1
|
Liu D, Li J, Xu C, Li Y, Chen X, Zhao F, Tong H, Yang Y, Qiu X, Yu Z. Loss of Nup160 dysregulates Cdc42 in the podocytes of podocyte-specific Nup160 knockout mice. Hum Mol Genet 2025:ddaf064. [PMID: 40298220 DOI: 10.1093/hmg/ddaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Mutations in four genes encoding the outer ring complex of nuclear pore complexes (NPCs), NUP85, NUP107, NUP133 and NUP160, cause monogenic steroid-resistant nephrotic syndrome (SRNS). Knockout of NUP85, NUP107, or NUP133 in immortalized human podocytes activates CDC42, an important effector of SRNS pathogenesis. However, it is unknown whether or not loss of NUP160 dysregulates CDC42 in the podocytes. Here, we generated a podocyte-specific Nup160 knockout mouse model with double-fluorescent (mT/mG) Cre reporter genes using CRISPR/Cas9 and Cre/loxP technologies. We investigated nephrotic syndrome-associated phenotypes in the Nup160podo-/- mice, and performed single-cell transcriptomic and proteomic analysis of glomerular suspension cells and cultured primary podocytes, respectively. The Nup160podo-/- mice exhibited progressive proteinuria and fusion of podocyte foot processes. We found decreased Cdc42 protein and normal Cdc42 transcriptional level in the podocytes of the Nup160podo-/- mice using analysis of single-cell transcriptomes and proteomes. We subsequently observed that Cdc42 protein decreased in both kidney tissues and cultured primary podocytes of the Nup160podo-/- mice, although Cdc42 mRNA levels were elevated in the cultured primary podocytes of the Nup160podo-/- mice. We also found that Cdc42 activity was significantly reduced in the cultured primary podocytes of the Nup160podo-/- mice. In conclusion, loss of Nup160 dysregulated Cdc42 in the podocytes of the Nup160podo-/- mice with proteinuria and fusion of podocyte foot processes. Our findings suggest that the dysregulation of CDC42 may contribute to the pathogenesis of SRNS in patients with mutations in NUP160.
Collapse
Affiliation(s)
- Deying Liu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian 350000, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, 19 Jin Ji Shan Road, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, 18 Daoshan Road, Fuzhou, Fujian 350000, China
| | - Jiaxin Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian 350000, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, 19 Jin Ji Shan Road, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, 18 Daoshan Road, Fuzhou, Fujian 350000, China
| | - Chan Xu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian 350000, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, 19 Jin Ji Shan Road, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, 18 Daoshan Road, Fuzhou, Fujian 350000, China
| | - Yuanyuan Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian 350000, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, 19 Jin Ji Shan Road, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, 18 Daoshan Road, Fuzhou, Fujian 350000, China
| | - Xiaohan Chen
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian 350000, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, 19 Jin Ji Shan Road, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, 18 Daoshan Road, Fuzhou, Fujian 350000, China
| | - Feng Zhao
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
| | - Huajuan Tong
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
| | - Yonghui Yang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
| | - Xiaojian Qiu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
| | - Zihua Yu
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou, Fujian 350000, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Department of Nephrology, Rheumatology and Immunology, Fujian Children's Hospital, 966 Heng Yu Road, Fuzhou, Fujian 350014, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, 19 Jin Ji Shan Road, Fuzhou, Fujian 350014, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, 18 Daoshan Road, Fuzhou, Fujian 350000, China
| |
Collapse
|
2
|
Maslyennikov Y, Bărar AA, Rusu CC, Potra AR, Tirinescu D, Ticala M, Urs A, Pralea IE, Iuga CA, Moldovan DT, Kacso IM. The Spectrum of Minimal Change Disease/Focal Segmental Glomerulosclerosis: From Pathogenesis to Proteomic Biomarker Research. Int J Mol Sci 2025; 26:2450. [PMID: 40141093 PMCID: PMC11941885 DOI: 10.3390/ijms26062450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Podocyte injury plays a central role in both focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD). Pathogenic mechanisms are diverse and incompletely understood, partially overlap between FSGS and MCD, and are not reflected by kidney biopsy. In order to optimize the current variable response to treatment, personalized management should rely on pathogenesis. One promising approach involves identifying biomarkers associated with specific pathogenic pathways. With the advancement of technology, proteomic studies could be a valuable tool to improve knowledge in this area and define valid biomarkers, as they have in other areas of glomerular disease. This work attempts to cover and discuss the main mechanisms of podocyte injury, followed by a review of the recent literature on proteomic biomarker studies in podocytopathies. Most of these studies have been conducted on biofluids, while tissue proteomic studies applied to podocytopathies remain limited. While we recognize the importance of non-invasive biofluid biomarkers, we propose a sequential approach for their development: tissue proteomics could first identify proteins with increased expression that may reflect underlying disease mechanisms; subsequently, the validation of these proteins in urine or plasma could pave the way to a diagnostic and prognostic biomarker-based approach.
Collapse
Affiliation(s)
- Yuriy Maslyennikov
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Andrada Alina Bărar
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Crina Claudia Rusu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Alina Ramona Potra
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Dacian Tirinescu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Maria Ticala
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Alexandra Urs
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Ioana Ecaterina Pralea
- Department of Personalized Medicine and Rare Diseases, MedFuture—Research Centre for Biomedical Research, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.E.P.); (C.A.I.)
| | - Cristina Adela Iuga
- Department of Personalized Medicine and Rare Diseases, MedFuture—Research Centre for Biomedical Research, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (I.E.P.); (C.A.I.)
- Department of Drug Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Diana Tania Moldovan
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| | - Ina Maria Kacso
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (Y.M.); (A.A.B.); (C.C.R.); (A.R.P.); (D.T.); (M.T.); (A.U.); (I.M.K.)
| |
Collapse
|
3
|
Hackl A, Weber LT. The Ca 2+-actin-cytoskeleton axis in podocytes is an important, non-immunologic target of immunosuppressive therapy in proteinuric kidney diseases. Pediatr Nephrol 2025:10.1007/s00467-025-06670-z. [PMID: 39856247 DOI: 10.1007/s00467-025-06670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025]
Abstract
The integrity of the filtration barrier of the kidney relies on the proper composition of podocyte interdigitating foot processes. Their architecture is supported by a complex actin-cytoskeleton. Following podocyte stress or injury, podocytes encounter structural changes, including rearrangement of the actin network and subsequent effacement of the foot processes. Immunosuppressive drugs, which are currently used as treatment in proteinuric kidney diseases, have been shown to exert not only immune-mediated effects. This review will focus on the direct effects of glucocorticoids, cyclosporine A, tacrolimus, mycophenolate mofetil, and rituximab on podocytes by regulation of Ca2+ ion channels and consecutive downstream signaling which prevent cytoskeletal rearrangements and ultimately proteinuria. In addition, the efficacy of these drugs in genetic nephrotic syndrome will be discussed.
Collapse
Affiliation(s)
- Agnes Hackl
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany.
| | - Lutz T Weber
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Street 62, 50937, Cologne, Germany
| |
Collapse
|
4
|
Yuan S, Cao Y, Jiang J, Chen J, Huang X, Li X, Zhou J, Zhou Y, Zhou J. Xuebijing injection and its bioactive components alleviate nephrotic syndrome by inhibiting podocyte inflammatory injury. Eur J Pharm Sci 2024; 196:106759. [PMID: 38570053 DOI: 10.1016/j.ejps.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Xuebijing injection (XBJ) is widely used to treat nephrotic syndrome (NS) in clinic, but its bioactive components and therapeutic mechanism are still unclear. In this study, the bioactive components of XBJ were determined by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS). The therapeutic effect of XBJ on NS was evaluated in BALB/c mice induced by adriamycin (ADR, 10 mg/kg) via a single tail vein. The protective effect of XBJ and its bioactive components on podocytes was demonstrated using mouse podocytes (MPC-5) induced by lipopolysaccharide (LPS, 4 μg/mL). The results show that 33 components of XBJ were identified. Furthermore, 12 bioactive components were detected in blood, including protocatechuic acid, salvianolic acid C, benzoyloxypaeoniflorin, danshensu, salvianolic acid A, salvianolic acid B, catechin, caffeic acid, galloylpaeoniflorin, oxypaeoniflorin, hydroxysafflor yellow A, rosmarinic acid. The relative content (%) of the bioactive components were 59.32, 16.01, 9.97, 9.73, 8.72, 8.31, 7.92, 6.54, 1.54, 1.30, 0.68 and 0.59 in this order. After XBJ treatment, the renal function, hyperlipidemia and renal pathological damage were improved in NS model mice. Moreover, the levels of nephrin and desmin which are functional proteins in podocytes were reversed, and the levels of pro-inflammatory factors were reduced by XBJ. Interestingly, protocatechuic acid and salvianolic acid C also showed good protective effects on podocyte function and reduced the level of inflammation in LPS-induced MPC-5. The study is the first time to elucidate the bioactive components of XBJ and its potential therapeutic mechanism for treating NS by protecting podocyte function.
Collapse
Affiliation(s)
- Shengliang Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Affiliated Gaozhou People's Hospital, Guangdong Medical University, Gaozhou 525200, China
| | - Yiwen Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiaying Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Junqi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiuye Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiaojie Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yuan Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Jiuyao Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
5
|
Jiang H, Shen Z, Zhuang J, Lu C, Qu Y, Xu C, Yang S, Tian X. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front Immunol 2024; 14:1335936. [PMID: 38288116 PMCID: PMC10822972 DOI: 10.3389/fimmu.2023.1335936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
The glomerular filtration barrier, comprising the inner layer of capillary fenestrated endothelial cells, outermost podocytes, and the glomerular basement membrane between them, plays a pivotal role in kidney function. Podocytes, terminally differentiated epithelial cells, are challenging to regenerate once injured. They are essential for maintaining the integrity of the glomerular filtration barrier. Damage to podocytes, resulting from intrinsic or extrinsic factors, leads to proteinuria in the early stages and eventually progresses to chronic kidney disease (CKD). Immune-mediated podocyte injury is a primary pathogenic mechanism in proteinuric glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, and lupus nephritis with podocyte involvement. An extensive body of evidence indicates that podocytes not only contribute significantly to the maintenance of the glomerular filtration barrier and serve as targets of immune responses but also exhibit immune cell-like characteristics, participating in both innate and adaptive immunity. They play a pivotal role in mediating glomerular injury and represent potential therapeutic targets for CKD. This review aims to systematically elucidate the mechanisms of podocyte immune injury in various podocyte lesions and provide an overview of recent advances in podocyte immunotherapy. It offers valuable insights for a deeper understanding of the role of podocytes in proteinuric glomerular diseases, and the identification of new therapeutic targets, and has significant implications for the future clinical diagnosis and treatment of podocyte-related disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhirang Shen
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Division of Nephrology, Department of Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Qu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Ma S, Qiu Y, Zhang C. Cytoskeleton Rearrangement in Podocytopathies: An Update. Int J Mol Sci 2024; 25:647. [PMID: 38203817 PMCID: PMC10779434 DOI: 10.3390/ijms25010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus's key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the pathogenesis of podocytopathies. In podocytopathies, the rearrangement of the cytoskeleton refers to significant alterations in a string of slit diaphragm (SD) and focal adhesion proteins such as the signaling node nephrin, calcium influx via transient receptor potential channel 6 (TRPC6), and regulation of the Rho family, eventually leading to the disorganization of the original cytoskeletal architecture. Thus, it is imperative to focus on these proteins and signaling pathways to probe the cytoskeleton rearrangement in podocytopathies. In this review, we describe podocytopathies and the podocyte cytoskeleton, then discuss the molecular mechanisms involved in cytoskeleton rearrangement in podocytopathies and summarize the effects of currently existing drugs on regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.M.); (Y.Q.)
| |
Collapse
|
7
|
Veissi ST, van den Berge T, van Wijk JAE, van der Velden T, Classens R, Lunsonga L, Brockotter R, Kaffa C, Bervoets S, Smeets B, van den Heuvel LPWJ, Schreuder MF. Levamisole Modulation of Podocytes' Actin Cytoskeleton in Nephrotic Syndrome. Biomedicines 2023; 11:3039. [PMID: 38002039 PMCID: PMC10669662 DOI: 10.3390/biomedicines11113039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Podocytes play a central role in glomerular diseases such as (idiopathic) nephrotic syndrome (iNS). Glucocorticoids are the gold standard therapy for iNS. Nevertheless, frequent relapses are common. In children with iNS, steroid-sparing agents are used to avoid prolonged steroid use and reduce steroid toxicity. Levamisole is one of these steroid-sparing drugs and although clinical effectiveness has been demonstrated, the molecular mechanisms of how levamisole exerts its beneficial effects remains poorly studied. Apart from immunomodulatory capacities, nonimmunological effects of levamisole on podocytes have also been suggested. We aimed to elaborate on the effects of levamisole on human podocytes in iNS. RNA sequencing data from a human podocyte cell line treated with levamisole showed that levamisole modulates the expression of various genes involved in actin cytoskeleton stabilization and remodeling. Functional experiments showed that podocytes exposed to puromycin aminonucleoside (PAN), lipopolysaccharides (LPS), and NS patient plasma resulted in significant actin cytoskeleton derangement, reduced cell motility, and impaired cellular adhesion when compared to controls, effects that could be restored by levamisole. Mechanistic studies revealed that levamisole exerts its beneficial effects on podocytes by signaling through the glucocorticoid receptor and by regulating the activity of Rho GTPases. In summary, our data show that levamisole exerts beneficial effects on podocytes by stabilizing the actin cytoskeleton in a glucocorticoid receptor-dependent manner.
Collapse
Affiliation(s)
- Susan T Veissi
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Tijmen van den Berge
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Joanna A E van Wijk
- Department of Pediatric Nephrology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Thea van der Velden
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - René Classens
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lynn Lunsonga
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rick Brockotter
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Charlotte Kaffa
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sander Bervoets
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Bart Smeets
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lambertus P W J van den Heuvel
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Development and Regeneration, University Hospital Leuven, 3000 Leuven, Belgium
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
8
|
Gauckler P, Zitt E, Regele H, Eller K, Säemann MD, Lhotta K, Neumann I, Rudnicki M, Odler B, Kronbichler A, Zschocke J, Windpessl M. [Diagnosis and treatment of focal-segmental glomerulosclerosis-2023]. Wien Klin Wochenschr 2023; 135:638-647. [PMID: 37728649 PMCID: PMC10511576 DOI: 10.1007/s00508-023-02260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/21/2023]
Abstract
The histopathological term focal-segmental glomerulosclerosis comprises different pathogenic processes with the unifying features of a high proteinuria and the name-giving glomerular lesion pattern seen on light microscopy. A differentiation according to the underlying cause into primary, secondary and genetic forms is therefore of utmost importance. The pathogenesis of primary focal-segmental glomerulosclerosis remains unknown but, like minimal-change disease, an autoimmune-mediated process leading to podocyte damage is assumed. Consequently, the unifying term "podocytopathy" is increasingly being used for both entities. Supportive treatment measures to preserve kidney function are important in all subtypes. In contrast, immunosuppressive treatment is only indicated in primary focal-segmental glomerulosclerosis. Steroid-dependence, steroid-resistance and frequently relapsing disease often complicate disease management and necessitate alternative treatment strategies. Here, the Austrian Society of Nephrology (ÖGN) provides consensus recommendations on how to best diagnose and manage patients with focal-segmental glomerulosclerosis.
Collapse
Affiliation(s)
- Philipp Gauckler
- Department Innere Medizin IV (Nephrologie und Hypertensiologie), Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Emanuel Zitt
- Abteilung für Innere Medizin III (Nephrologie, Dialyse und Hypertensiologie), Akademisches Lehrkrankenhaus Feldkirch, Feldkirch, Österreich
| | - Heinz Regele
- Klinisches Institut für Pathologie, Medizinische Universität Wien, Wien, Österreich
| | - Kathrin Eller
- Klinische Abteilung für Nephrologie, Abteilung für Innere Medizin III (Nephrologie, Dialyse und Hypertensiologie), Medizinische Universität Graz, Graz, Österreich
| | - Marcus D. Säemann
- 6.Medizinische Abteilung mit Nephrologie & Dialyse, Klinik Ottakring, Wien, Österreich
- Medizinische Fakultät, SFU, Wien, Österreich
| | - Karl Lhotta
- Abteilung für Innere Medizin III (Nephrologie, Dialyse und Hypertensiologie), Akademisches Lehrkrankenhaus Feldkirch, Feldkirch, Österreich
| | - Irmgard Neumann
- Vasculitis.at, Wien, Österreich
- Immunologiezentrum Zürich (IZZ), Zürich, Schweiz
| | - Michael Rudnicki
- Department Innere Medizin IV (Nephrologie und Hypertensiologie), Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Balazs Odler
- Klinische Abteilung für Nephrologie, Abteilung für Innere Medizin III (Nephrologie, Dialyse und Hypertensiologie), Medizinische Universität Graz, Graz, Österreich
| | - Andreas Kronbichler
- Department Innere Medizin 4 (Nephrologie und Hypertensiologie), Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Johannes Zschocke
- Institut für Humangenetik, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Martin Windpessl
- Abteilung für Innere Medizin IV, Klinikum Wels-Grieskirchen, Wels, Österreich
| |
Collapse
|
9
|
Jansen J, van den Berge BT, van den Broek M, Maas RJ, Daviran D, Willemsen B, Roverts R, van der Kruit M, Kuppe C, Reimer KC, Di Giovanni G, Mooren F, Nlandu Q, Mudde H, Wetzels R, den Braanker D, Parr N, Nagai JS, Drenic V, Costa IG, Steenbergen E, Nijenhuis T, Dijkman H, Endlich N, van de Kar NCAJ, Schneider RK, Wetzels JFM, Akiva A, van der Vlag J, Kramann R, Schreuder MF, Smeets B. Human pluripotent stem cell-derived kidney organoids for personalized congenital and idiopathic nephrotic syndrome modeling. Development 2022; 149:275031. [PMID: 35417019 PMCID: PMC9148570 DOI: 10.1242/dev.200198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/28/2022] [Indexed: 12/21/2022]
Abstract
Nephrotic syndrome (NS) is characterized by severe proteinuria as a consequence of kidney glomerular injury due to podocyte damage. In vitro models mimicking in vivo podocyte characteristics are a prerequisite to resolve NS pathogenesis. The detailed characterization of organoid podocytes resulting from a hybrid culture protocol showed a podocyte population that resembles adult podocytes and was superior compared with 2D counterparts, based on single-cell RNA sequencing, super-resolution imaging and electron microscopy. In this study, these next-generation podocytes in kidney organoids enabled personalized idiopathic nephrotic syndrome modeling, as shown by activated slit diaphragm signaling and podocyte injury following protamine sulfate, puromycin aminonucleoside treatment and exposure to NS plasma containing pathogenic permeability factors. Organoids cultured from cells of a patient with heterozygous NPHS2 mutations showed poor NPHS2 expression and aberrant NPHS1 localization, which was reversible after genetic correction. Repaired organoids displayed increased VEGFA pathway activity and transcription factor activity known to be essential for podocyte physiology, as shown by RNA sequencing. This study shows that organoids are the preferred model of choice to study idiopathic and congenital podocytopathies. Summary: Kidney organoid podocytes generated from human pluripotent stem cells using a hybrid differentiation protocol allow podocyte pathophysiology modeling that leads to congenital as well as idiopathic nephrotic syndrome in patients.
Collapse
Affiliation(s)
- Jitske Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Bartholomeus T van den Berge
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn van den Broek
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rutger J Maas
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Deniz Daviran
- Department of Biochemistry, Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 29, 6525 GA Nijmegen, The Netherlands
| | - Brigith Willemsen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rona Roverts
- Department of Biochemistry, Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 29, 6525 GA Nijmegen, The Netherlands
| | - Marit van der Kruit
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen 52062, Germany
| | - Katharina C Reimer
- Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen 52062, Germany.,Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen 52062, Germany
| | - Gianluca Di Giovanni
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Fieke Mooren
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Quincy Nlandu
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Helmer Mudde
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roy Wetzels
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dirk den Braanker
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Naomi Parr
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - James S Nagai
- Institute for Computational Genomics, University Hospital RWTH Aachen, Achen 52062, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen 52062, Germany
| | | | - Ivan G Costa
- Institute for Computational Genomics, University Hospital RWTH Aachen, Achen 52062, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen 52062, Germany
| | - Eric Steenbergen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Henry Dijkman
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nicole Endlich
- NIPOKA, 17489 Greifswald, Germany.,Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Nicole C A J van de Kar
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rebekka K Schneider
- Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen 52062, Germany.,Department of Developmental Biology, Erasmus Medical Center, Rotterdam 3015 GD, The Netherlands.,Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jack F M Wetzels
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Anat Akiva
- Department of Biochemistry, Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 29, 6525 GA Nijmegen, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen 52062, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Bart Smeets
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
10
|
da Silva Filha R, Burini K, Pires LG, Brant Pinheiro SV, Simões E Silva AC. Idiopathic Nephrotic Syndrome in Pediatrics: An Up-to-date. Curr Pediatr Rev 2022; 18:251-264. [PMID: 35289253 DOI: 10.2174/1573396318666220314142713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/31/2021] [Accepted: 12/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Idiopathic or Primary Nephrotic Syndrome (INS) is a common glomerular disease in pediatric population, characterized by proteinuria, edema and hypoalbuminemia with variable findings in renal histopathology. OBJECTIVE This review aims to summarize current data on the etiopathogenesis diagnosis, protocols of treatment and potential therapeutic advances in INS. METHODS This narrative review searched for articles on histopathology, physiopathology, genetic causes, diagnosis and treatment of INS in pediatric patients. The databases evaluated were PubMed and Scopus. RESULTS INS is caused by an alteration in the permeability of the glomerular filtration barrier with unknown etiology. There are several gaps in the etiopathogenesis, response to treatment and clinical course of INS that justify further investigation. Novel advances include the recent understanding of the role of podocytes in INS and the identification of genes associated with the disease. The role of immune system cells and molecules has also been investigated. The diagnosis relies on clinical findings, laboratory exams and renal histology for selected cases. The treatment is primarily based on steroids administration. In case of failure, other medications should be tried. Recent studies have also searched for novel biomarkers for diagnosis and alternative therapeutic approaches. CONCLUSION The therapeutic response to corticosteroids still remains the main predictive factor for the prognosis of the disease. Genetic and pharmacogenomics tools may allow the identification of cases not responsive to immunosuppressive medications.
Collapse
Affiliation(s)
- Roberta da Silva Filha
- Faculty of Medicine, Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Kassia Burini
- Faculty of Medicine, Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Laura Gregório Pires
- Faculty of Medicine, Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Ana Cristina Simões E Silva
- Faculty of Medicine, Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Department of Pediatrics, Unit of Pediatric Nephrology, Faculty of Medicine, UFMG, Belo Horizonte, MG, Brazil
| |
Collapse
|