1
|
Kim J, Lee JH, Jang SH, Lee EY, Lee M, Park S, Moon JS. SBP1 contributes to mesangial proliferation and inflammation through mitochondrial respiration in glomerulus during IgA nephropathy. Free Radic Biol Med 2024; 225:711-725. [PMID: 39488256 DOI: 10.1016/j.freeradbiomed.2024.10.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Mesangial expansion and proliferation have been implicated in the pathogenesis of IgA nephropathy (IgAN). Mesangial cells in glomerulus are important contributors to commencement of IgAN. From minimal mesangial expansion to diffuse proliferation, the mesangial alteration is linked to clinical and pathological features of IgAN. Although selenium-binding protein 1 (SBP1) is associated with tissue injury, the roles of SBP1 in mesangial proliferation and inflammation in glomerulus during IgAN remains unclear. In the present study, we found that SBP1 gene levels were elevated in kidney tissues of patients with IgAN. Also, SBP1 protein levels were elevated in proliferative mesangial cells of glomerulus in kidney tissues from patients with IgAN. Urinary SBP1 protein levels were elevated in patients with IgAN. Elevated urinary SBP1 levels were positively correlated with segmental glomerulosclerosis of the Oxford classification related to mesangial proliferation in patients with IgAN. Over-expression of SBP1 induced cellular proliferation via mitochondrial respiration in human renal mesangial cells. Consistently, SBP1 knockdown and mitochondrial respiration inhibition suppressed cellular proliferation and induced mitochondrial oxidative stress in human renal mesangial cells. Furthermore, SBP1 induced pro-inflammatory phenotype by gene expression and production of pro-inflammatory cytokines and chemokines including IL-6, CXCL10, and CCL5 via NF-κB activation in human renal mesangial cells. These results suggest that SBP1 contributes to mesangial proliferation and inflammation via mitochondrial respiration during IgAN.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Ji-Hye Lee
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Si-Hyong Jang
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, South Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, 31151, South Korea
| | - Mihye Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea; Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Hospital Cheonan, Cheonan, 31151, Chungcheongnam-do, South Korea.
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea; Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Chungcheongnam-do, South Korea.
| |
Collapse
|
2
|
Issa W, Njeim R, Carrazco A, Burke GW, Mitrofanova A. Role of the Innate Immune Response in Glomerular Disease Pathogenesis: Focus on Podocytes. Cells 2024; 13:1157. [PMID: 38995008 PMCID: PMC11240682 DOI: 10.3390/cells13131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Accumulating evidence indicates that inflammatory and immunologic processes play a significant role in the development and progression of glomerular diseases. Podocytes, the terminally differentiated epithelial cells, are crucial for maintaining the integrity of the glomerular filtration barrier. Once injured, podocytes cannot regenerate, leading to progressive proteinuric glomerular diseases. However, emerging evidence suggests that podocytes not only maintain the glomerular filtration barrier and are important targets of immune responses but also exhibit many features of immune-like cells, where they are involved in the modulation of the activity of innate and adaptive immunity. This dual role of podocytes may lead to the discovery and development of new therapeutic targets for treating glomerular diseases. This review aims to provide an overview of the innate immunity mechanisms involved in podocyte injury and the progression of proteinuric glomerular diseases.
Collapse
Affiliation(s)
- Wadih Issa
- Department of Internal Medicine, Saint Joseph University, Beirut 1107 2180, Lebanon
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Arianna Carrazco
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George W. Burke
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Abd-Elhakim YM, Behairy A, Hashem MMM, Abo-El-Sooud K, El-Metwally AE, Hassan BA, Ali HA. Toll-like receptors and nuclear factor kappa B signaling pathway involvement in hepatorenal oxidative damage induced by some food preservatives in rats. Sci Rep 2023; 13:5938. [PMID: 37045926 PMCID: PMC10097866 DOI: 10.1038/s41598-023-32887-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Chemical food preservatives are extensively found in various processed food products in the human environment. Hence, this study aimed to investigate the effect of long-term exposure to five food preservatives (potassium sorbate (PS), butylated hydroxyanisole (BHA), sodium benzoate (SB), calcium propionate (CP), and boric acid (BA)) on the liver and kidney in rats and the probable underlying mechanisms. For 90 days, sixty male albino rats were orally given either water (control), 0.09 mg/kg b.wt BHA, 4.5 mg/kg b.wt PS, 0.9 mg/kg b.wt SB, 0.16 mg/kg b.wt BA, or 0.18 mg/kg b.wt CP. Liver and kidney function tests were assessed. Hepatic and renal oxidative stress biomarkers were estimated. Histologic examination analysis of liver and kidney tissues was achieved. Toll-like receptors 2 and 4 (TLR-2 and TLR-4), tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) mRNA expression levels were measured. The results revealed that long-term oral dosing of the five food preservatives resulted in significant increases in alkaline phosphatase, alanine transaminase, aspartate transaminase, urea, uric acid, and creatinine levels. There were significant reductions in hepatic and renal antioxidant enzymes, an increase in MDA concentrations, and pathological alterations in renal and hepatic tissues. The mRNA levels of TLR-4, TLR-2, NF-κB, and TNF-α were elevated in the food preservatives-exposed groups. Conclusively, the current findings revealed that long-term exposure to PS, BHA, SB, CP, and BA has a negative impact on liver and kidney function. Furthermore, these negative effects could be mediated via oxidative stress induction, inflammatory reactions, and cytokine production.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Khaled Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12613, Egypt
| | - Abeer E El-Metwally
- Pathology Department, Animal Reproduction Research Institute, Giza, 3514805, Egypt
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo, 11835, Egypt
| | - Haytham A Ali
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, 23218, Saudi Arabia
| |
Collapse
|
4
|
Liu Y, Zhang M, Zhong H, Xie N, Wang Y, Ding S, Su X. LncRNA SNHG16 regulates RAS and NF-κB pathway-mediated NLRP3 inflammasome activation to aggravate diabetes nephropathy through stabilizing TLR4. Acta Diabetol 2023; 60:563-577. [PMID: 36658449 DOI: 10.1007/s00592-022-02021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/15/2022] [Indexed: 01/21/2023]
Abstract
AIMS LncRNA SNHG16 and Toll-like receptor-4 (TLR4) participate in diabetes nephropathy. This study investigated whether SNHG16 regulates diabetic renal injury (DRI) via TLR4 and its related mechanism. METHODS Diabetic mice and high glucose (HG)-induced HRMCs were used to examine the expressions of SNHG16 and TLR4. The SNHG16 expression, cytokines, reactive oxygen species, MDA, SOD, GSH, and fibrosis-related proteins were evaluated in HG-induced HRMCs transfected with sh-NC or sh-SHNG16. RNA immunoprecipitation and RNA pull-down determined the interaction between SNHG16 and EIF4A3 or TLR4 and EIF4A3. We used HG-treated HRMCs or diabetic mice to investigate the roles of TLR4 or SNHG16 in renal injuries. RESULTS Both SNHG16 and TLR4 were upregulated in diabetic conditions. HG increased serum Scr and BUN, led to significant fibrosis, increased inflammation- and renal fibrosis-related proteins in mice, and increased ROS, MDA, and decreased SOD and GSH in HRMCs. SNHG16 silencing diminished HG-upregulated SNHG16, decreased HG-increased cytokines secretion, ROS, MDA, and fibrosis but increased SOD and GSH. RIP and RNA pull-down confirmed that SNHG16 recruits EIF4A3 to stabilize TLR4 mRNA. TLR4 knockdown alleviated HG-induced renal injuries by suppressing RAS and NF-κB-mediated activation of NLRP3 inflammasomes. SNHG16 knockdown alleviated HG-induced renal injuries in HG-induced HRMCs or diabetic mice. Interestingly, TLR4 overexpression reversed the effects of SNHG16 knockdown. Mechanistically, SNHG16 knockdown alleviated HG-induced renal injuries by suppressing TLR4. CONCLUSION SNHG16 accelerated HG-induced renal injuries via recruiting EIF4A3 to enhance the stabilization of TLR4 mRNA. The SNGHG16/ELF4A3/TLR4 axis might be a novel target for treating DRI.
Collapse
Affiliation(s)
- Yufeng Liu
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Mengbi Zhang
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Haowen Zhong
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Na Xie
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Yamei Wang
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Su Ding
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China
| | - Xiaoyan Su
- Department of Nephropathy, Dongguan Tungwah Hospital, No. 1 Dongcheng East Road, Dongguan, 523015, Guangdong Province, People's Republic of China.
| |
Collapse
|
5
|
Mitrofanova A, Fontanella AM, Burke GW, Merscher S, Fornoni A. Mitochondrial Contribution to Inflammation in Diabetic Kidney Disease. Cells 2022; 11:3635. [PMID: 36429063 PMCID: PMC9688941 DOI: 10.3390/cells11223635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is the leading cause of chronic kidney disease worldwide. Despite the burden, the factors contributing to the development and progression of diabetic kidney disease (DKD) remain to be fully elucidated. In recent years, increasing evidence suggests that mitochondrial dysfunction is a pathological mediator in DKD as the kidney is a highly metabolic organ rich in mitochondria. Furthermore, low grade chronic inflammation also contributes to the progression of DKD, and several inflammatory biomarkers have been reported as prognostic markers to risk-stratify patients for disease progression and all-cause mortality. Interestingly, the term "sterile inflammation" appears to be used in the context of DKD describing the development of intracellular inflammation in the absence of bacterial or viral pathogens. Therefore, a link between mitochondrial dysfunction and inflammation in DKD exists and is a hot topic in both basic research and clinical investigations. This review summarizes how mitochondria contribute to sterile inflammation in renal cells in DKD.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antonio M. Fontanella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - George W. Burke
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
6
|
Habib R. Multifaceted roles of Toll-like receptors in acute kidney injury. Heliyon 2021; 7:e06441. [PMID: 33732942 PMCID: PMC7944035 DOI: 10.1016/j.heliyon.2021.e06441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) in the first line defense system of our bodies; they are widely expressed on leukocytes and kidney epithelial cells. Infections due to pathogens or danger signals from injured tissues often activate several TLRs and these receptors mediate their signal transduction through the activation of transcription factors that regulate the expression of cytokine interleukin-1β (IL-1β), type I interferons (IFNs), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) dependent cytokines and chemokines. Acute kidney injury (AKI) involves early Toll-like receptors driven immunopathology, while resolution of inflammation is needed for rapid regeneration of injured tubular cells. Despite their well known function in the progression of inflammation; interestingly, activation of TLRs also has been implicated in renal epithelial repair through the induction of certain interleukins and improvement in autophagy mechanism. Studies have found that although the blockade of TLRs during the early injury phase of renal tissues prevented tubular necrosis, suppression of interleukins production and impaired kidney regeneration due to their blockade has been observed during the healing phase of tissue. Taken together, these results suggest that the two danger response programs of renal cells i.e. renal inflammation and regeneration may link at the level of TLRs. This review aims to emphasize on the role of TLRs signaling in different acute kidney injury phases. Understanding of these pathways may turn out to be effective as therapeutic option for kidney diseases.
Collapse
Affiliation(s)
- Rakhshinda Habib
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, 74200, Pakistan
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Lupus nephritis (LN) is a serious manifestation of systemic lupus erythematosus and is characterized by proteinuria and renal failure. Proteinuria is a marker of poor prognosis and is attributed to podocyte loss and dysfunction. It is often debated whether these cells are innocent bystanders or active participants in the pathogenesis of glomerulonephritis. RECENT FINDINGS Podocytes share many elements of the innate and adaptive immune system. Specifically, they produce and express complement components and receptors which when dysregulated appear to contribute to podocyte damage and LN. In parallel, podocytes express major histocompatibility complex and co-stimulatory molecules which may be involved in local immune events. Podocyte-specific cytotoxic cells and possibly other immune cells contribute to glomerular damage. Autoantibodies present in lupus sera enter podocytes to upregulate calcium/calmodulin kinase which in turn compromises their structure and function. SUMMARY More recent studies point to the restoration of podocyte function using cell targeted approaches to prevent and treat LN. These strategies along with podocyte involvement in the pathogenesis of LN will be addressed in this review.
Collapse
|
8
|
The Role of TLR4 Asp299Gly and TLR4 Thr399Ile Polymorphisms in the Pathogenesis of Urinary Tract Infections: First Evaluation in Infants and Children of Greek Origin. J Immunol Res 2019; 2019:6503832. [PMID: 31183391 PMCID: PMC6515008 DOI: 10.1155/2019/6503832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Urinary tract infections are one of the most common and serious bacterial infections in a pediatric population. So far, they have mainly been related to age, gender, ethnicity, socioeconomic level, and the presence of underlying anatomical or functional, congenital, or acquired abnormalities. Recently, both innate and adaptive immunities and their interaction in the pathogenesis and the development of UTIs have been studied. The aim of this study was to assess the role and the effect of the two most frequent polymorphisms of TLR4 Asp299Gly and Thr399Ile on the development of UTIs in infants and children of Greek origin. We studied 51 infants and children with at least one episode of acute urinary tract infection and 109 healthy infants and children. We found that 27.5% of patients and 8.26% of healthy children carried the heterozygote genotype for TLR4 Asp299Gly. TLR4 Thr399Ile polymorphism was found to be higher in healthy children and lower in the patient group. No homozygosity for both studied polymorphisms was detected in our patients. In the group of healthy children, a homozygote genotype for TLR4 Asp299Gly (G/G) as well as for TLR4 Thr399Ile (T/T) was showed (1.84% and 0.92 respectively). These results indicate the role of TLR4 polymorphism as a genetic risk for the development of UTIs in infants and children of Greek origin.
Collapse
|
9
|
TLR2 and TLR4 play opposite role in autophagy associated with cisplatin-induced acute kidney injury. Clin Sci (Lond) 2018; 132:1725-1739. [PMID: 29500224 DOI: 10.1042/cs20170262] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 02/15/2018] [Accepted: 03/02/2018] [Indexed: 12/30/2022]
Abstract
Acute kidney injury (AKI) is considered an inflammatory disease in which toll-like receptors (TLRs) signaling pathways play an important role. The activation of TLRs results in production of several inflammatory cytokines leading to further renal damage. In contrast, TLRs are key players on autophagy induction, which is associated with a protective function on cisplatin-induced AKI. Hence, the present study aimed to evaluate the specific participation of TLR2 and TLR4 molecules on the development of cisplatin-induced AKI. Complementarily, we also investigated the link between TLRs and heme oxygenase-1 (HO-1), a promisor cytoprotective molecule. First, we observed that only the absence of TLR2 but not TLR4 in mice exacerbated the renal dysfunction, tissue injury and mortality rate, even under an immunologically privileged microenvironment. Second, we demonstrated that TLR2 knockout (KO) mice presented lower expression of autophagy-associated markers when compared with TLR4 KO animals. Similar parameter was confirmed in vitro, using tubular epithelial cells derived from both KO mice. To test the cross-talking between HO-1 and TLRs, hemin (an HO-1 internal inducer) was administrated in cisplatin-treated TLR2 and TLR4 KO mice and it was detected an improvement in the global renal tissue parameters. However, this protection was less evident at TLR2 KO mice. In summary, we documented that TLR2 plays a protective role in cisplatin-induced AKI progression, in part, by a mechanism associated with autophagy up-regulation, considering that its interplay with HO-1 can promote renal tissue recover.
Collapse
|
10
|
Bo L, Liu Y, Jia S, Liu Y, Zhang M, Li S, Zhao X, Sun C. Metabonomics analysis of quercetin against the nephrotoxicity of acrylamide in rats. Food Funct 2018; 9:5965-5974. [DOI: 10.1039/c8fo00902c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This research aimed at studying the effect of quercetin against the nephrotoxicity of acrylamide by metabonomics analysis of kidney tissue.
Collapse
Affiliation(s)
- Lu Bo
- Department of Nutrition and Food Hygiene
- Public Health College
- Harbin Medical University
- Harbin
- China
| | - Yanli Liu
- Department of Nutrition and Food Hygiene
- Public Health College
- Harbin Medical University
- Harbin
- China
| | - Siqi Jia
- Department of Nutrition and Food Hygiene
- Public Health College
- Harbin Medical University
- Harbin
- China
| | - Yajing Liu
- Department of Nutrition and Food Hygiene
- Public Health College
- Harbin Medical University
- Harbin
- China
| | - Meiyan Zhang
- Department of Nutrition and Food Hygiene
- Public Health College
- Harbin Medical University
- Harbin
- China
| | - Siqi Li
- Department of Nutrition and Food Hygiene
- Public Health College
- Harbin Medical University
- Harbin
- China
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene
- Public Health College
- Harbin Medical University
- Harbin
- China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene
- Public Health College
- Harbin Medical University
- Harbin
- China
| |
Collapse
|
11
|
Xia H, Bao W, Shi S. Innate Immune Activity in Glomerular Podocytes. Front Immunol 2017; 8:122. [PMID: 28228761 PMCID: PMC5296344 DOI: 10.3389/fimmu.2017.00122] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/25/2017] [Indexed: 01/02/2023] Open
Abstract
Glomerular podocytes are specialized in structure and play an essential role in glomerular filtration. In addition, podocyte stress can initiate glomerular damage by inducing the injury of other glomerular cell types. Studies have shown that podocytes possess the property of immune cells and may be involved in adaptive immunity. Emerging studies have also shown that podocytes possess signaling pathways of innate immune responses and that innate immune responses often result in podocyte injury. More recently, mitochondrial-derived damage-associated molecular patterns (mtDAMPs) have been shown to play a critical role in a variety of pathological processes in cells. In the present mini-review, we summarize the recent advances in the studies of innate immunity and its pathogenic role in podocytes, particularly, from the perspective of mtDAMPs.
Collapse
Affiliation(s)
- Hong Xia
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; Department of Nephrology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Wenduona Bao
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine , Nanjing , China
| | - Shaolin Shi
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine , Nanjing , China
| |
Collapse
|
12
|
Han B, Zhu CX, Shi W, Huang HZ, Hu XG, Zhou XM, Lei M, Li Z. Effect of Rhizoma Polygoni Cuspidati and Ramulus Cinnamomi compatibility on uric acid metabolism and urinary neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in rats with hyperuricemia. Chin J Integr Med 2017; 23:535-542. [PMID: 28116659 DOI: 10.1007/s11655-016-2649-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To explore the effects of Rhizoma Polygoni Cuspidati and Ramulus Cinnamomi compatibility (PR) on uric acid metabolism and the expression of urinary neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) in rats with hyperuricemia. METHODS Seventy male Sprague Dawley (SD) rats were randomly divided into 7 groups with 10 rats per group, including the normal group, model group, allopurinol group, benzbromarone group and PR groups at 3 doses (3.5, 7, 14 g/kg). Except the normal group, rats of the other groups were intragastrically administered 100 mg/kg hypoxanthine and 250 mg/kg ethambutol, and subcutaneously injected with 200 mg/kg potassium oxonate. All rats were continuously modeled for 17 days, and gavaged with corresponding drugs. The rats of the normal and model groups were gavaged with saline, once a day, for 2 weeks. The levels of serum uric acid (SUA), blood urea nitrogen (BUN) and creatinine (Cr) were determined. In addition, the contents of NGAL and KIM-1 in urine and the mRNA and protein expressions of xanthine oxidase (XOD) in liver of hyperuricemia rats were measured by reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively. Moreover, the pathological changes of kidney were analyzed by hematoxylin and eosin (HE) stain method. RESULTS Compared with the normal group, the levels of SUA, BUN, NGAL and KIM-1 and the expressions of hepatic XOD mRNA and protein in the hyperuricemia rats were increased signifificantly (P<0.01). PR signifificantly decreased the levels of SUA, BUN, NGAL and KIM-1 and down-regulated the mRNA and protein expressions of hepatic XOD (P<0.05 or P<0.01). In addition, the pathological changes of kidney were signifificantly suppressed by oral administration of PR. CONCLUSIONS PR ameliorated uric acid metabolism and protected renal function, the underlying mechanism was mediated by decreasing the levels of SUA, BUN, NGAL and KIM-1, inhibiting the expression of hepatic XOD and ameliorating the pathological change of kidney.
Collapse
Affiliation(s)
- Bin Han
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chun-Xia Zhu
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wan Shi
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hui-Zhu Huang
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xu-Guang Hu
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao-Ming Zhou
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ming Lei
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhong Li
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Jheng HF, Hirotsuka M, Goto T, Shibata M, Matsumura Y, Kawada T. Dietary low-fat soy milk powder retards diabetic nephropathy progression via inhibition of renal fibrosis and renal inflammation. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/08/2016] [Accepted: 10/09/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Huei-Fen Jheng
- Division of Agronomy and Horticultural Science; Laboratory of Soybean Renaissance; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Motohiko Hirotsuka
- Division of Agronomy and Horticultural Science; Laboratory of Soybean Renaissance; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology; Laboratory of Molecular Function of Food; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Masayuki Shibata
- Division of Agronomy and Horticultural Science; Laboratory of Soybean Renaissance; Graduate School of Agriculture; Kyoto University; Kyoto Japan
- R&D Division for Future Creation; Fuji Oil Holdings INC; Osaka Japan
| | - Yasuki Matsumura
- Division of Agronomy and Horticultural Science; Laboratory of Quality Analysis and Assessment; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology; Laboratory of Molecular Function of Food; Graduate School of Agriculture; Kyoto University; Kyoto Japan
| |
Collapse
|
14
|
Bao W, Xia H, Liang Y, Ye Y, Lu Y, Xu X, Duan A, He J, Chen Z, Wu Y, Wang X, Zheng C, Liu Z, Shi S. Toll-like Receptor 9 Can be Activated by Endogenous Mitochondrial DNA to Induce Podocyte Apoptosis. Sci Rep 2016; 6:22579. [PMID: 26934958 PMCID: PMC4776276 DOI: 10.1038/srep22579] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/17/2016] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptor 9 (TLR9) senses bacterial DNA characteristic of unmethylated CpG motifs to induce innate immune response. TLR9 is de novo expressed in podocytes of some patients with glomerular diseases, but its role in podocyte injury remains undetermined. Since TLR9 activates p38 MAPK and NFkB that are known to mediate podocyte apoptosis, we hypothesized that TLR9 induces podocyte apoptosis in glomerular diseases. We treated immortalized podocytes with puromycin aminonucleosides (PAN) and observed podocyte apoptosis, accompanied by TLR9 upregulation. Prevention of TLR9 upregulation by siRNA significantly attenuated NFκB p65 or p38 activity and apoptosis, demonstrating that TLR9 mediates podocyte apoptosis. We next showed that endogenous mitochondrial DNA (mtDNA), whose CpG motifs are also unmethylated, is the ligand for TLR9, because PAN induced mtDNA accumulation in endolysosomes where TLR9 is localized, overexpression of endolysosomal DNase 2 attenuated PAN-induced p38 or p65 activity and podocyte apoptosis, and DNase 2 silencing was sufficient to activate p38 or p65 and induce apoptosis. In PAN-treated rats, TLR9 was upregulated in the podocytes, accompanied by increase of apoptosis markers. Thus, de novo expressed TLR9 may utilize endogenous mtDNA as the ligand to facilitate podocyte apoptosis, a novel mechanism underlying podocyte injury in glomerular diseases.
Collapse
Affiliation(s)
- Wenduona Bao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hong Xia
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yaojun Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yuting Ye
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yuqiu Lu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Aiping Duan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jing He
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhaohong Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yan Wu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xia Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shaolin Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
15
|
Jheng HF, Tsai PJ, Chuang YL, Shen YT, Tai TA, Chen WC, Chou CK, Ho LC, Tang MJ, Lai KTA, Sung JM, Tsai YS. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Dis Model Mech 2015; 8:1311-21. [PMID: 26398934 PMCID: PMC4610229 DOI: 10.1242/dmm.019398] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 07/29/2015] [Indexed: 02/06/2023] Open
Abstract
Increased urinary albumin excretion is not simply an aftermath of glomerular injury, but is also involved in the progression of diabetic nephropathy (DN). Whereas Toll-like receptors (TLRs) are incriminated in the renal inflammation of DN, whether and how albumin is involved in the TLR-related renal inflammatory response remains to be clarified. Here, we showed that both TLR2 and TLR4, one of their putative endogenous ligands [heat shock protein 70 (HSP70)] and nuclear factor-κB promoter activity were markedly elevated in the kidneys of diabetic mice. A deficiency of TLR4 but not of TLR2 alleviated albuminuria, tubulointerstitial fibrosis and inflammation induced by diabetes. The protection against renal injury in diabetic Tlr4−/− mice was associated with reduced tubular injuries and preserved cubilin levels, rather than amelioration of glomerular lesions. In vitro studies revealed that albumin, a stronger inducer than high glucose (HG), induced the release of HSP70 from proximal tubular cells. HSP70 blockade ameliorated albumin-induced inflammatory mediators. HSP70 triggered the production of inflammatory mediators in a TLR4-dependent manner. Moreover, HSP70 inhibition in vivo ameliorated diabetes-induced albuminuria, inflammatory response and tubular injury. Finally, we found that individuals with DN had higher levels of TLR4 and HSP70 in the dilated tubules than non-diabetic controls. Thus, activation of the HSP70-TLR4 axis, stimulated at least in part by albumin, in the tubular cell is a newly identified mechanism associated with induction of tubulointerstitial inflammation and aggravation of pre-existing microalbuminuria in the progression of DN. Summary: Activation of the HSP70-TLR4 axis by albumin in the tubular cell induces tubular inflammation and injury.
Collapse
Affiliation(s)
- Huei-Fen Jheng
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan Institute of Clinical Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Jane Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Lun Chuang
- Department of Physiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Ting Shen
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Ting-An Tai
- Department of Physiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Chung Chen
- Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Chuan-Kai Chou
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan
| | - Li-Chun Ho
- Division of Nephrology, Department of Internal Medicine, E-DA Hospital/I-Shou University, Kaohsiung 824, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, National Cheng Kung University, Tainan 701, Taiwan
| | | | - Junne-Ming Sung
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Yau-Sheng Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan Institute of Clinical Medicine, National Cheng Kung University, Tainan 701, Taiwan Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan, Republic of China
| |
Collapse
|
16
|
Renal expression of Toll-like receptor 2 and 4: Dynamics in human allograft injury and comparison to rodents. Mol Immunol 2015; 64:82-9. [DOI: 10.1016/j.molimm.2014.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/22/2022]
|
17
|
Kim TH, Jeong KH, Kim SK, Lee SH, Ihm CG, Lee TW, Moon JY, Yoon YC, Chung JH, Park SJ, Kang SW, Kim YH. TLR9gene polymorphism (rs187084, rs352140): association with acute rejection and estimated glomerular filtration rate in renal transplant recipients. Int J Immunogenet 2013; 40:502-8. [DOI: 10.1111/iji.12069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/28/2013] [Accepted: 05/15/2013] [Indexed: 11/30/2022]
Affiliation(s)
- T. H. Kim
- Department of Internal Medicine; Busan Paik Hospital; Inje University; Busan Korea
| | - K.-H. Jeong
- Department of Internal Medicine; Kyunghee University; Seoul Korea
| | - S. K. Kim
- Kohwang Medical Research Institute; School of Medicine; Kyunghee University; Seoul Korea
| | - S. H. Lee
- Department of Internal Medicine; Kyunghee University; Seoul Korea
| | - C. G. Ihm
- Department of Internal Medicine; Kyunghee University; Seoul Korea
| | - T. W. Lee
- Department of Internal Medicine; Kyunghee University; Seoul Korea
| | - J. Y. Moon
- Department of Internal Medicine; Kyunghee University; Seoul Korea
| | - Y. C. Yoon
- Department of Chest Surgery; College of Medicine; Inje University; Busan Korea
| | - J.-H. Chung
- Kohwang Medical Research Institute; School of Medicine; Kyunghee University; Seoul Korea
| | - S. J. Park
- Department of Internal Medicine; Busan Paik Hospital; Inje University; Busan Korea
| | - S. W. Kang
- Department of Internal Medicine; Busan Paik Hospital; Inje University; Busan Korea
| | - Y. H. Kim
- Department of Internal Medicine; Busan Paik Hospital; Inje University; Busan Korea
| |
Collapse
|
18
|
Abstract
The kidneys are the major organs affected in diarrhea-associated hemolytic uremic syndrome (D(+)HUS). The pathophysiology of renal disease in D(+)HUS is largely the result of the interaction between bacterial virulence factors such as Shiga toxin and lipopolysaccharide and host cells in the kidney and in the blood circulation. This chapter describes in detail the current knowledge of how these bacterial toxins may lead to kidney disease and renal failure. The toxin receptors expressed by specific blood and resident renal cell types are also discussed as are the actions of the toxins on these cells.
Collapse
|
19
|
Lu KC, Yang HY, Lin YF, Kao SY, Lai CH, Chu CM, Wu CC, Su SL. The T-1237C polymorphism of the Toll-like receptor-9 gene is associated with chronic kidney disease in a Han Chinese population. TOHOKU J EXP MED 2011; 225:109-116. [PMID: 21908957 DOI: 10.1620/tjem.225.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Chronic kidney disease (CKD) is increasingly recognized as a global public health problem. As inflammatory processes and genetic factors are involved in the pathogenesis of CKD, we have investigated the potential genetic contribution of Toll-like receptor (TLR) gene polymorphisms in CKD. In a case-control association study, 149 CKD patients and 429 healthy controls were genotyped by real-time polymerase chain reaction. CKD patients were defined as kidney damage (albuminuria, proteinuria or hematuria) or glomerular filtration rate < 60 ml/min/1.73 m(2) for 3 months or more. Single nucleotide polymorphisms (SNPs) at TLR-2 G2408A, TLR-4 A12874G and C13174T, and TLR-9 T-1237C, T-1486C, and G1635A were assessed, and linkage disequilibrium calculations and haplotype association analysis were undertaken. The functions of TLR-9 have been documented to recognize the viral and bacterial CpG DNA sequences, whereas detects microbe-derived peptidoglycan and lipopeptides and TLR-4 binds lipopolysaccharides. SNPs within the TLR genes may influence promoter activity, mRNA conformation and subcellular localization, and/or protein structure and function. Our results show that only the TLR-9 T-1237C and G1635A gene polymorphisms demonstrate an association with CKD (p = 0.002 and p = 0.04, respectively). The TLR-9 TCA haplotype at T-1237C, T-1486C, and G1635A was associated with a lower risk of CKD, whereas the TTA haplotype was associated with a higher risk of CKD. In the Han Chinese population, those who carry the C and A alleles at SNPs T-1237C and G1635A in the TLR-9 gene appear to be more susceptible to the development of CKD.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|