1
|
Grubic TJ, Sowinski RJ, Nevares BE, Jenkins VM, Williamson SL, Reyes AG, Rasmussen C, Greenwood M, Murano PS, Earnest CP, Kreider RB. Comparison of ingesting a food bar containing whey protein and isomalto-oligosaccharides to carbohydrate on performance and recovery from an acute bout of resistance-exercise and sprint conditioning: an open label, randomized, counterbalanced, crossover pilot study. J Int Soc Sports Nutr 2019; 16:34. [PMID: 31409363 PMCID: PMC6693099 DOI: 10.1186/s12970-019-0301-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND We previously reported that consuming a food bar (FB) containing whey protein and the plant fiber isomalto-oligosaccharides [IMO] had a lower glycemic (GI) but similar insulinemic response as a high GI carbohydrate. Therefore, we hypothesized that ingestion of this FB before, during, and following intense exercise would better maintain glucose homeostasis and performance while hastening recovery in comparison to the common practice of ingesting carbohydrate alone. METHODS Twelve resistance-trained males participated in an open label, randomized, counterbalanced, crossover trial with a 7-d washout period. Participants consumed a carbohydrate matched dextrose comparitor (CHO) or a FB containing 20 g of whey, 25 g of IMO, and 7 g of fat 30-min before, mid-way, and following intense exercise. Participants performed 11 resistance-exercises (3 sets of 10 repetitions at 70% of 1RM) followed by agility and sprint conditioning drills for time. Participants donated blood to assess catabolic and inflammatory markers, performed isokinetic strength tests, and rated perceptions of muscle soreness, hypoglycemia before, and following exercise and after 48 h of recovery. Data were analyzed using general linear models (GLM) for repeated measures and mean changes from baseline with 95% confidence intervals (CI) with a one-way analysis of variance. Data are reported as mean change from baseline with 95% CI. RESULTS GLM analysis demonstrated that blood glucose was significantly higher 30-min post-ingestion for CHO (3.1 [2.0, 4.3 mmol/L,] and FB (0.8 [0.2, 1.5, mmol/L, p = 0.001) while the post-exercise ratio of insulin to glucose was greater with FB (CHO 0.04 [0.00, 0.08], FB 0.11 [0.07, 0.15], p = 0.013, η2 = 0.25). GLM analysis revealed no significant interaction effects between treatments in lifting volume of each resistance-exercise or total lifting volume. However, analysis of mean changes from baseline with 95% CI's revealed that leg press lifting volume (CHO -130.79 [- 235.02, - 26.55]; FB -7.94 [- 112.17, 96.30] kg, p = 0.09, η2 = 0.12) and total lifting volume (CHO -198.26 [- 320.1, - 76.4], FB -81.7 [- 203.6, 40.1] kg, p = 0.175, η2 = 0.08) from set 1 to 3 was significantly reduced for CHO, but not for the FB. No significant interaction effects were observed in ratings of muscle soreness. However, mean change analysis revealed that ratings of soreness of the distal vastus medialis significantly increased from baseline with CHO while being unchanged with FB (CHO 1.88 [0.60, 3.17]; FB 0.29 [- 0.99, 1.57] cm, p = 0.083, η2 = 0.13). No significant GLM interaction or mean change analysis effects were seen between treatments in sprint performance, isokinetic strength, markers of catabolism, stress and sex hormones, or inflammatory markers. CONCLUSION Pilot study results provide some evidence that ingestion of this FB can positively affect glucose homeostasis, help maintain workout performance, and lessen perceptions of muscle soreness. TRIAL REGISTRATION clinicaltrials.gov, # NCT03704337 . Retrospectively registered 12, July 2018.
Collapse
Affiliation(s)
- Tyler J Grubic
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Ryan J Sowinski
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA.,Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Ben E Nevares
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Victoria M Jenkins
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Susannah L Williamson
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Aimee G Reyes
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA.,Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Christopher Rasmussen
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Mike Greenwood
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Peter S Murano
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Conrad P Earnest
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA.
| |
Collapse
|
3
|
Iron deficiency anaemia in pregnancy and postpartum: pathophysiology and effect of oral versus intravenous iron therapy. J Pregnancy 2012; 2012:630519. [PMID: 22792466 PMCID: PMC3389687 DOI: 10.1155/2012/630519] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/04/2012] [Accepted: 04/18/2012] [Indexed: 12/15/2022] Open
Abstract
Nutritional iron-deficiency anaemia (IDA) is the most common disorder in the world, affecting more than two billion people. The World Health Organization's global database on anaemia has estimated a prevalence of 14% based on a regression-based analysis. Recent data show that the prevalence of IDA in pregnant women in industrialized countries is 17.4% while the incidence of IDA in developing countries increases significantly up to 56%. Although oral iron supplementation is widely used for the treatment of IDA, not all patients respond adequately to oral iron therapy. This is due to several factors including the side effects of oral iron which lead to poor compliance and lack of efficacy. The side effects, predominantly gastrointestinal discomfort, occur in a large cohort of patients taking oral iron preparations. Previously, the use of intravenous iron had been associated with undesirable and sometimes serious side effects and therefore was underutilised. However, in recent years, new type II and III iron complexes have been developed, which offer better compliance and toleration as well as high efficacy with a good safety profile. In summary, intravenous iron can be used safely for a rapid repletion of iron stores and correction of anaemia during and after pregnancy.
Collapse
|