimation (PE-TD) is also able to measure intrinsic neural timescales (INTs) (temporal windows of neural activity at rest) from hd-EEG human data; additionally, this replication extends to the abnormal prolongation of INT values in disorders of consciousness (DoCs). Surprisingly, the correlation between ACW-0 and PE-TD decreases in a state-dependent manner when consciousness is lost, hinting at potential different regimes of nonstationarity and nonlinearity in conscious/unconscious states, consistent with many current theoretical frameworks on consciousness. In summary, we demonstrate the validity of PE-TD as a tool to extract relevant time scales from neural data; furthermore, given the divergence between ACW and PE-TD specific to DoC subjects, we hint at its potential use for the characterization of conscious states.
Collapse
Affiliation(s)
- Andrea Buccellato
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
- Department of General Psychology, University of Padova, Via Venezia, 8, 35131 Padova, Italy
| | - Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada
| | - Patrizia Bisiacchi
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
- Department of General Psychology, University of Padova, Via Venezia, 8, 35131 Padova, Italy
| | - Di Zang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Piazza Capitaniato, 3, 35139 Padova, Italy
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Ruizhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Zeyu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Alessandra Del Felice
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
- Department of Neuroscience, Section of Neurology, University of Padova, Via Belzoni, 160, 35121 Padova, Italy
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310013, China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310013, China
| |
Collapse
|
10
|
Neveu A, Degos V, Barberousse A. Epistemological challenges for neural correlates of consciousness: A defense of medical research on consciousness. Presse Med 2023; 52:104183. [PMID: 37839773 DOI: 10.1016/j.lpm.2023.104183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Recent work in the field of consciousness science has predominantly focused on the search for neural correlates of consciousness (NCC). However, despite significant technological advances in recent decades, defining NCC remains an ambitious goal in consciousness research. The main difficulty stems from an epistemological challenge known as the "Problem of coordination", which hinders or at least slows down the experimental process inherent to the study of consciousness. Fundamental research has mainly focused on a content-based conception of consciousness, often referred to as a "local" conception of consciousness. This approach suffers from the Problem of coordination and its consequences. However, an alternative, more reliable approach could be considered, namely, the global or "state-based" approach, which is grounded in clinical research on consciousness disorders.
Collapse
Affiliation(s)
- Armance Neveu
- Sciences, Normes, Démocratie, Sorbonne-Université, Paris, France.
| | - Vincent Degos
- Hôpital Pitié-Salpêtrière, APHP Sorbonne Université, Département d'Anesthésie Réanimation, Paris, France
| | | |
Collapse
|
11
|
Buccellato A, Zang D, Zilio F, Gomez-Pilar J, Wang Z, Qi Z, Zheng R, Xu Z, Wu X, Bisiacchi P, Del Felice A, Mao Y, Northoff G. Disrupted relationship between intrinsic neural timescales and alpha peak frequency during unconscious states - A high-density EEG study. Neuroimage 2023; 265:119802. [PMID: 36503159 DOI: 10.1016/j.neuroimage.2022.119802] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Our brain processes the different timescales of our environment's temporal input stochastics. Is such a temporal input processing mechanism key for consciousness? To address this research question, we calculated measures of input processing on shorter (alpha peak frequency, APF) and longer (autocorrelation window, ACW) timescales on resting-state high-density EEG (256 channels) recordings and compared them across different consciousness levels (awake/conscious, ketamine and sevoflurane anaesthesia, unresponsive wakefulness, minimally conscious state). We replicate and extend previous findings of: (i) significantly longer ACW values, consistently over all states of unconsciousness, as measured with ACW-0 (an unprecedented longer version of the well-know ACW-50); (ii) significantly slower APF values, as measured with frequency sliding, in all four unconscious states. Most importantly, we report a highly significant correlation of ACW-0 and APF in the conscious state, while their relationship is disrupted in the unconscious states. In sum, we demonstrate the relevance of the brain's capacity for input processing on shorter (APF) and longer (ACW) timescales - including their relationship - for consciousness. Albeit indirectly, e.g., through the analysis of electrophysiological activity at rest, this supports the mechanism of temporo-spatial alignment to the environment's temporal input stochastics, through relating different neural timescales, as one key predisposing factor of consciousness.
Collapse
Affiliation(s)
- Andrea Buccellato
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of General Psychology, University of Padova, Padova, Italy.
| | - Di Zang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, Valladolid 47011, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Valladolid, Spain
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Ruizhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Zeyu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Patrizia Bisiacchi
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of General Psychology, University of Padova, Padova, Italy
| | - Alessandra Del Felice
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Neuroscience, Section of Rehabilitation, University of Padova, Padova, Italy
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University,Shanghai, 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China; National Center for Neurological Disorders, Shanghai, 200040, China; Neurosurgical Institute of Fudan University, Shanghai, 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Ontario K1Z7K4, Canada; Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang Province, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310013, Zhejiang Province, China.
| |
Collapse
|
12
|
Candia-Rivera D. Brain-heart interactions in the neurobiology of consciousness. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100050. [PMID: 36685762 PMCID: PMC9846460 DOI: 10.1016/j.crneur.2022.100050] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of consciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of consciousness, and sum to the existing evidence in healthy participants in which the neural responses to heartbeats reveal perceptual and self-consciousness. More evidence obtained through mathematical modeling of physiological dynamics revealed that emotion processing is prompted by an initial modulation from ascending vagal inputs to the brain, followed by sustained bidirectional brain-heart interactions. Those findings support long-lasting hypotheses on the causal role of bodily activity in emotions, feelings, and potentially consciousness. In this paper, the theoretical landscape on the potential role of heartbeats in cognition and consciousness is reviewed, as well as the experimental evidence supporting these hypotheses. I advocate for methodological developments on the estimation of brain-heart interactions to uncover the role of cardiac inputs in the origin, levels, and contents of consciousness. The ongoing evidence depicts interactions further than the cortical responses evoked by each heartbeat, suggesting the potential presence of non-linear, complex, and bidirectional communication between brain and heartbeat dynamics. Further developments on methodologies to analyze brain-heart interactions may contribute to a better understanding of the physiological dynamics involved in homeostatic-allostatic control, cognitive functions, and consciousness.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio and the Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|