1
|
Schricker S, Schanz M, Latus J. [Treatment of chronic kidney disease in IgA nephropathy]. Dtsch Med Wochenschr 2025; 150:83-90. [PMID: 39809431 DOI: 10.1055/a-2255-6329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This article provides an overview of treatment approaches for chronic kidney disease (CKD) in patients with IgA nephropathy (IgAN). IgAN is the most common primary glomerulonephritis and results from an autoimmune reaction to aberrantly glycosylated immunoglobulin A (IgA) antibodies. Although historically considered largely benign, it is now recognized that a significant percentage of patients develop dialysis-dependent kidney disease over the years. Traditional treatments with RAAS inhibitors and newer therapies such as SGLT2 inhibitors, endothelin receptor antagonists, and delayed release, primarily locally acting enteric corticosteroids regarding their role in reducing proteinuria and preserving kidney function are also discussed. Additionally, non-immunosuppressive options and lifestyle modifications are examined for their potential to slow disease progression. Further promising medications are currently in clinical trials, including complement inhibitors and immunomodulators. These emerging therapies offer hope for significantly improving the prognosis of IgAN in the future. By presenting a comprehensive overview of current and potential future treatment strategies, this review aims to provide clinicians with up-to-date information to optimize the management of CKD in patients with IgAN.
Collapse
|
2
|
Del Vecchio L, Allinovi M, Comolli S, Peiti S, Rimoldi C, Locatelli F. Drugs in Development to Treat IgA Nephropathy. Drugs 2024; 84:503-525. [PMID: 38777962 DOI: 10.1007/s40265-024-02036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
IgA nephropathy is a common glomerulonephritis consequent to the autoimmune response to aberrant glycosylated immunoglobulin (Ig) A antibodies. Although it has historically been considered a benign disease, it has since become clear that a substantial percentage of patients reach end-stage kidney failure over the years. Several therapeutic attempts have been proposed, with systemic steroids being the most prevalent, albeit burdened by possible serious adverse events. Thanks to the more in-depth knowledge of the pathogenesis of IgA nephropathy, new treatment targets have been identified and new drugs developed. In this narrative review, we summarise the molecules under clinical development for the treatment of IgA nephropathy. As a search strategy, we used PubMed, Google, ClinicalTrials.gov and abstracts from recent international congresses. TRF budesonide and sparsentan are the two molecules at a more advanced stage, just entering the market. Other promising agents are undergoing phase III clinical development. These include anti-APRIL and anti-BLyS/BAFF antibodies and some complement inhibitors. Other new possible strategies include spleen tyrosine kinase inhibitors, anti-CD40 ligands and anti-CD38 antibodies. In an era increasingly characterised by 'personalised medicine' and 'precision therapy' approaches and considering that the potential therapeutic armamentarium for IgA nephropathy will be very broad in the near future, the identification of biomarkers capable of helping the nephrologist to select the right drug for the right patient should be the focus of future studies.
Collapse
Affiliation(s)
| | - Marco Allinovi
- Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence, Italy
| | - Stefania Comolli
- Department of Nephrology and Dialysis, ASST Sette Laghi, Varese, Italy
| | - Silvia Peiti
- Department of Nephrology and Dialysis, ASST Lariana, Como, Italy
| | | | - Francesco Locatelli
- Past Director of the Department of Nephrology and Dialysis, ASST Lecco, Lecco, Italy
| |
Collapse
|
3
|
Rivedal M, Mikkelsen H, Marti HP, Liu L, Kiryluk K, Knoop T, Bjørneklett R, Haaskjold YL, Furriol J, Leh S, Paunas F, Bábíčková J, Scherer A, Serre C, Eikrem O, Strauss P. Glomerular transcriptomics predicts long term outcome and identifies therapeutic strategies for patients with assumed benign IgA nephropathy. Kidney Int 2024; 105:717-730. [PMID: 38154557 DOI: 10.1016/j.kint.2023.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023]
Abstract
Some patients diagnosed with benign IgA nephropathy (IgAN) develop a progressive clinical course, not predictable by known clinical or histopathological parameters. To assess if gene expression can differentiate between progressors and non-progressors with assumed benign IgAN, we tested microdissected glomeruli from archival kidney biopsy sections from adult patients with stable clinical remission (21 non-progressors) or from 15 patients that had undergone clinical progression within a 25-year time frame. Based on 1 240 differentially expressed genes from patients with suitable sequencing results, we identified eight IgAN progressor and nine non-progressor genes using a two-component classifier. These genes, including APOL5 and ZXDC, predicted disease progression with 88% accuracy, 75% sensitivity and 100% specificity on average 21.6 years before progressive disease was clinically documented. APOL lipoproteins are associated with inflammation, autophagy and kidney disease while ZXDC is a zinc-finger transcription factor modulating adaptive immunity. Ten genes from our transcriptomics data overlapped with an external genome wide association study dataset, although the gene set enrichment test was not statistically significant. We also identified 45 drug targets in the DrugBank database, including angiotensinogen, a target of sparsentan (dual antagonist of the endothelin type A receptor and the angiotensin II type 1 receptor) currently investigated for IgAN treatment. Two validation cohorts were used for substantiating key results, one by immunohistochemistry and the other by nCounter technology. Thus, glomerular mRNA sequencing from diagnostic kidney biopsies from patients with assumed benign IgAN can differentiate between future progressors and non-progressors at the time of diagnosis.
Collapse
Affiliation(s)
- Mariell Rivedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Håvard Mikkelsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lili Liu
- Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Krzysztof Kiryluk
- Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA; Institute for Genomic Medicine, Columbia University, New York, New York, USA
| | - Thomas Knoop
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rune Bjørneklett
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway
| | - Yngvar Lunde Haaskjold
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sabine Leh
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Flavia Paunas
- Department of Medicine, Haugesund Hospital, Haugesund, Norway
| | - Janka Bábíčková
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Andreas Scherer
- Spheromics, Kontiolahti, Finland; Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Camille Serre
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Oystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Philipp Strauss
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
4
|
Dendooven A, Peetermans H, Helbert M, Nguyen TQ, Marcussen N, Nagata M, Gesualdo L, Perkowska-Ptasinska A, Capusa C, López-Gómez JM, Geddes C, Abdul-Hamid MA, Segelmark M, Yahya R, Garau M, Villanueva R, Dorman A, Barbour S, Cornet R, Hopfer H, Amann K, Leh S. Coding practice in national and regional kidney biopsy registries. BMC Nephrol 2021; 22:193. [PMID: 34030637 PMCID: PMC8146626 DOI: 10.1186/s12882-021-02365-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Background Kidney biopsy registries all over the world benefit research, teaching and health policy. Comparison, aggregation and exchange of data is however greatly dependent on how registration and coding of kidney biopsy diagnoses are performed. This paper gives an overview over kidney biopsy registries, explores how these registries code kidney disease and identifies needs for improvement of coding practice. Methods A literature search was undertaken to identify biopsy registries for medical kidney diseases. These data were supplemented with information from personal contacts and from registry websites. A questionnaire was sent to all identified registries, investigating age of registries, scope, method of coding, possible mapping to international terminologies as well as self-reported problems and suggestions for improvement. Results Sixteen regional or national kidney biopsy registries were identified, of which 11 were older than 10 years. Most registries were located either in Europe (10/16) or in Asia (4/16). Registries most often use a proprietary coding system (12/16). Only a few of these coding systems were mapped to SNOMED CT (1), older SNOMED versions (2) or ERA-EDTA PRD (3). Lack of maintenance and updates of the coding system was the most commonly reported problem. Conclusions There were large gaps in the global coverage of kidney biopsy registries. Limited use of international coding systems among existing registries hampers interoperability and exchange of data. The study underlines that the use of a common and uniform coding system is necessary to fully realize the potential of kidney biopsy registries. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02365-3.
Collapse
Affiliation(s)
- Amélie Dendooven
- Ghent University Hospital, Ghent, Belgium. .,Antwerp University, Antwerp, Belgium.
| | | | | | - Tri Q Nguyen
- University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | - Cristina Capusa
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | | | | | | | | | | | | - Sean Barbour
- University of British Columbia, Vancouver, Canada
| | - Ronald Cornet
- Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | | | - Sabine Leh
- Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|