1
|
Li S, Hu G, Chen Y, Sang Y, Tang Q, Liu R. TERT upstream promoter methylation regulates TERT expression and acts as a therapeutic target in TERT promoter mutation-negative thyroid cancer. Cancer Cell Int 2024; 24:271. [PMID: 39097722 PMCID: PMC11297792 DOI: 10.1186/s12935-024-03459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND DNA hypermethylation and hotspot mutations were frequently observed in the upstream and core promoter of telomerase reverse transcriptase (TERT), respectively, and they were associated with increased TERT expression and adverse clinical outcomes in thyroid cancer. In TERT promoter mutant cancer cells, the hypomethylated TERT mutant allele was active and the hypermethylated TERT wild-type allele was silenced. However, whether and how the upstream promoter methylation regulates TERT expression in TERT mutation-negative cells were largely unknown. METHODS DNA demethylating agents 5-azacytidine and decitabine and a genomic locus-specific demethylation system based on dCas9-TET1 were used to assess the effects of TERT upstream promoter methylation on TERT expression, cell growth and apoptosis of thyroid cancer cells. Regulatory proteins binding to TERT promoter were identified by CRISPR affinity purification in situ of regulatory elements (CAPTURE) combined with mass spectrometry. The enrichments of selected regulatory proteins and histone modifications were evaluated by chromatin immunoprecipitation. RESULTS The level of DNA methylation at TERT upstream promoter and expression of TERT were significantly decreased after treatment with 5-azacytidine or decitabine in TERT promoter wild-type thyroid cancer cells. Genomic locus-specific demethylation of TERT upstream promoter induced TERT downregulation, along with cell apoptosis and growth inhibition. Consistently, demethylating agents sharply inhibited the growth of thyroid cancer cells harboring hypermethylated TERT but had little effect on cells with TERT hypomethylation. Moreover, we identified that the chromatin remodeling protein CHD4 binds to methylated TERT upstream promoter and promotes its transcription by suppressing the enrichment of H3K9me3 and H3K27me3 at TERT promoter. CONCLUSIONS This study uncovered the mechanism of promoter methylation mediated TERT activation in TERT promoter mutation-negative thyroid cancer cells and indicated TERT upstream promoter methylation as a therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Shiyong Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Guanghui Hu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Yulu Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Ye Sang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Qin Tang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Second Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
2
|
Yang Q, Chen L, Zhang H, Li M, Sun L, Wu X, Zhao H, Qu X, An X, Wang T. DNMT1 regulates human erythropoiesis by modulating cell cycle and endoplasmic reticulum stress in a stage-specific manner. Cell Death Differ 2024; 31:999-1012. [PMID: 38719927 PMCID: PMC11303534 DOI: 10.1038/s41418-024-01305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 08/09/2024] Open
Abstract
The dynamic balance of DNA methylation and demethylation is required for erythropoiesis. Our previous transcriptomic analyses revealed that DNA methyltransferase 1 (DNMT1) is abundantly expressed in erythroid cells at all developmental stages. However, the role and molecular mechanisms of DNMT1 in human erythropoiesis remain unknown. Here we found that DNMT1 deficiency led to cell cycle arrest of erythroid progenitors which was partially rescued by treatment with a p21 inhibitor UC2288. Mechanically, this is due to decreased DNA methylation of p21 promoter, leading to upregulation of p21 expression. In contrast, DNMT1 deficiency led to increased apoptosis during terminal stage by inducing endoplasmic reticulum (ER) stress in a p21 independent manner. ER stress was attributed to the upregulation of RPL15 expression due to the decreased DNA methylation at RPL15 promoter. The upregulated RPL15 expression subsequently caused a significant upregulation of core ribosomal proteins (RPs) and thus ultimately activated all branches of unfolded protein response (UPR) leading to the excessive ER stress, suggesting a role of DNMT1 in maintaining protein homeostasis during terminal erythroid differentiation. Furthermore, the increased apoptosis was significantly rescued by the treatment of ER stress inhibitor TUDCA. Our findings demonstrate the stage-specific role of DNMT1 in regulating human erythropoiesis and provide new insights into regulation of human erythropoiesis.
Collapse
Affiliation(s)
- Qianqian Yang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Mengjia Li
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
- Department of Hematology, First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450052, China
| | - Lei Sun
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China
| | - Xiaoli Qu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China.
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, 310 East, 67th Street, New York, NY, 10065, USA.
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Li Y, Chen L, Huang L, Li X, Huang Q, Tang L, Huang Z, Zhu L, Li T. A radiomics-based nomogram may be useful for predicting telomerase reverse transcriptase promoter mutation status in adult glioblastoma. Brain Behav 2024; 14:e3528. [PMID: 38798094 PMCID: PMC11128771 DOI: 10.1002/brb3.3528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND AND PURPOSE As a crucial diagnostic and prognostic biomarker, telomerase reverse transcriptase (TERT) promoter mutation holds immense significance for personalized treatment of patients with glioblastoma (GBM). In this study, we developed a radiomics nomogram to determine the TERT promoter mutation status and assessed its prognostic efficacy in GBM patients. METHODS The study retrospectively included 145 GBM patients. A comprehensive set of 3736 radiomics features was extracted from preoperative magnetic resonance imaging, including T2-weighted imaging, T1-weighted imaging (T1WI), contrast-enhanced T1WI, and fluid-attenuated inversion recovery. The construction of the radiomics model was based on integrating the radiomics signature (rad-score)with clinical features. Receiver-operating characteristic curve analysis was employed to evaluate the discriminative ability of the prediction model, and the risk score was used to stratify patient outcomes. RESULTS The least absolute shrinkage and selection operator classifier identified 10 robust features for constructing the prediction model, and the radiomics nomogram exhibited excellent performance in predicting TERT promoter mutation status, with area under the curve values of.906 (95% confidence interval [CI]:.850-.963) and.899 (95% CI:.708-.966) in the training and validation sets, respectively. The clinical utility of the radiomics nomogram is further supported by calibration curve and decision curve analyses. Additionally, the radiomics nomogram effectively stratified GBM patients with significantly different prognoses (HR = 1.767, p = .019). CONCLUSION The radiomics nomogram holds promise as a modality for evaluating TERT promoter mutations and prognostic outcomes in patients with GBM.
Collapse
Affiliation(s)
- Yao Li
- Department of NeurosurgeryLiuzhou Worker's HospitalGuangxiChina
| | - Ling Chen
- Department of RadiologyLiuzhou Worker's HospitalGuangxiChina
| | - Lizhao Huang
- Department of RadiologyLiuzhou Worker's HospitalGuangxiChina
| | - Xuedong Li
- Department of NeurosurgeryLiuzhou Worker's HospitalGuangxiChina
| | - Qidan Huang
- Department of NeurosurgeryLiuzhou Worker's HospitalGuangxiChina
| | - Lifang Tang
- Department of RadiologyLiuzhou Worker's HospitalGuangxiChina
| | - Zhiwei Huang
- Department of NeurosurgeryLiuzhou Worker's HospitalGuangxiChina
| | - Li Zhu
- Department of RadiologyLiuzhou Worker's HospitalGuangxiChina
| | - Tao Li
- Department of RadiologyLiuzhou Worker's HospitalGuangxiChina
| |
Collapse
|
4
|
Liu Y, Ali H, Khan F, Pang L, Chen P. Epigenetic regulation of tumor-immune symbiosis in glioma. Trends Mol Med 2024; 30:429-442. [PMID: 38453529 PMCID: PMC11081824 DOI: 10.1016/j.molmed.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Glioma is a type of aggressive and incurable brain tumor. Patients with glioma are highly resistant to all types of therapies, including immunotherapies. Epigenetic reprogramming is a key molecular hallmark in tumors across cancer types, including glioma. Mounting evidence highlights a pivotal role of epigenetic regulation in shaping tumor biology and therapeutic responses through mechanisms involving both glioma cells and immune cells, as well as their symbiotic interactions in the tumor microenvironment (TME). In this review, we discuss the molecular mechanisms of epigenetic regulation that impacts glioma cell biology and tumor immunity in both a cell-autonomous and non-cell-autonomous manner. Moreover, we provide an overview of potential therapeutic approaches that can disrupt epigenetic-regulated tumor-immune symbiosis in the glioma TME.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lizhi Pang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peiwen Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Weng KQ, Liu JY, Li H, She LL, Qiu JL, Qi H, Qi HY, Li YS, Dai YB. Identification of Treg-related prognostic molecular subtypes and individualized characteristics in clear cell renal cell carcinoma through single-cell transcriptomes and bulk RNA sequencing. Int Immunopharmacol 2024; 130:111746. [PMID: 38442575 DOI: 10.1016/j.intimp.2024.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND In clear cell renal cell carcinoma (ccRCC), the role of Regulatory T cells (Treg cells) as prognostic and immunotherapy response predictors is not fully explored. METHODS Analyzing renal clear cell carcinoma datasets from TISCH, TCGA, and GEO, we focused on 8 prognostic Treg genes to study patient subtypes in ccRCC. We assessed Treg subtypes in relation to patient prognosis, tumor microenvironment, metabolism. Using Cox regression and principal component analysis, we devised Treg scores for individual patient characterization and explored the molecular role of C1QL1, a critical gene in the Treg model, through in vivo and in vitro studies. RESULTS Eight Treg-associated prognostic genes were identified, classifying ccRCC patients into cluster A and B. Cluster A patients showed poorer prognosis with distinct clinical and molecular profiles, potentially benefiting more from immunotherapy. Low Treg scores correlated with worse outcomes and clinical progression. Low scores also suggested that patients might respond better to immunotherapy and targeted therapies. In ccRCC, C1QL1 knockdown reduced tumor proliferation and invasion via NF-kb-EMT pathways and decreased Treg cell infiltration, enhancing immune efficacy. CONCLUSIONS The molecular subtype and Treg score in ccRCC, based on Treg cell marker genes, are crucial in personalizing ccRCC treatment and underscore C1QL1's potential as a tumor biomarker and target for immunotherapy.
Collapse
Affiliation(s)
- Kang Qiang Weng
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Jin Yu Liu
- The Affiliated Hospital of Putian University, 999 DongZhen East Rd, Putian 351100, Fujian, China.
| | - Hu Li
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Lin Lu She
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Jun Liang Qiu
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Hao Qi
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Hui Yue Qi
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Yong Sheng Li
- Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xin-quan Road, Fuzhou, China.
| | - Ying Bo Dai
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
6
|
Shi M, Sun D, Deng L, Liu J, Zhang MJ. SRPK1 Promotes Glioma Proliferation, Migration, and Invasion through Activation of Wnt/β-Catenin and JAK-2/STAT-3 Signaling Pathways. Biomedicines 2024; 12:378. [PMID: 38397980 PMCID: PMC10886746 DOI: 10.3390/biomedicines12020378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Currently, the treatment of gliomas still relies primarily on surgery and radiochemotherapy. Although there are various drugs available, including temozolomide, the overall therapeutic effect is unsatisfactory, and the prognosis remains poor. Therefore, the in-depth study of the mechanism of glioma development and a search for new therapeutic targets are the keys to improving the therapeutic treatment of gliomas and improving the prognosis of patients. Immunohistochemistry is used to detect the expression of relevant molecules in tissues, qPCR and Western blot are used to detect the mRNA and protein expression of relevant molecules, CCK-8 (Cell Counting Kit-8) is used to assess cell viability and proliferation capacity, Transwell is used to evaluate cell migration and invasion ability, and RNA transcriptome sequencing is used to identify the most influential pathways. SRPK1 (SRSF protein kinase 1) is highly expressed in gliomas but is not expressed in normal tissues. Its expression is positively correlated with the grades of gliomas and negatively correlated with prognosis. SRPK1 significantly promotes the occurrence and development of gliomas. Knocking down SRPK1 leads to a significant decrease in the proliferation, migration, and invasion abilities of gliomas. Loss of SRPK1 expression induces G2/M phase arrest and mitotic catastrophe, leading to apoptosis in cells. Overexpression of SRPK1 activates the Wnt/β-catenin (wingless-int1/β-catenin) and JAK-2/STAT-3 (Janus kinase 2/signal transducer and activator of transcription 3) signaling pathways, promoting the proliferation, migration, and invasion of gliomas. Overexpression of SRPK1 rescues the reduced cell proliferation, migration, and invasion abilities caused by the silencing of β-catenin or JAK-2. A stable shRNA-LN229 cell line was constructed, and using a nude mouse model, it was found that stable knockout of SRPK1 significantly reduced the tumorigenic ability of glioma cells, as evidenced by a significant decrease in the subcutaneous tumor volume and weight in nude mice. We have demonstrated that SRPK1 is highly expressed in gliomas. Overexpression of SRPK1 activates the Wnt/β-catenin and JAK-2/STAT-3 signaling pathways, promoting the proliferation, migration, and invasion of gliomas. Silencing SRPK1-related signaling pathways may provide potential therapeutic options for glioma patients.
Collapse
Affiliation(s)
- Mengna Shi
- Department of Oncology, Wenzhou Medical University, Wenzhou 325027, China;
| | - Dan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People’s Hospital), Huainan 232002, China
| | - Lu Deng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China;
| | - Jing Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Min-Jie Zhang
- Department of Oncology, Wenzhou Medical University, Wenzhou 325027, China;
| |
Collapse
|
7
|
Yan L, Geng Q, Cao Z, Liu B, Li L, Lu P, Lin L, Wei L, Tan Y, He X, Li L, Zhao N, Lu C. Insights into DNMT1 and programmed cell death in diseases. Biomed Pharmacother 2023; 168:115753. [PMID: 37871559 DOI: 10.1016/j.biopha.2023.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
DNMT1 (DNA methyltransferase 1) is the predominant member of the DNMT family and the most abundant DNMT in various cell types. It functions as a maintenance DNMT and is involved in various diseases, including cancer and nervous system diseases. Programmed cell death (PCD) is a fundamental mechanism that regulates cell proliferation and maintains the development and homeostasis of multicellular organisms. DNMT1 plays a regulatory role in various types of PCD, including apoptosis, autophagy, necroptosis, ferroptosis, and others. DNMT1 is closely associated with the development of various diseases by regulating key genes and pathways involved in PCD, including caspase 3/7 activities in apoptosis, Beclin 1, LC3, and some autophagy-related proteins in autophagy, glutathione peroxidase 4 (GPX4) and nuclear receptor coactivator 4 (NCOA4) in ferroptosis, and receptor-interacting protein kinase 1-receptor-interacting protein kinase 3-mixed lineage kinase domain-like protein (RIPK1-RIPK3-MLKL) in necroptosis. Our study summarizes the regulatory relationship between DNMT1 and different types of PCD in various diseases and discusses the potential of DNMT1 as a common regulatory hub in multiple types of PCD, offering a perspective for therapeutic approaches in disease.
Collapse
Affiliation(s)
- Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lini Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Blanco-Carmona E, Narayanan A, Hernandez I, Nieto JC, Elosua-Bayes M, Sun X, Schmidt C, Pamir N, Özduman K, Herold-Mende C, Pagani F, Cominelli M, Taranda J, Wick W, von Deimling A, Poliani PL, Rehli M, Schlesner M, Heyn H, Turcan Ş. Tumor heterogeneity and tumor-microglia interactions in primary and recurrent IDH1-mutant gliomas. Cell Rep Med 2023; 4:101249. [PMID: 37883975 PMCID: PMC10694621 DOI: 10.1016/j.xcrm.2023.101249] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 08/06/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
The isocitrate dehydrogenase (IDH) gene is recurrently mutated in adult diffuse gliomas. IDH-mutant gliomas are categorized into oligodendrogliomas and astrocytomas, each with unique pathological features. Here, we use single-nucleus RNA and ATAC sequencing to compare the molecular heterogeneity of these glioma subtypes. In addition to astrocyte-like, oligodendrocyte progenitor-like, and cycling tumor subpopulations, a tumor population enriched for ribosomal genes and translation elongation factors is primarily present in oligodendrogliomas. Longitudinal analysis of astrocytomas indicates that the proportion of tumor subpopulations remains stable in recurrent tumors. Analysis of tumor-associated microglia/macrophages (TAMs) reveals significant differences between oligodendrogliomas, with astrocytomas harboring inflammatory TAMs expressing phosphorylated STAT1, as confirmed by immunohistochemistry. Furthermore, inferred receptor-ligand interactions between tumor subpopulations and TAMs may contribute to TAM state diversity. Overall, our study sheds light on distinct tumor populations, TAM heterogeneity, TAM-tumor interactions in IDH-mutant glioma subtypes, and the relative stability of tumor subpopulations in recurrent astrocytomas.
Collapse
Affiliation(s)
- Enrique Blanco-Carmona
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ashwin Narayanan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany
| | - Inmaculada Hernandez
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, c/o University Hospital Regensburg, Regensburg, Germany; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Juan C Nieto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marc Elosua-Bayes
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xueyuan Sun
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Claudia Schmidt
- Core Facility Unit Light Microscopy, DKFZ, Heidelberg, Germany
| | - Necmettin Pamir
- Acıbadem Mehmet Ali Aydınlar University, School of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Koray Özduman
- Acıbadem Mehmet Ali Aydınlar University, School of Medicine, Department of Neurosurgery, Istanbul, Turkey
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Francesca Pagani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Julian Taranda
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, and DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Michael Rehli
- Next Generation Sequencing Core, Leibniz Institute for Immunotherapy, c/o University Hospital Regensburg, Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, Faculty for Applied Informatics, University of Augsburg, Augsburg, Germany
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain.
| | - Şevin Turcan
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany.
| |
Collapse
|
9
|
Xiao Z, Li J, Liang C, Liu Y, Zhang Y, Zhang Y, Liu Q, Yan X. Identification of M5c regulator-medicated methylation modification patterns for prognosis and immune microenvironment in glioma. Aging (Albany NY) 2023; 15:12275-12295. [PMID: 37934565 PMCID: PMC10683591 DOI: 10.18632/aging.205179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023]
Abstract
Glioma is a common intracranial tumor and is generally associated with poor prognosis. Recently, numerous studies illustrated the importance of 5-methylcytosine (m5C) RNA modification to tumorigenesis. However, the prognostic value and immune correlation of m5C in glioma remain unclear. We obtained RNA expression and clinical information from The Cancer Genome Atlas (TCGA) and The Chinese Glioma Genome Atlas (CGGA) datasets to analyze. Nonnegative matrix factorization (NMF) was used to classify patients into two subgroups and compare these patients in survival and clinicopathological characteristics. CIBERSORT and single-sample gene-set algorithm (ssGSEA) methods were used to investigate the relationship between m5C and the immune environment. The Weighted correlation network analysis (WGCNA) and univariate Cox proportional hazard model (CoxPH) were used to construct a m5C-related signature. Most of m5C RNA methylation regulators presented differential expression and prognostic values. There were obvious relationships between immune infiltration cells and m5C regulators, especially NSUN7. In the m5C-related module from WGCNA, we found SEPT3, CHI3L1, PLBD1, PHYHIPL, SAMD8, RAP1B, B3GNT5, RER1, PTPN7, SLC39A1, and MXI1 were prognostic factors for glioma, and they were used to construct the signature. The great significance of m5C-related signature in predicting the survival of patients with glioma was confirmed in the validation sets and CGGA cohort.
Collapse
Affiliation(s)
- Zhenyong Xiao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Jinwei Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Cong Liang
- Department of Pharmacy, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Yamei Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Yuxiu Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Yuxia Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Quan Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Xianlei Yan
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| |
Collapse
|
10
|
Spille DC, Thomas C, Wagner A, Grauer OM, Canisius J, Bunk EC, Stummer W, Eich HT, Paulus W, Senner V, Brokinkel B. Molecular predictors for decitabine efficacy in meningiomas - a pilot study. J Neurooncol 2023; 164:97-105. [PMID: 37477823 DOI: 10.1007/s11060-023-04379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
PURPOSE Effective chemotherapeutical agents for the treatment of meningiomas are still lacking. Previous in-vitro analyses revealed efficacy of decitabine (DCT), a DNA methyltransferase (DNMT) inhibitor established in the treatment of leukemia, in a yet undefined subgroup of meningiomas. METHODS Effects of DCT on proliferation and viability was analyzed in primary meningioma cells by immunofluorescence and MTT assays, and cases were classified as drug responders and non-responders. Molecular preconditions for efficacy were analyzed using immunofluorescence for Ki67, DNMT1, and five oncogenes (TRIM58, FAM84B, ELOVL2, MAL2, LMO3) previously found to be differentially methylated after DCT exposition, as well as by genome-wide DNA methylation analyses. RESULTS Efficacy of DCT (10µM) was found in eight (62%) of 13 meningioma cell lines 48 h after drug exposition (p < .05). DCT significantly reduced DNMT1 expression in all but two cell lines, and median ΔDNMT1 reduction 48 h after drug exposition was lower in DCT-resistant (-11.1%) than in DCT-sensitive (-50.5%, p = .030) cells. Rates of cell lines responsive to DCT exposition distinctly decreased to 25% after 72 h. No significant correlation of the patients´ age, sex, histological subtype, location of the paternal tumor, expression of Ki67, DNMT1 or the analyzed oncogenes with treatment response was found (p > .05, each). DCT efficacy was further independent of the methylation class and global DNA methylation of the paternal tumor. CONCLUSION Early effects of DCT in meningiomas are strongly related with DNMT1 expression, while clinical, histological, and molecular predictors for efficacy are sparse. Kinetics of drug efficacy might indicate necessity of repeated exposition and encourage further analyses.
Collapse
Affiliation(s)
- Dorothee C Spille
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, North Rhine-Westphalia, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine-Westphalia, Germany
| | - Andrea Wagner
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine-Westphalia, Germany
| | - Oliver Martin Grauer
- Department of Neurology, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Julian Canisius
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, North Rhine-Westphalia, Germany
| | - Eva Christine Bunk
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, North Rhine-Westphalia, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, North Rhine-Westphalia, Germany
| | - Hans T Eich
- Department of Radiation Oncology, University Hospital Münster, Münster, North Rhine-Westphalia, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine-Westphalia, Germany
| | - Volker Senner
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine-Westphalia, Germany
| | - Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, North Rhine-Westphalia, Germany.
- Institute of Neuropathology, University Hospital Münster, Münster, North Rhine-Westphalia, Germany.
| |
Collapse
|
11
|
Long S, Huang G, Ouyang M, Xiao K, Zhou H, Hou A, Li Z, Zhong Z, Zhong D, Wang Q, Xiang S, Ding X. Epigenetically modified AP-2α by DNA methyltransferase facilitates glioma immune evasion by upregulating PD-L1 expression. Cell Death Dis 2023; 14:365. [PMID: 37330579 PMCID: PMC10276877 DOI: 10.1038/s41419-023-05878-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
Programmed death-ligand 1 (PD-L1) ensures that tumor cells escape T-cell-mediated tumor immune surveillance. However, gliomas are characteristic of the low immune response and high-resistance therapy, it is necessary to understand molecular regulatory mechanisms in glioblastoma, especially the limited regulation of PD-L1 expression. Herein, we show that low expression of AP-2α is correlated with high expression of PD-L1 in high-grade glioma tissues. AP-2α binds directly to the promoter of the CD274 gene, not only inhibits the transcriptional activity of PD-L1 but enhances endocytosis and degradation of PD-L1 proteins. Overexpression of AP-2α in gliomas enhances CD8+ T cell-mediated proliferation, effector cytokine secretion, and cytotoxicity in vitro. Tfap2a could increase the cytotoxic effect of Cd8+ T cells in CT26, B16F10, and GL261 tumor-immune models, improve anti-tumor immunity, and promote the efficacy of anti-PD-1 therapy. Finally, the EZH2/H3K27Me3/DNMT1 complex mediates the methylation modification of AP-2α gene and maintains low expression of AP-2α in gliomas. 5-Aza-dC (Decitabine) treatment combines with anti-PD-1 immunotherapy to efficiently suppress the progression of GL261 gliomas. Overall, these data support a mechanism of epigenetic modification of AP-2α that contributes to tumor immune evasion, and reactivation of AP-2α synergizes with anti-PD-1 antibodies to increase antitumor efficacy, which may be a broadly applicable strategy in solid tumors.
Collapse
Affiliation(s)
- Shengwen Long
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Guixiang Huang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Mi Ouyang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Kai Xiao
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Hao Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Anyi Hou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhiwei Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Zhe Zhong
- Department of Neurosurgery, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, 410013, China
| | - Dongmei Zhong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Qinghao Wang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shuanglin Xiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Ding
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, 410081, China.
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013, China.
| |
Collapse
|
12
|
Wang Z, Liu J, Chen H, Qiu X, Xie L, Kaniskan HÜ, Chen X, Jin J, Wei W. Telomere Targeting Chimera Enables Targeted Destruction of Telomeric Repeat-Binding Factor Proteins. J Am Chem Soc 2023; 145:10872-10879. [PMID: 37141574 PMCID: PMC10976431 DOI: 10.1021/jacs.3c02783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Telomeres are naturally shortened after each round of cell division in noncancerous normal cells, while the activation of telomerase activity to extend telomere in the cancer cell is essential for cell transformation. Therefore, telomeres are regarded as a potential anticancer target. In this study, we report the development of a nucleotide-based proteolysis-targeting chimera (PROTAC) designed to degrade TRF1/2 (telomeric repeat-binding factor 1/2), which are the key components of the shelterin complex (telosome) that regulates the telomere length by directly interacting with telomere DNA repeats. The prototype telomere-targeting chimeras (TeloTACs) efficiently degrade TRF1/2 in a VHL- and proteosome-dependent manner, resulting in the shortening of telomeres and suppressed cancer cell proliferation. Compared to the traditional receptor-based off-target therapy, TeloTACs have potential application in a broad spectrum of cancer cell lines due to their ability to selectively kill cancer cells that overexpress TRF1/2. In summary, TeloTACs provide a nucleotide-based degradation approach for shortening the telomere and inhibiting tumor cell growth, representing a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xing Qiu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
13
|
Park JW, Kilic O, Deo M, Jimenez-Cowell K, Demirdizen E, Kim H, Turcan Ş. CIC reduces xCT/SLC7A11 expression and glutamate release in glioma. Acta Neuropathol Commun 2023; 11:13. [PMID: 36647117 PMCID: PMC9843885 DOI: 10.1186/s40478-023-01507-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Capicua (CIC) is an important downstream molecule of RTK/RAS/MAPK pathway. The regulatory mechanism of CIC underlying tumorigenesis in oligodendroglioma, where CIC is frequently mutated, has yet to be fully elucidated. Using patient-derived glioma lines, RNA-sequencing and bioinformatic analysis of publicly available databases, we investigated how CIC loss- or gain-of-function regulates its downstream targets, cell proliferation and glutamate release. Our results indicate an increased frequency of CIC truncating mutations in oligodendroglioma during progression. In vitro, CIC modulation had a modest effect on cell proliferation in glioma lines, and no significant changes in the expression of ETV1, ETV4 and ETV5. Transcriptional repression of known CIC targets was observed in gliomas expressing non-phosphorylatable CIC variant on Ser173 which was unable to interact with 14-3-3. These data outline a mechanism by which the repressor function of CIC is inhibited by 14-3-3 in gliomas. Using transcriptional profiling, we found that genes related to glutamate release were upregulated because of CIC depletion. In addition, loss of CIC leads to increased extracellular glutamate. Consistent with this, CIC restoration in an oligodendroglioma line reduced the levels of extracellular glutamate, neuronal toxicity and xCT/SLC7A11 expression. Our findings may provide a molecular basis for the prevention of glioma-associated seizures.
Collapse
Affiliation(s)
- Jong-Whi Park
- grid.5253.10000 0001 0328 4908Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, 69120 Heidelberg, Germany ,grid.256155.00000 0004 0647 2973Department of Life Sciences, Gachon University, Incheon, 21999 South Korea
| | - Omer Kilic
- grid.5253.10000 0001 0328 4908Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, 69120 Heidelberg, Germany
| | - Minh Deo
- grid.5253.10000 0001 0328 4908Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, 69120 Heidelberg, Germany
| | - Kevin Jimenez-Cowell
- grid.5253.10000 0001 0328 4908Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, 69120 Heidelberg, Germany
| | - Engin Demirdizen
- grid.5253.10000 0001 0328 4908Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, 69120 Heidelberg, Germany
| | - Hyunggee Kim
- grid.222754.40000 0001 0840 2678Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 South Korea
| | - Şevin Turcan
- grid.5253.10000 0001 0328 4908Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 460, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Abstract
DNA methylation is considered an essential epigenetic event during leukaemogenesis and the emergence of drug resistance, which is primarily regulated by DNA methyltransferases. DNA methyltransferase-1 (DNMT1) is one of the members of DNA methyltransferases, in charge of maintaining established methylation. Recently, DNMT1 is shown to promote malignant events of cancers through the epigenetic and non-epigenetic processes. Increasing studies in solid tumours have identified DNMT1 as a therapeutic target and a regulator of therapy resistance; however, it is unclear whether DNMT1 is a critical regulator in acute myeloid leukaemia (AML) and how it works. In this review, we summarized the recent understanding of DNMT1 in normal haematopoiesis and AML and discussed the possible functions of DNMT1 in promoting the development of AML and predicting the sensitivity of hypomethylation agents to better understand the relationship between DNMT1 and AML and to look for new hope to treat AML patients.Key messagesThe function of DNA methyltransferase-1 in acute myeloid leukaemia.DNA methyltransferase-1 predicts the sensitivity of drug and involves the emergence of drug resistance.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
15
|
Suzuki K, Tange M, Yamagishi R, Hanada H, Mukai S, Sato T, Tanaka T, Akashi T, Kadomatsu K, Maeda T, Miida T, Takeuchi I, Murakami H, Sekido Y, Murakami-Tonami Y. SMG6 regulates DNA damage and cell survival in Hippo pathway kinase LATS2-inactivated malignant mesothelioma. Cell Death Dis 2022; 8:446. [PMID: 36335095 PMCID: PMC9637146 DOI: 10.1038/s41420-022-01232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022]
Abstract
Many genes responsible for Malignant mesothelioma (MM) have been identified as tumor suppressor genes and it is difficult to target these genes directly at a molecular level. We searched for the gene which showed synthetic lethal phenotype with LATS2, one of the MM causative genes and one of the kinases in the Hippo pathway. Here we showed that knockdown of SMG6 results in synthetic lethality in LATS2-inactivated cells. We found that this synthetic lethality required the nuclear translocation of YAP1 and TAZ. Both are downstream factors of the Hippo pathway. We also demonstrated that this synthetic lethality did not require SMG6 in nonsense-mediated mRNA decay (NMD) but in regulating telomerase reverse transcriptase (TERT) activity. In addition, the RNA-dependent DNA polymerase (RdDP) activity of TERT was required for this synthetic lethal phenotype. We confirmed the inhibitory effects of LATS2 and SMG6 on cell proliferation in vivo. The result suggests an interaction between the Hippo and TERT signaling pathways. We also propose that SMG6 and TERT are novel molecular target candidates for LATS2-inactivated cancers such as MM.
Collapse
Affiliation(s)
- Koya Suzuki
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.258269.20000 0004 1762 2738Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan ,grid.264706.10000 0000 9239 9995Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Masaki Tange
- grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan
| | - Ryota Yamagishi
- grid.258799.80000 0004 0372 2033Department of Pathophysiology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroyuki Hanada
- grid.7597.c0000000094465255Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Satomi Mukai
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Tatsuhiro Sato
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | - Tomohiro Akashi
- grid.27476.300000 0001 0943 978XDepartment of Integrative Cellular Informatics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Kadomatsu
- grid.27476.300000 0001 0943 978XDepartment of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan ,grid.27476.300000 0001 0943 978XInstitute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Tohru Maeda
- grid.411042.20000 0004 0371 5415College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Takashi Miida
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ichiro Takeuchi
- grid.7597.c0000000094465255Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan ,grid.27476.300000 0001 0943 978XGraduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Hiroshi Murakami
- grid.443595.a0000 0001 2323 0843Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Yoshitaka Sekido
- grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDivision of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Murakami-Tonami
- grid.258269.20000 0004 1762 2738Department of Clinical Laboratory of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.412788.00000 0001 0536 8427Cancer Molecular Genetics Lab, Tokyo University of Technology Graduate School of Bionics, Tokyo, Japan ,grid.410800.d0000 0001 0722 8444Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
16
|
Abstract
Standard treatment for patients with IDH-mutant gliomas with radiation therapy and chemotherapy is non-curative and associated with long-term neurotoxicity. This has created intense interest in targeted therapeutic strategies that are specifically designed of IDH-mutant tumors. Much progress has been made in understanding the unique biology of IDH-mutant gliomas, and now various IDH-mutant-specific targeting strategies are in various phases of development. Here, we will review a range of IDH-mutant targeting treatments being explored, including direct IDH inhibitors, as well as strategies that take advantage of IDH-mutant-specific vulnerabilities.
Collapse
Affiliation(s)
- Julie J Miller
- Department of Neurology, Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Zhao K, Li W, Yang Y, Hu X, Dai Y, Huang M, Luo J, Zhang K, Zhao N. Comprehensive analysis of m6A/m5C/m1A-related gene expression, immune infiltration, and sensitivity of antineoplastic drugs in glioma. Front Immunol 2022; 13:955848. [PMID: 36203569 PMCID: PMC9530704 DOI: 10.3389/fimmu.2022.955848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
This research aims to develop a prognostic glioma marker based on m6A/m5C/m1A genes and investigate the potential role in the tumor immune microenvironment. Data for patients with glioma were downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). The expression of genes related to m6A/m5C/m1A was compared for normal and glioma groups. Gene Ontology and Kyoto Encyclopedia of Genes and Gene enrichment analysis of differentially expressed genes were conducted. Consistent clustering analysis was performed to obtain glioma subtypes and complete the survival analysis and immune analysis. Based on TCGA, Lasso regression analysis was used to obtain a prognostic model, and the CGGA database was used to validate the model. The model-based risk scores and the hub genes with the immune microenvironment, clinical features, and antitumor drug susceptibility were investigated. The clinical glioma tissues were collected to verify the expression of hub genes via immunohistochemistry. Twenty genes were differentially expressed, Consensus cluster analysis identified two molecular clusters. Overall survival was significantly higher in cluster 2 than in cluster 1. Immunological analysis revealed statistically significant differences in 26 immune cells and 17 immune functions between the two clusters. Enrichment analysis detected multiple meaningful pathways. We constructed a prognostic model that consists of WTAP, TRMT6, DNMT1, and DNMT3B. The high-risk and low-risk groups affected the survival prognosis and immune infiltration, which were related to grade, gender, age, and survival status. The prognostic value of the model was validated using another independent cohort CGGA. Clinical correlation and immune analysis revealed that four hub genes were associated with tumor grade, immune cells, and antitumor drug sensitivity, and WTAP was significantly associated with microsatellite instability(MSI). Immunohistochemistry confirmed the high expression of WTAP, DNMT1, and DNMT3B in tumor tissue, but the low expression of TRMT6. This study established a strong prognostic marker based on m6A/m5C/m1A methylation regulators, which can accurately predict the prognosis of patients with gliomas. m6A/m5C/m1A modification mode plays an important role in the tumor microenvironment, can provide valuable information for anti-tumor immunotherapy, and have a profound impact on the clinical characteristics.
Collapse
Affiliation(s)
- Kai Zhao
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenhu Li
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongtao Yang
- Cerebrovascular Disease Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xinyue Hu
- Department of Clinical Laboratory, Kunming First People’s Hospital, Kunming Medical University, Kunming, China
| | - Ying Dai
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Minhao Huang
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ji Luo
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kui Zhang
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ninghui Zhao
- Neurosurgery Department, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Ninghui Zhao,
| |
Collapse
|
18
|
Haddock S, Alban TJ, Turcan Ş, Husic H, Rosiek E, Ma X, Wang Y, Bale T, Desrichard A, Makarov V, Monette S, Wu W, Gardner R, Manova K, Boire A, Chan TA. Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem-like cells. Neoplasia 2022; 28:100790. [PMID: 35398668 PMCID: PMC9014446 DOI: 10.1016/j.neo.2022.100790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Mutations in IDH1 and IDH2 drive the development of gliomas. These genetic alterations promote tumor cell renewal, disrupt differentiation states, and induce stem-like properties. Understanding how this phenotypic reprogramming occurs remains an area of high interest in glioma research. Previously, we showed that IDH mutation results in the development of a CD24-positive cell population in gliomas. Here, we demonstrate that this CD24-positive population possesses striking stem-like properties at the molecular and phenotypic levels. We found that CD24 expression is associated with stem-like features in IDH-mutant tumors, a patient-derived gliomasphere model, and a neural stem cell model of IDH1-mutant glioma. In orthotopic models, CD24-positive cells display enhanced tumor initiating potency compared to CD24-negative cells. Furthermore, CD24 knockdown results in changes in cell viability, proliferation rate, and gene expression that closely resemble a CD24-negative phenotype. Our data demonstrate that induction of a CD24-positive population is one mechanism by which IDH-mutant tumors acquire stem-like properties. These findings have significant implications for our understanding of the molecular underpinnings of IDH-mutant gliomas.
Collapse
|
19
|
Diacofotaki A, Loriot A, De Smet C. Identification of Tissue-Specific Gene Clusters Induced by DNA Demethylation in Lung Adenocarcinoma: More Than Germline Genes. Cancers (Basel) 2022; 14:cancers14041007. [PMID: 35205751 PMCID: PMC8870412 DOI: 10.3390/cancers14041007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Loss of DNA methylation is often observed in human tumors, but how this epigenetic alteration impacts the transcriptome of cancer cells remains largely undefined. So far, DNA hypomethylation in tumors has been associated with aberrant activation of a germline-specific gene expression program. Here, we exploited transcriptomic and methylomic datasets of lung adenocarcinoma to investigate the possibility that other gene expression programs also become ectopically activated in hypomethylated tumors. Remarkably, we found that DNA hypomethylation in lung adenocarcinoma is associated with ectopic activation of not only germline-specific genes, but also gene clusters displaying specific expression in the gastrointestinal tract, or in stratified epithelia. Interestingly, expression of genes in this latter group was of prognostic value. Together, our study brings novel insight into the transcriptomic changes associated with DNA hypomethylation in tumors, and is an incentive to explore the value of hypomethylated DNA sequences as cancer biomarkers. Abstract Genome-wide loss of DNA methylation is commonly observed in human cancers, but its impact on the tumor transcriptome remains ill-defined. Previous studies demonstrated that this epigenetic alteration causes aberrant activation of a germline-specific gene expression program. Here, we examined if DNA hypomethylation in tumors also leads to de-repression of gene clusters with other tissue specificities. To this end, we explored transcriptomic and methylomic datasets from human lung adenocarcinoma (LUAD) cell lines, normal lung, and lung alveolar type II cells, considered as the origin of LUAD. Interestingly, DNA demethylation in LUAD cell lines was associated with activation of not only germline-specific (CG) genes, but also gene clusters displaying specific expression in the gastrointestinal tract (GI), or in stratified epithelia (SE). Consistently, genes from all three clusters showed highly specific patterns of promoter methylation among normal tissues and cell types, and were generally sensitive to induction by a DNA demethylating agent. Analysis of TCGA datasets confirmed that demethylation and activation of CG, GI and SE genes also occurs in vivo in LUAD tumor tissues, in association with global genome hypomethylation. For genes of the GI cluster, we demonstrated that HNF4A is a necessary factor for transcriptional activation following promoter demethylation. Interestingly, expression of several SE genes, in particular FAM83A, correlated with both tumor grade and reduced patient survival. Together, our study uncovers novel cell-type specific gene clusters that become aberrantly activated in LUAD tumors in association with genome-wide hypomethylation.
Collapse
Affiliation(s)
- Anna Diacofotaki
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.D.); (A.L.)
| | - Axelle Loriot
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.D.); (A.L.)
- Group of Computational Biology and Bioinformatics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Charles De Smet
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.D.); (A.L.)
- Correspondence:
| |
Collapse
|
20
|
Epigenetic Priming with Decitabine Augments the Therapeutic Effect of Cisplatin on Triple-Negative Breast Cancer Cells through Induction of Proapoptotic Factor NOXA. Cancers (Basel) 2022; 14:cancers14010248. [PMID: 35008411 PMCID: PMC8749981 DOI: 10.3390/cancers14010248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/10/2022] Open
Abstract
Epigenetic alterations caused by aberrant DNA methylation have a crucial role in cancer development, and the DNA-demethylating agent decitabine, is used to treat hematopoietic malignancy. Triple-negative breast cancers (TNBCs) have shown sensitivity to decitabine; however, the underlying mechanism of its anticancer effect and its effectiveness in treating TNBCs are not fully understood. We analyzed the effects of decitabine on nine TNBC cell lines and examined genes associated with its cytotoxic effects. According to the effect of decitabine, we classified the cell lines into cell death (D)-type, growth inhibition (G)-type, and resistant (R)-type. In D-type cells, decitabine induced the expression of apoptotic regulators and, among them, NOXA was functionally involved in decitabine-induced apoptosis. In G-type cells, induction of the cyclin-dependent kinase inhibitor, p21, and cell cycle arrest were observed. Furthermore, decitabine enhanced the cytotoxic effect of cisplatin mediated by NOXA in D-type and G-type cells. In contrast, the sensitivity to cisplatin was high in R-type cells, and no enhancing effect by decitabine was observed. These results indicate that decitabine enhances the proapoptotic effect of cisplatin on TNBC cell lines that are less sensitive to cisplatin, indicating the potential for combination therapy in TNBC.
Collapse
|
21
|
Mao G, Zhou B, Xu W, Jiao N, Wu Z, Li J, Liu Y. Hsa_circ_0040809 regulates colorectal cancer development by upregulating methyltransferase DNMT1 via targeting miR-515-5p. J Gene Med 2021; 23:e3388. [PMID: 34438465 DOI: 10.1002/jgm.3388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/29/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are key regulators in the progression of various cancers. Abnormal DNA methylation patterns feature prominently in the regulation of the expression of tumor-related genes. This study is aimed at investigating the molecular mechanism of circ_0040809 affecting colorectal cancer (CRC) progression by regulating DNA methyltransferase 1 (DNMT1). METHODS circ_0040809 was selected from the circRNA microarray datasets (GSE142837 and GSE138589). Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to examine the expression of circ_0040809, miR-515-5p, and DNMT1 mRNA in paired cancerous and paracancerous tissues of 40 CRC patients, as well as in cell lines. Western blotting was conducted for detecting DNMT1 protein expression in CRC cells. Cell proliferation, migration, and apoptosis were assessed through CCK-8, Transwell, and flow cytometry assays. Bioinformatics and dual-luciferase gene assay were conducted to predict and verify, respectively, the targeted relationships between circ_0040809 and miR-515-5p, as well as between miR-515-5p and DNMT1 mRNA. RESULTS In CRC tissues and cells, circ_0040809 and DNMT1 expression are markedly increased, whereas miR-515-5p expression is decreased. Also, high circ_0040809 expression is significantly linked to shorter overall survival. Cell function compensation experiments reveal that circ_0040809 silencing inhibits CRC cell proliferation and migration and promotes apoptosis, while circ_0040809 overexpression has the opposite effects. Mechanistically, circ_0040809 competitively binds to miR-515-5p to elevate DNMT1 expression. Rescue assay reveals that overexpressed miR-515-5p partly counteracts the tumor-facilitating impact of circ_0040809. CONCLUSIONS circ_0040809 facilitates CRC cell proliferation and migration, and inhibits apoptosis, through modulating miR-515-5p/DNMT1 axis. Our study implies that targeting circ_0040809 may be a therapy strategy for CRC treatment.
Collapse
Affiliation(s)
- Guoliang Mao
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Bing Zhou
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Wuqin Xu
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Nanlin Jiao
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Zhihao Wu
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, Anhui, China
| | - Jiajia Li
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Yinhua Liu
- Department of Pathology, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| |
Collapse
|
22
|
From Laboratory Studies to Clinical Trials: Temozolomide Use in IDH-Mutant Gliomas. Cells 2021; 10:cells10051225. [PMID: 34067729 PMCID: PMC8157002 DOI: 10.3390/cells10051225] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss the use of the alkylating agent temozolomide (TMZ) in the treatment of IDH-mutant gliomas. We describe the challenges associated with TMZ in clinical (drug resistance and tumor recurrence) and preclinical settings (variabilities associated with in vitro models) in treating IDH-mutant glioma. Lastly, we summarize the emerging therapeutic targets that can potentially be used in combination with TMZ.
Collapse
|
23
|
Puduvalli VK. Demystifying demethylator sensitivity in gliomas: role for TERT and DNMT1. Neuro Oncol 2021; 23:7-8. [PMID: 33264399 DOI: 10.1093/neuonc/noaa272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vinay K Puduvalli
- Department of Neurooncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|