1
|
Ge Y, Zhang T. SNAP25 as a prognostic marker in transcriptome analysis of meningioma. Lab Med 2025; 56:238-248. [PMID: 39514545 DOI: 10.1093/labmed/lmae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Meningiomas are the most common intracranial tumors and their diagnosis relies mostly on neuroimaging and histology. However, the histology grades cannot predict the outcome exactly and some meningiomas tend to recur after resection of even benign tumors. Therefore, it is necessary to explore prognostic and diagnostic molecular targets. METHODS Differential expression analysis between meningiomas and meninges was performed based on the merged data of GSE43290 and GSE84263. Next, we performed gene set enrichment analysis (GSEA), immune cell infiltration analysis, protein-protein interaction analysis, and survival analysis using public data. The expression level of Synaptosome-associated-protein-25kDa (SNAP25) was verified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and Western blotting in meningioma tissues. RESULTS There were 263 upregulated and 592 downregulated genes identified in meningiomas by differential expression analysis. GSEA results revealed that meningiomas were negatively related to the pathway of soluble N-ethylmaleimide sensitive factor attachment protein receptor interactions in vascular transport and chemokine signaling. SNAP25 was characterized as a hub gene and downregulated in meningiomas. The Kaplan-Meier plot indicated that high expression of SNAP25 is a favorable factor. CONCLUSION SNAP25 was downregulated and identified as a potential prognostic marker in meningioma.
Collapse
Affiliation(s)
- Yu Ge
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tao Zhang
- Department of Laboratory Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200011, China
| |
Collapse
|
2
|
Larroquette M, Bronnimann C, Ollivier M, Daubon T, Lesueur P, Ramirez C, Idbaih A, Kalamarides M, Peyre M, Engelhardt J. Carboplatin-gemcitabine for refractory high-grade meningiomas: A study from the French national OMEGA consortium. Int J Cancer 2025. [PMID: 40257320 DOI: 10.1002/ijc.35453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
High-grade meningiomas are rare tumours that often relapse and are difficult to treat, and no clearly recommended systemic treatment is available. In this study, we assessed the efficacy of carboplatin-gemcitabine as a systemic chemotherapy regimen administered to patients with high-grade recurrent meningiomas after observing incidental tumour shrinkage in one patient. Carboplatin-gemcitabine was offered on a compassionate basis to French patients with high-grade recurrent meningioma within the framework of the French Réunion d'orientation thérapeutique des méningiomes de haut grade (OMEGA) multidisciplinary board, which discusses all meningioma cases nationwide that are not amenable to standard treatment (surgery or radiotherapy). We retrospectively analysed the efficacy of this treatment in French patients from 2019 to 2023. We evaluated the three-dimensional volumetric kinetics of the tumour, progression-free survival (PFS), and safety. Carboplatin-gemcitabine slowed tumour growth for several months in some heavily pretreated patients despite the failure of previous systemic therapies. The 6-month PFS rate for the cohort of six patients was 50% (95% confidence interval, [22.5-100%]). Safety was characterised by asthenia and manageable haematological toxicity. Our results provide encouraging data on the efficacy of carboplatin-gemcitabine for meningiomas and should be validated in a prospective trial. Despite the small number of patients, our study included all French patients treated for a 4-year period and should be considered alongside other previously published studies, which also included few patients due to the rarity of the disease. Our findings highlight the importance of national networks for managing these patients and the need for multicentre trials.
Collapse
Affiliation(s)
- Mathieu Larroquette
- Department of Medical Oncology, Hôpital Saint André, CHU de Bordeaux, Bordeaux, France
- Bordeaux University, CNRS UMR 5095, IBGC, Bordeaux, France
| | - Charlotte Bronnimann
- Department of Medical Oncology, Hôpital Saint André, CHU de Bordeaux, Bordeaux, France
| | - Morgan Ollivier
- Department of Diagnostic and Therapeutic Neuroimaging, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Thomas Daubon
- Bordeaux University, CNRS UMR 5095, IBGC, Bordeaux, France
| | - Paul Lesueur
- Departement de radiothérapie, Centre François Baclesse, Caen, France
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, France
| | - Carole Ramirez
- Deparment of Medical Oncology, CHU et ICHUSE de Saint-Etienne, Saint-Etienne, France
- Deparment of Neurology, CHU et ICHUSE de Saint-Etienne, Saint-Etienne, France
| | - Ahmed Idbaih
- Sorbonne Université, AP-HP, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Paris, France
| | - Michel Kalamarides
- Sorbonne Université, AP-HP, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Paris, France
- Department of Neurosurgery, Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Matthieu Peyre
- Sorbonne Université, AP-HP, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Paris, France
- Department of Neurosurgery, Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Julien Engelhardt
- Department of Neurosurgery, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
- Polytechnic Institute of Bordeaux, CNRS, Institut de Mathématiques de Bordeaux, Bordeaux University, Bordeaux, France
| |
Collapse
|
3
|
Yuen CA, Zheng M, Saint-Germain MA, Kamson DO. Meningioma: Novel Diagnostic and Therapeutic Approaches. Biomedicines 2025; 13:659. [PMID: 40149634 PMCID: PMC11940373 DOI: 10.3390/biomedicines13030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Meningiomas are the most common intracranial tumors. Surgery and radiation therapy are the cornerstones of treatment and no standard of care therapy exists for refractory meningiomas. This manuscript aims to provide a comprehensive review of novel diagnostic and therapeutic approaches against these tumors. Methods: A search for the existing literature on systemic therapies for meningiomas was performed on PubMed and a search for presently accruing clinical trials was performed on ClinicalTrials.gov. Results: Systemic treatments, including chemotherapy, somatostatin analogs, anti-hormone therapy, and anti-angiogenic therapy, have been extensively studied with marginal success. Targeted therapies are actively being studied for the treatment of meningiomas, including focal adhesion kinase (FAK), sonic hedgehog signaling pathway, phosphoinositide-3-kinase (PI3K), and cyclin-dependent kinases (CDK) inhibitors. These driver mutations are present only in a subset of meningiomas. In stark contrast, somatostatin receptor 2 (SSTR2) is ubiquitously expressed in meningiomas and was formerly targeted with somatostatin analogs with modest success. Theranostic SSTR2-targeting via [68Ga]DOTATATE for PET imaging and β-emitting [177Lu]DOTATATE for the treatment of meningiomas are currently under active investigation. Conclusions: A nuanced approach is needed for the treatment of refractory meningiomas. Targeted therapies show promise.
Collapse
Affiliation(s)
- Carlen A. Yuen
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
- Division of Neuro-Oncology, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Michelle Zheng
- Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Max A. Saint-Germain
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - David O. Kamson
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Rowbottom H, Šmigoc T, Ravnik J. Malignant Meningiomas: From Diagnostics to Treatment. Diagnostics (Basel) 2025; 15:538. [PMID: 40075786 PMCID: PMC11898517 DOI: 10.3390/diagnostics15050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Meningiomas account for approximately 40% of all primary brain tumors, of which 1.5% are classified as grade 3. Whilst meningiomas are discovered on imaging with high-grade meningiomas being associated with certain imaging features, the final diagnosis is based on histopathology in combination with molecular markers. According to the latest World Health Organization (WHO) Classification of Tumors of the Central Nervous System (CNS), grade 3 should be assigned based on criteria for anaplastic meningiomas, which comprise malignant cytomorphology (anaplasia) that resembles carcinoma, high-grade sarcoma or melanoma; elevated mitotic activity; a TERT promoter mutation and/or a homozygous CDKN2A and/or CDKN2B deletion. Surgery remains the mainstay treatment modality for grade 3 meningiomas, followed by radiotherapy. Limited data are available on the effect of stereotactic radiosurgery and systemic therapy for grade 3 meningiomas; however, studies are underway. Despite optimal treatment, the estimated recurrence rate ranges between 50% and 95% with a 5-year survival rate of 66% and a 10-year estimated survival rate of 14% to 24%.
Collapse
Affiliation(s)
| | | | - Janez Ravnik
- Department of Neurosurgery, University Medical Centre Maribor, 2000 Maribor, Slovenia; (H.R.); (T.Š.)
| |
Collapse
|
5
|
Sahm F, Aldape KD, Brastianos PK, Brat DJ, Dahiya S, von Deimling A, Giannini C, Gilbert MR, Louis DN, Raleigh DR, Reifenberger G, Santagata S, Sarkar C, Zadeh G, Wesseling P, Perry A. cIMPACT-NOW update 8: Clarifications on molecular risk parameters and recommendations for WHO grading of meningiomas. Neuro Oncol 2025; 27:319-330. [PMID: 39212325 PMCID: PMC11812049 DOI: 10.1093/neuonc/noae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Meningiomas are the most frequent primary intracranial tumors. Hence, they constitute a major share of diagnostic specimens in neuropathology practice. The 2021 WHO Classification of Central Nervous System Tumors ("CNS5") has introduced the first molecular grading parameters for meningioma with oncogenic variants in the TERT promoter and homozygous deletion of CDKN2A/B as markers for CNS WHO grade 3. However, after the publication of the new classification volume, clarifications were requested, not only on novel but also on long-standing questions in meningioma grading that were beyond the scope of the WHO "blue book." In addition, more recent research into possible new molecular grading parameters could not yet be implemented in the 2021 classification but constitutes a compelling body of literature. Hence, the consortium to inform molecular and practical approaches to CNS tumor taxonomy-not official WHO (cIMPACT-NOW) Steering Committee convened a working group to provide such clarification and assess the evidence of possible novel molecular criteria. As a result, this cIMPACT-NOW update provides guidance for more standardized morphological evaluation and interpretation, most prominently pertaining to brain invasion, identifies scenarios in which advanced molecular testing is recommended, proposes to assign CNS WHO grade 2 for cases with CNS WHO grade 1 morphology but chromosomal arm 1p deletion in combination with 22q deletion and/or NF2 oncogenic variants, and discusses areas in which the current evidence is not yet sufficient to result in new recommendations.
Collapse
Affiliation(s)
- Felix Sahm
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kenneth D Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Priscilla K Brastianos
- Divisions of Hematology/Oncology and Neuro-Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sonika Dahiya
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Caterina Giannini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum, Bologna, Italy
- Department of Laboratory Medicine/Pathology and Neurosurgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - David N Louis
- Department of Pathology, Massachusetts General Hospital, Brigham and Women’s Hospital, and Harvard Medical School, Boston Massachusetts, USA
| | - David R Raleigh
- Departments of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Guido Reifenberger
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Düsseldorf, Germany
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandro Santagata
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers / VU University, Amsterdam, The Netherlands
| | - Arie Perry
- Departments of Pathology and Neurological Surgery, UCSF, San Francisco, California, USA
| |
Collapse
|
6
|
Mair MJ, Hartenbach S, Tomasich E, Maas SLN, Bosch SA, Widhalm G, Eckert F, Sahm F, Hainfellner JA, Hartenbach M, Berghoff AS, Preusser M, Albert NL. Expression of SSTR2a, FAP, HER2 and HER3 as potential radionuclide therapy targets in higher-grade meningioma. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07075-8. [PMID: 39969538 DOI: 10.1007/s00259-025-07075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/31/2024] [Indexed: 02/20/2025]
Abstract
PURPOSE High-grade meningiomas have high recurrence rates and limited prognosis. Radioligand therapies are approved in extracranial malignancies, but their value in brain tumours including meningiomas is unclear, as data on target expression is scarce. METHODS CNS WHO grade 2 and 3 meningioma samples were immunohistochemically stained for somatostatin receptor 2a (SSTR2a), fibroblast activation protein (FAP), and human epidermal growth factor receptors 2/3 (HER2/HER3). Target expression was correlated with (epi-)genetic tumour subtyping by DNA methylation analysis, genetic alterations, and survival. RESULTS Meningioma samples of 58 patients were included. SSTR2a expression (membranous/cytoplasmic) was observed in 43/55 (78.2%), and FAP expression in 15/58 (25.9%) evaluable samples, with HER2 and HER3 expression in one specimen each (1.7%). Membranous SSTR2a expression was strong in 18 (32.7%), intermediate in 12 (21.8%), and weak in 11 (20.0%) samples. While SSTR2a expression was more homogenous and mainly seen in regions with higher cellularity, FAP immunoreactivity was predominantly seen in tumour stroma and regions of lower cellularity. SSTR2a immunoreactivity was associated with TRAF7 wildtype status (p = 0.034). FAP expression was more frequent in meningiomas of CNS WHO grade 3 (vs. CNS WHO 2; p < 0.001), and samples with NF2 mutations (p = 0.032) or CDKN2A/B deletions (p = 0.013) compared to wildtype. FAP and SSTR2a expression (present vs. absent) were not associated with overall survival (p > 0.05). CONCLUSION SSTR2a and FAP are expressed in high-grade meningioma samples to a variable extent, and differences across meningioma subtypes underscore the need for biomarkers to improve patient selection. Spatial heterogeneity of target expression should be considered in radioligand therapy design.
Collapse
Affiliation(s)
- Maximilian J Mair
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilians University Munich, Munich, Germany
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - Erwin Tomasich
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sybren L N Maas
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sarah A Bosch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Franziska Eckert
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, Clinical Cooperation Unit Neuropathology, Ruprecht-Karls University Heidelberg, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilians University Munich, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
- Department of Nuclear Medicine, LMU Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
| |
Collapse
|
7
|
Di Nunno V, Franceschi E, Idbaih A. Achievements of international rare cancers networks and consortia in the neuro-oncology field. Curr Opin Oncol 2024; 36:554-559. [PMID: 39246177 DOI: 10.1097/cco.0000000000001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
PURPOSE OF REVIEW In this review, we investigated the role of European oncological networks on management and care of patients with central nervous system (CNS) malignancies. RECENT FINDINGS Within this universe of tumors, malignancies of the central nervous system (CNS) malignancies represent a challenge because of several reasons such as biological complexity, the need of dedicated experienced physicians (surgeons, pathologists, radiologists and neuro-oncologists) and tertiary healthcare providers. Limits to the development of effective and innovative care are represented by the rarity of these tumors and their extreme heterogeneity in terms of clinical presentation, course of the disease, genetic assessments and site of presentation. The oncological networks are societies or associations, which make possible to connect patients, scientists, doctors and researchers together allowing to obtain several improvements. SUMMARY Oncological networks can cooperate to increase accrual rate and speed in clinical trials, share data about CNS malignancy management and improve knowledge toward this class of tumors within patients and health operators promoting equity and high standard of care.
Collapse
Affiliation(s)
- Vincenzo Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| |
Collapse
|
8
|
Amerein A, Maurer C, Kircher M, Gäble A, Krebold A, Rinscheid A, Viering O, Pfob CH, Bundschuh RA, Behrens L, Braat AJ, Berlis A, Lapa C. Intraarterial Administration of Peptide Receptor Radionuclide Therapy in Patients with Advanced Meningioma: Initial Safety and Efficacy. J Nucl Med 2024:jnumed.124.268217. [PMID: 39448269 DOI: 10.2967/jnumed.124.268217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) is a treatment option for patients with advanced meningioma. Recently, intraarterial application of the radiolabeled somatostatin receptor agonists has been introduced as an alternative to standard intravenous administration. In this study, we assessed the safety and efficacy of intraarterial PRRT in patients with advanced, progressive meningioma. Methods: Patients with advanced, progressive meningioma underwent intraarterial PRRT with [177Lu]Lu-HA-DOTATATE. The safety of PRRT was evaluated according to the Common Terminology Criteria for Adverse Events version 5.0. Treatment response was assessed according to the proposed Response Assessment in Neuro-Oncology criteria for meningiomas and somatostatin receptor-directed PET/CT. Results: Thirteen patients (8 women, 5 men; mean age, 65 ± 13 y) with advanced meningioma underwent 1-4 cycles (median, 4 cycles) of intraarterial PRRT with [177Lu]Lu-HA-DOTATATE (mean activity per cycle, 7,428 ± 237 MBq; range, 6,000-7,700 MBq). Treatment was well tolerated with mainly grade 1-2 hematologic toxicity. Ten of 13 patients showed radiologic disease control at follow-up after therapy (1/10 complete remission, 1/10 partial remission, 8/10 stable disease), and 9 of 13 patients showed good control of clinical symptoms. Conclusion: Intraarterial PRRT in patients with advanced meningioma is feasible and safe. It may result in improved radiologic and clinical disease control compared with intravenous PRRT. Further research to validate these initial findings and to investigate long-term outcomes is highly warranted.
Collapse
Affiliation(s)
- Adriana Amerein
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Christoph Maurer
- Diagnostic and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Malte Kircher
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alexander Gäble
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Anne Krebold
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Oliver Viering
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Christian H Pfob
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Ralph A Bundschuh
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Lars Behrens
- Diagnostic and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Arthur Jat Braat
- Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; and
- Nuclear Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ansgar Berlis
- Diagnostic and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany;
| |
Collapse
|
9
|
Wang JZ, Landry AP, Raleigh DR, Sahm F, Walsh KM, Goldbrunner R, Yefet LS, Tonn JC, Gui C, Ostrom QT, Barnholtz-Sloan J, Perry A, Ellenbogen Y, Hanemann CO, Jungwirth G, Jenkinson MD, Tabatabai G, Mathiesen TI, McDermott MW, Tatagiba M, la Fougère C, Maas SLN, Galldiks N, Albert NL, Brastianos PK, Ehret F, Minniti G, Lamszus K, Ricklefs FL, Schittenhelm J, Drummond KJ, Dunn IF, Pathmanaban ON, Cohen-Gadol AA, Sulman EP, Tabouret E, Le Rhun E, Mawrin C, Moliterno J, Weller M, Bi W(L, Gao A, Yip S, Niyazi M, The International Consortium on Meningiomas (ICOM), Aldape K, Wen PY, Short S, Preusser M, Nassiri F, Zadeh G. Meningioma: International Consortium on Meningiomas consensus review on scientific advances and treatment paradigms for clinicians, researchers, and patients. Neuro Oncol 2024; 26:1742-1780. [PMID: 38695575 PMCID: PMC11449035 DOI: 10.1093/neuonc/noae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and increased access to neuroimaging. While most exhibit nonmalignant behavior, a subset of meningiomas are biologically aggressive and are associated with treatment resistance, resulting in significant neurologic morbidity and even mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system (CNS) tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official World Health Organization (cIMPACT-NOW) working group. Additionally, clinical equipoise still remains on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas including field-leading experts, have prepared this comprehensive consensus narrative review directed toward clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality-of-life studies, and management strategies for unique meningioma patient populations. In each section, we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.
Collapse
Affiliation(s)
- Justin Z Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexander P Landry
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - David R Raleigh
- Department of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Leeor S Yefet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jörg C Tonn
- Department of Neurosurgery, University Hospital Munich LMU, Munich, Germany
| | - Chloe Gui
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Quinn T Ostrom
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jill Barnholtz-Sloan
- Center for Biomedical Informatics & Information Technology (CBIIT), National Cancer Institute, Bethesda, Maryland, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, Maryland, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Yosef Ellenbogen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - C Oliver Hanemann
- Peninsula Schools of Medicine, University of Plymouth University, Plymouth, UK
| | - Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University, Heidelberg, Germany
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Institute of Translational Medicine, University of Liverpool, UK
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Tiit I Mathiesen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael W McDermott
- Division of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Miami Neuroscience Institute, Baptist Health of South Florida, Miami, Florida, USA
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sybren L N Maas
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (IMN-3), Research Center Juelich, Juelich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Omar N Pathmanaban
- Division of Neuroscience and Experimental Psychology, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Emeline Tabouret
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, Marseille, France
| | - Emelie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wenya (Linda) Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiation Oncology, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | | | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Short
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, UK
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Farshad Nassiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Saqib M, Zahoor A, Rahib A, Shamim A, Mumtaz H. Clinical and translational advances in primary brain tumor therapy with a focus on glioblastoma-A comprehensive review of the literature. World Neurosurg X 2024; 24:100399. [PMID: 39386927 PMCID: PMC11462364 DOI: 10.1016/j.wnsx.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
This comprehensive review paper examines the most updated state of research on glioblastoma, an aggressive brain tumor with limited treatment options. By analyzing 76 recent studies, from translational and basic sciences, to clinical trials, we highlight various aspects of glioblastoma and shed light on potential therapeutic strategies. The interplay between tumor cells, neural progenitor cells, and the tumor microenvironment is explored. Targeting the PI3K-Akt-mTOR pathway through extracellular-vesicle (EV)-mediated signaling emerges as a potential therapeutic strategy. Personalized modeling approaches utilizing patient-specific MRI data offer promise for optimizing treatment strategies. The response of glioblastoma stem cells (GSCs) to different treatment modalities is examined, emphasizing the need to inhibit the transformation of proneural (PN) GSCs into resistant mesenchymal (MES) GSCs. Metabolic therapy and combination therapies show potential in reversing treatment resistance and inhibiting both PN and MES GSCs. Immunotherapy, targeted approaches, and molecular dynamics in gliomas are discussed, providing insights into early-stage diagnosis and treatment. Additionally, the potential use of Zika virus as an oncolytic agent is explored. Analysis of phase 0 to 3 clinical trials reveal promising outcomes for various experimental treatments, highlighting the importance of combination therapies, predictive signatures, and patient selection strategies. Specific compounds demonstrate potential therapeutic benefits and tolerability. Phase 3 trials indicate the efficacy of DCVax-L in improving survival rates and depatux-m in prolonging progression-free survival. These findings emphasize the importance of personalized treatment approaches and continued exploration of targeted therapies, immunotherapies, and tumor biology understanding in shaping the future of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Ahmed Rahib
- Nowshera Medical College, Nowshera, Pakistan
| | - Amna Shamim
- King Edward Medical University, Lahore, Pakistan
| | | |
Collapse
|
11
|
Albert NL, Le Rhun E, Minniti G, Mair MJ, Galldiks N, Tolboom N, Jakola AS, Niyazi M, Smits M, Verger A, Cicone F, Weller M, Preusser M. Translating the theranostic concept to neuro-oncology: disrupting barriers. Lancet Oncol 2024; 25:e441-e451. [PMID: 39214115 DOI: 10.1016/s1470-2045(24)00145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 09/04/2024]
Abstract
Theranostics integrate molecular imaging and targeted radionuclide therapy for personalised cancer therapy. Theranostic treatments have shown meaningful efficacy in randomised clinical trials and are approved for clinical use in prostate cancer and neuroendocrine tumours. Brain tumours represent an unmet clinical need and theranostics might offer effective treatment options, although specific issues need to be considered for clinical development. In this Policy Review, we discuss opportunities and challenges of developing targeted radionuclide therapies for the treatment of brain tumours including glioma, meningioma, and brain metastasis. The rational choice of molecular treatment targets is highlighted, including the potential relevance of different types of targeted radionuclide therapeutics, and the role of the blood-brain barrier and blood-tumour barrier. Furthermore, we discuss considerations for effective clinical trial design and conduct, as well as logistical and regulatory challenges for implementation of radionuclide therapies into neuro-oncological practice. Rational development will foster successful translation of the theranostic concept to brain tumours.
Collapse
Affiliation(s)
- Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Emilie Le Rhun
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland; Department of Neurosurgery, University Hospital and University of Zurich, Zurich, Switzerland
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Rome, Italy
| | - Maximilian J Mair
- Department of Nuclear Medicine, Ludwig Maximilians University Hospital, Ludwig Maximilians University Munich, Munich, Germany; Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Asgeir S Jakola
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden; Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands; Medical Delta, Delft, The Netherlands
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, IADI, INSERM, UMR 1254, Université de Lorraine, Nancy, France
| | - Francesco Cicone
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Tabouret E, Furtner J, Graillon T, Silvani A, Le Rhun E, Soffietti R, Lombardi G, Sepúlveda-Sánchez JM, Brandal P, Bendszus M, Golfinopoulos V, Gorlia T, Weller M, Sahm F, Wick W, Preusser M. 3D volume growth rate evaluation in the EORTC-BTG-1320 clinical trial for recurrent WHO grade 2 and 3 meningiomas. Neuro Oncol 2024; 26:1302-1309. [PMID: 38452246 PMCID: PMC11226865 DOI: 10.1093/neuonc/noae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND We previously reported that tumor 3D volume growth rate (3DVGR) classification could help in the assessment of drug activity in patients with meningioma using 3 main classes and a total of 5 subclasses: class 1: decrease; 2: stabilization or severe slowdown; 3: progression. The EORTC-BTG-1320 clinical trial was a randomized phase II trial evaluating the efficacy of trabectedin for recurrent WHO 2 or 3 meningioma. Our objective was to evaluate the discriminative value of 3DVGR classification in the EORTC-BTG-1320. METHODS All patients with at least 1 available MRI before trial inclusion were included. 3D volume was evaluated on consecutive MRI until progression. 2D imaging response was centrally assessed by MRI modified Macdonald criteria. Clinical benefit was defined as neurological or functional status improvement or steroid decrease or discontinuation. RESULTS Sixteen patients with a median age of 58.5 years were included. Best 3DVGR classes were: 1, 2A, 3A, and 3B in 2 (16.7%), 4 (33.3%), 2 (16.7%), and 4 (33.3%) patients, respectively. All patients with progression-free survival longer than 6 months had best 3DVGR class 1 or 2. 3DVGR classes 1 and 2 (combined) had a median overall survival of 34.7 months versus 7.2 months for class 3 (P = .061). All class 1 patients (2/2), 75% of class 2 patients (3/4), and only 10% of class 3 patients (1/10) had clinical benefit. CONCLUSIONS Tumor 3DVGR classification may be helpful to identify early signals of treatment activity in meningioma clinical trials.
Collapse
Affiliation(s)
- Emeline Tabouret
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neurooncologie, Marseille, France
| | - Julia Furtner
- Faculty of Medicine and Dentistry, Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Danube Private University, Krems, Austria
| | - Thomas Graillon
- Aix-Marseille Univ, APHM, CHU Timone, Service de Neuro-chirurgie, Marseille, France
| | - Antonio Silvani
- Department of Neuro-Oncology, IRCCS Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emilie Le Rhun
- Department of Neurosurgery, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Juan Manuel Sepúlveda-Sánchez
- Hospital Universitario e Instituto de Investigación 12 de Octubre, Unidad Multidisciplinar de Neuro-Oncología, Madrid, Spain
| | - Petter Brandal
- Department of Oncology and Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Lucas CHG, Mirchia K, Seo K, Najem H, Chen WC, Zakimi N, Foster K, Eaton CD, Cady MA, Choudhury A, Liu SJ, Phillips JJ, Magill ST, Horbinski CM, Solomon DA, Perry A, Vasudevan HN, Heimberger AB, Raleigh DR. Spatial genomic, biochemical and cellular mechanisms underlying meningioma heterogeneity and evolution. Nat Genet 2024; 56:1121-1133. [PMID: 38760638 PMCID: PMC11239374 DOI: 10.1038/s41588-024-01747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/08/2024] [Indexed: 05/19/2024]
Abstract
Intratumor heterogeneity underlies cancer evolution and treatment resistance, but targetable mechanisms driving intratumor heterogeneity are poorly understood. Meningiomas are the most common primary intracranial tumors and are resistant to all medical therapies, and high-grade meningiomas have significant intratumor heterogeneity. Here we use spatial approaches to identify genomic, biochemical and cellular mechanisms linking intratumor heterogeneity to the molecular, temporal and spatial evolution of high-grade meningiomas. We show that divergent intratumor gene and protein expression programs distinguish high-grade meningiomas that are otherwise grouped together by current classification systems. Analyses of matched pairs of primary and recurrent meningiomas reveal spatial expansion of subclonal copy number variants associated with treatment resistance. Multiplexed sequential immunofluorescence and deconvolution of meningioma spatial transcriptomes using cell types from single-cell RNA sequencing show decreased immune infiltration, decreased MAPK signaling, increased PI3K-AKT signaling and increased cell proliferation, which are associated with meningioma recurrence. To translate these findings to preclinical models, we use CRISPR interference and lineage tracing approaches to identify combination therapies that target intratumor heterogeneity in meningioma cell co-cultures.
Collapse
Affiliation(s)
- Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Kanish Mirchia
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Kyounghee Seo
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - William C Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Naomi Zakimi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Kyla Foster
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Charlotte D Eaton
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Martha A Cady
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Abrar Choudhury
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - David A Solomon
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Arie Perry
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Amy B Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Joshi R, Sharma A, Kulshreshtha R. Noncoding RNA landscape and their emerging roles as biomarkers and therapeutic targets in meningioma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200782. [PMID: 38596289 PMCID: PMC10951709 DOI: 10.1016/j.omton.2024.200782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Meningiomas are among the most prevalent primary CNS tumors in adults, accounting for nearly 38% of all brain neoplasms. The World Health Organization (WHO) grade assigned to meningiomas guides medical care in patients and is primarily based on tumor histology and malignancy potential. Although often considered benign, meningiomas with complicated histology, limited accessibility for surgical resection, and/or higher malignancy potential (WHO grade 2 and WHO grade 3) are harder to combat, resulting in significant morbidity. With limited treatment options and no systemic therapies, it is imperative to understand meningioma tumorigenesis at the molecular level and identify novel therapeutic targets. The last decade witnessed considerable progress in understanding the noncoding RNA landscape of meningioma, with microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) emerging as molecular entities of interest. This review aims to highlight the commonly dysregulated miRNAs and lncRNAs in meningioma and their correlation with meningioma progression, malignancy, recurrence, and radioresistance. The role of "key" miRNAs as biomarkers and their therapeutic potential has also been reviewed in detail. Furthermore, current and emerging therapeutic modalities for meningioma have been discussed, with emphasis on the need to identify and subsequently employ clinically relevant miRNAs and lncRNAs as novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ritanksha Joshi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anuja Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
15
|
Umekawa M, Shinya Y, Hasegawa H, Morshed RA, Katano A, Shinozaki-Ushiku A, Saito N. Ki-67 labeling index predicts tumor progression patterns and survival in patients with atypical meningiomas following stereotactic radiosurgery. J Neurooncol 2024; 167:51-61. [PMID: 38369575 PMCID: PMC10978635 DOI: 10.1007/s11060-023-04537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 02/20/2024]
Abstract
PURPOSE This study investigated whether Ki-67 labeling index (LI) correlated with clinical outcomes after SRS for atypical meningiomas. METHODS This retrospective study examined 39 patients with atypical meningiomas who underwent SRS over a 10-year study period. Ki-67 LI was categorized into 3 groups: low (< 5%), intermediate (5%-10%), and high (> 10%). Local tumor control rates (LCRs), progression-free rates (PFRs), disease-specific survival (DSS) rates, and adverse radiation-induced events (AREs) were evaluated. RESULTS The median follow-up periods were 26 months. SRS was performed at a median prescription dose of 18 Gy for tumors with a median Ki-67 LI of 9.6%. The 3-year LCRs were 100%, 74%, and 25% in the low, intermediate, and high LI groups, respectively (p = 0.011). The 3-year PFRs were 100%, 40%, and 0% in the low, intermediate, and high LI groups (p = 0.003). The 5-year DSS rates were 100%, 89%, and 50% in the low, intermediate, and high LI groups (p = 0.019). Multivariable Cox proportional hazard analysis showed a significant correlation of high LI with lower LCR (hazard ratio [HR], 3.92; 95% confidence interval [CI] 1.18-13.04, p = 0.026), lower PFR (HR 3.80; 95% CI 1.46-9.88, p = 0.006), and shorter DSS (HR 6.55; 95% CI 1.19-35.95, p = 0.031) compared with intermediate LI. The ARE rates were minimal (8%) in the entire group. CONCLUSION Patients with high Ki-67 LI showed significantly more tumor progression and tumor-related death. Ki-67 LI might offer valuable predictive insights for the post-SRS management of atypical meningiomas.
Collapse
Affiliation(s)
- Motoyuki Umekawa
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, 113-8655, Japan.
| | - Yuki Shinya
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Hirotaka Hasegawa
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Ramin A Morshed
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Atsuto Katano
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| |
Collapse
|
16
|
Kurz SC, Zan E, Cordova C, Troxel AB, Barbaro M, Silverman JS, Snuderl M, Zagzag D, Kondziolka D, Golfinos JG, Chi AS, Sulman EP. Evaluation of the SSTR2-targeted Radiopharmaceutical 177Lu-DOTATATE and SSTR2-specific 68Ga-DOTATATE PET as Imaging Biomarker in Patients with Intracranial Meningioma. Clin Cancer Res 2024; 30:680-686. [PMID: 38048045 DOI: 10.1158/1078-0432.ccr-23-2533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE There are no effective medical therapies for patients with meningioma who progress beyond surgical and radiotherapeutic interventions. Somatostatin receptor type 2 (SSTR2) represents a promising treatment target in meningiomas. In this multicenter, single-arm phase II clinical study (NCT03971461), the SSTR2-targeting radiopharmaceutical 177Lu-DOTATATE is evaluated for its feasibility, safety, and therapeutic efficacy in these patients. PATIENTS AND METHODS Adult patients with progressive intracranial meningiomas received 177Lu-DOTATATE at a dose of 7.4 GBq (200 mCi) every eight weeks for four cycles. 68Ga-DOTATATE PET-MRI was performed before and six months after the start of the treatment. The primary endpoint was progression-free survival (PFS) at 6 months (PFS-6). Secondary endpoints were safety and tolerability, overall survival (OS) at 12 months (OS-12), median PFS, and median OS. RESULTS Fourteen patients (female = 11, male = 3) with progressive meningiomas (WHO 1 = 3, 2 = 10, 3 = 1) were enrolled. Median age was 63.1 (range 49.7-78) years. All patients previously underwent tumor resection and at least one course of radiation. Treatment with 177Lu-DOTATATE was well tolerated. Seven patients (50%) achieved PFS-6. Best radiographic response by modified Macdonald criteria was stable disease (SD) in all seven patients. A >25% reduction in 68Ga-DOTATATE uptake (PET) was observed in five meningiomas and two patients. In one lesion, this corresponded to >50% reduction in bidirectional tumor measurements (MRI). CONCLUSIONS Treatment with 177Lu-DOTATATE was well tolerated. The predefined PFS-6 threshold was met in this interim analysis, thereby allowing this multicenter clinical trial to continue enrollment. 68Ga-DOTATATE PET may be a useful imaging biomarker to assess therapeutic outcome in patients with meningioma.
Collapse
Affiliation(s)
- Sylvia C Kurz
- Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospitals Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Germany
| | - Elcin Zan
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | | | - Andrea B Troxel
- Department of Population Health, New York University Grossman School of Medicine, New York, New York
| | - Marissa Barbaro
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
| | - Joshua S Silverman
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York
| | - Matija Snuderl
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - David Zagzag
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Douglas Kondziolka
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York
| | - John G Golfinos
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York
| | | | - Erik P Sulman
- Brain and Spine Tumor Center, Laura and Isaac Perlmutter Cancer Center at NYU Langone Health, New York, New York
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
17
|
Chen WC, Choudhury A, Youngblood MW, Polley MYC, Lucas CHG, Mirchia K, Maas SLN, Suwala AK, Won M, Bayley JC, Harmanci AS, Harmanci AO, Klisch TJ, Nguyen MP, Vasudevan HN, McCortney K, Yu TJ, Bhave V, Lam TC, Pu JKS, Li LF, Leung GKK, Chan JW, Perlow HK, Palmer JD, Haberler C, Berghoff AS, Preusser M, Nicolaides TP, Mawrin C, Agnihotri S, Resnick A, Rood BR, Chew J, Young JS, Boreta L, Braunstein SE, Schulte J, Butowski N, Santagata S, Spetzler D, Bush NAO, Villanueva-Meyer JE, Chandler JP, Solomon DA, Rogers CL, Pugh SL, Mehta MP, Sneed PK, Berger MS, Horbinski CM, McDermott MW, Perry A, Bi WL, Patel AJ, Sahm F, Magill ST, Raleigh DR. Targeted gene expression profiling predicts meningioma outcomes and radiotherapy responses. Nat Med 2023; 29:3067-3076. [PMID: 37944590 PMCID: PMC11073469 DOI: 10.1038/s41591-023-02586-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and indications for postoperative radiotherapy are controversial. Here we develop a targeted gene expression biomarker that predicts meningioma outcomes and radiotherapy responses. Using a discovery cohort of 173 meningiomas, we developed a 34-gene expression risk score and performed clinical and analytical validation of this biomarker on independent meningiomas from 12 institutions across 3 continents (N = 1,856), including 103 meningiomas from a prospective clinical trial. The gene expression biomarker improved discrimination of outcomes compared with all other systems tested (N = 9) in the clinical validation cohort for local recurrence (5-year area under the curve (AUC) 0.81) and overall survival (5-year AUC 0.80). The increase in AUC compared with the standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval 0.07 to 0.17, P < 0.001). The gene expression biomarker identified meningiomas benefiting from postoperative radiotherapy (hazard ratio 0.54, 95% confidence interval 0.37 to 0.78, P = 0.0001) and suggested postoperative management could be refined for 29.8% of patients. In sum, our results identify a targeted gene expression biomarker that improves discrimination of meningioma outcomes, including prediction of postoperative radiotherapy responses.
Collapse
Affiliation(s)
- William C Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| | - Abrar Choudhury
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Mark W Youngblood
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Mei-Yin C Polley
- NRG Statistics and Data Management Center, NRG Oncology, Philadelphia, PA, USA
| | | | - Kanish Mirchia
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Sybren L N Maas
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Abigail K Suwala
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Minhee Won
- NRG Statistics and Data Management Center, NRG Oncology, Philadelphia, PA, USA
| | - James C Bayley
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Akdes S Harmanci
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Arif O Harmanci
- Center for Secure Artificial Intelligence for Healthcare, Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA
| | - Tiemo J Klisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Minh P Nguyen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Theresa J Yu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Varun Bhave
- Department of Neurosurgery, Brigham and Women's Hospital, and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tai-Chung Lam
- Department of Clinical Oncology, The University of Hong Kong, Pokfulam, China
| | - Jenny Kan-Suen Pu
- Division of Neurosurgery, Department of Surgery, The University of Hong Kong, Pokfulam, China
| | - Lai-Fung Li
- Division of Neurosurgery, Department of Surgery, The University of Hong Kong, Pokfulam, China
| | - Gilberto Ka-Kit Leung
- Division of Neurosurgery, Department of Surgery, The University of Hong Kong, Pokfulam, China
| | - Jason W Chan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Haley K Perlow
- Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Joshua D Palmer
- Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Christian Mawrin
- Department of Neuropathology, University of Magdeburg, Magdeburg, Germany
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam Resnick
- Department of Neurological Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian R Rood
- Brain Tumor Institute, Children's National Hospital, Washington, DC, USA
| | - Jessica Chew
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Jacob S Young
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Lauren Boreta
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Steve E Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Schulte
- Neurosciences Department, University of California San Diego, La Jolla, CA, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - James P Chandler
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - David A Solomon
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - C Leland Rogers
- NRG Statistics and Data Management Center, NRG Oncology, Philadelphia, PA, USA
| | - Stephanie L Pugh
- NRG Statistics and Data Management Center, NRG Oncology, Philadelphia, PA, USA
| | - Minesh P Mehta
- NRG Statistics and Data Management Center, NRG Oncology, Philadelphia, PA, USA
- Miami Neuroscience Institute, Baptist Health, Miami, FL, USA
| | - Penny K Sneed
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | | | - Arie Perry
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Akash J Patel
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA.
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Milosevic A, Styczen H, Haubold J, Kessler L, Grueneisen J, Li Y, Weber M, Fendler WP, Morawitz J, Damman P, Wrede K, Kebir S, Glas M, Guberina M, Blau T, Schaarschmidt BM, Deuschl C. Correlation of the apparent diffusion coefficient with the standardized uptake value in meningioma of the skull plane using [68]Ga-DOTATOC PET/MRI. Nucl Med Commun 2023; 44:1106-1113. [PMID: 37823259 DOI: 10.1097/mnm.0000000000001774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE To evaluate a correlation between an MRI-specific marker for cellular density [apparent diffusion coefficient (ADC)] and the expression of Somatostatin Receptors (SSTR) in patients with meningioma of the skull plane and orbital space. METHODS 68 Ga-DOTATOC PET/MR imaging was performed in 60 Patients with suspected or diagnosed meningiomas of the skull base and eye socket. Analysis of ADC values succeeded in 32 patients. ADC values (ADC mean and ADC min ) were analyzed using a polygonal region of interest. Tracer-uptake of target lesions was assessed according to corresponding maximal (SUV max ) and mean (SUV mean ) values. Correlations between assessed parameters were evaluated using the Pearson correlation coefficient. RESULTS One out of 32 patients (3%) was diagnosed with lymphoma by histopathological examination and therefore excluded from further analysis. Median ADC mean amounted to 822 × 10 -5 mm²/s -1 (95% CI: 570-1497) and median ADC min was 493 × 10 -5 mm 2 /s -1 (95% CI: 162-783). There were no significant correlations between SUV max and ADC min (r = 0.60; P = 0.76) or ADC mean (r = -0.52; P = 0.79), respectively. However, Pearson's test showed a weak, inverse but insignificant correlation between ADC mean and SUV mean (r = -0.33; P = 0.07). CONCLUSION The presented data displays no relevant correlations between increased SSTR expression and cellularity in patients with meningioma of the skull base. SSTR-PET and DWI thus may offer complementary information on tumor characteristics of meningioma.
Collapse
Affiliation(s)
- Aleksandar Milosevic
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Hanna Styczen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Johannes Haubold
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Lukas Kessler
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Johannes Grueneisen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Yan Li
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Manuel Weber
- Department of Nuclear Medicine, University Hospital Essen,
| | | | | | - Philipp Damman
- Department of Neurosurgery and Spine Surgery, University Hospital Essen,
| | - Karsten Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen,
| | - Sied Kebir
- Department of Neurology and Neurooncology, University Hospital Essen,
| | - Martin Glas
- Department of Neurology and Neurooncology, University Hospital Essen,
| | - Maja Guberina
- Department of Radiotherapy, University Hospital Essen and
| | - Tobias Blau
- Department of Neuropathology, University Hospital Essen, Germany
| | - Benedikt M Schaarschmidt
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen,
| |
Collapse
|
19
|
Caccese M, Busato F, Guerriero A, Padovan M, Cerretti G, Gardiman MP, Zagonel V, Lombardi G. The role of radiation therapy and systemic treatments in meningioma: The present and the future. Cancer Med 2023; 12:16041-16053. [PMID: 37366279 PMCID: PMC10469847 DOI: 10.1002/cam4.6254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Meningiomas are the most prevalent tumors of the central nervous system. Their standard treatment is surgery, which can be curative. Adjuvant radiotherapy treatment is reserved for newly diagnosed cases of grade II and grade III meningiomas in cases of recurrent disease or when surgery is not radical or feasible. However, around 20% of these patients cannot undergo further surgical and/or radiotherapy treatment. Systemic oncological therapy can find its place in this setting. Several tyrosine kinase inhibitors have been tested (gefitinib, erlotinib, sunitinib) with unsatisfactory or negative results. Bevacizumab has shown encouraging results in these settings of patients. Immunotherapy with immune checkpoint inhibitors has reported interesting results with modest objective response rates. Several ongoing studies are assessing different target therapies and multimodal therapies; the results are to be disclosed. Not only a better understanding of the molecular characteristics in meningiomas has allowed the gathering of more information regarding pathogenesis and prognosis, but in addition, the availability of new target therapy, immunotherapy, and biological drugs has widened the scope of potentially effective treatments in this patient population. The aim of this review was to explore the radiotherapy and systemic treatments of meningioma with an analysis of ongoing trials and future therapeutic perspectives.
Collapse
Affiliation(s)
- Mario Caccese
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Fabio Busato
- Department of Radiation OncologyAbano Terme HospitalPaduaItaly
| | - Angela Guerriero
- General Pathology and Cytopathology Unit, Department of Medicine‐DMEDUniversity of PaduaPaduaItaly
| | - Marta Padovan
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Giulia Cerretti
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Marina Paola Gardiman
- General Pathology and Cytopathology Unit, Department of Medicine‐DMEDUniversity of PaduaPaduaItaly
| | - Vittorina Zagonel
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Giuseppe Lombardi
- Department of Oncology, Oncology Unit 1Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| |
Collapse
|
20
|
Li Y, Drappatz J. Advances in the systemic therapy for recurrent meningiomas and the challenges ahead. Expert Rev Neurother 2023; 23:995-1004. [PMID: 37695700 DOI: 10.1080/14737175.2023.2254498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Meningiomas represent the most common primary neoplasms of the central nervous system (CNS). 20% present with atypical (WHO grade II) or malignant (grade III) meningiomas, which show aggressive biologic behavior and high recurrence. Although surgical resection and radiation therapy are the primary treatment options for these tumors, there is a subgroup of patients who do not respond well to or are poor candidates for these approaches, leading to the exploration of systemic therapies as an alternative. AREAS COVERED The literature on different therapeutic groups of systemic drugs for recurrent meningiomas is reviewed, with a focus on the different molecular targets. Past and current ongoing clinical trials are also discussed. EXPERT OPINION To date, there is no recognized treatment that has demonstrated a substantial increase in progression-free or overall survival rates. Nonetheless, therapies targeting anti-VEGF have exhibited more encouraging results in general. The examination of genomic and epigenomic traits of meningiomas, along with the integration of molecular markers into the latest WHO tumor grading system, has provided valuable insights. This has opened avenues for exploring numerous intracellular and extracellular pathways, as well as mutations, that have been targeted in ongoing clinical trials.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurology and Medicine, Division of Hematology and Oncology, Center for Neuro-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jan Drappatz
- Department of Neurology and Medicine, Division of Hematology and Oncology, Center for Neuro-Oncology, Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Lucas CH, Mirchia K, Seo K, Najem H, Chen W, Zakimi N, Choudhury A, Liu SJ, Phillips J, Magill S, Horbinski C, Solomon D, Perry A, Vasudevan H, Heimberger A, Raleigh D. Spatial genomic, biochemical, and cellular mechanisms drive meningioma heterogeneity and evolution. RESEARCH SQUARE 2023:rs.3.rs-2921804. [PMID: 37292686 PMCID: PMC10246120 DOI: 10.21203/rs.3.rs-2921804/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intratumor heterogeneity underlies cancer evolution and treatment resistance1-5, but targetable mechanisms driving intratumor heterogeneity are poorly understood. Meningiomas are the most common primary intracranial tumors and are resistant to all current medical therapies6,7. High-grade meningiomas cause significant neurological morbidity and mortality and are distinguished from low-grade meningiomas by increased intratumor heterogeneity arising from clonal evolution and divergence8. Here we integrate spatial transcriptomic and spatial protein profiling approaches across high-grade meningiomas to identify genomic, biochemical, and cellular mechanisms linking intratumor heterogeneity to the molecular, temporal, and spatial evolution of cancer. We show divergent intratumor gene and protein expression programs distinguish high-grade meningiomas that are otherwise grouped together by current clinical classification systems. Analyses of matched pairs of primary and recurrent meningiomas reveal spatial expansion of sub-clonal copy number variants underlies treatment resistance. Multiplexed sequential immunofluorescence (seqIF) and spatial deconvolution of meningioma single-cell RNA sequencing show decreased immune infiltration, decreased MAPK signaling, increased PI3K-AKT signaling, and increased cell proliferation drive meningioma recurrence. To translate these findings to clinical practice, we use epigenetic editing and lineage tracing approaches in meningioma organoid models to identify new molecular therapy combinations that target intratumor heterogeneity and block tumor growth. Our results establish a foundation for personalized medical therapy to treat patients with high-grade meningiomas and provide a framework for understanding therapeutic vulnerabilities driving intratumor heterogeneity and tumor evolution.
Collapse
|
22
|
Huo X, Song L, Wang K, Wang H, Li D, Li H, Wang W, Wang Y, Chen L, Zhao Z, Wang L, Wu Z. Prognostic factors and Doxorubicin involved in malignant progression of meningioma. Sci Rep 2023; 13:5632. [PMID: 37024523 PMCID: PMC10079659 DOI: 10.1038/s41598-023-28996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/27/2023] [Indexed: 04/08/2023] Open
Abstract
Meningioma was the most primary intracranial tumor, but the molecular characteristics and the treatment of malignant meningioma were still unclear. Nine malignant progression-related genes based prognostic signatures were identified by transcriptome analysis between benign meningioma and malignant meningioma. The external dataset GEO136661 and quantitative Real-time Polymerase Chain Reaction were used to verify the prognostic factors. has-miR-3605-5p, hsa-miR-664b-5p, PNRC2, BTBD8, EXTL2, SLFN13, DGKD, NSD2, and BVES were closed with malignant progression. Moreover, Doxorubicin was identified by Connectivity Map website with the differential malignant progression-related genes. CCK-8 assay, Edu assay, wound healing assay, and trans-well experiment were used to reveal that Doxorubicin could inhibit proliferation, migration and invasion of IOMM-Lee Cells.
Collapse
Affiliation(s)
- Xulei Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lairong Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongyi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Da Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Huan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Wang
- Department of Neurosurgery, Tianjin Fifth Center Hospital, Tianjin, China
| | - Yali Wang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Chen
- Department of Neurosurgery, Tianjin Fifth Center Hospital, Tianjin, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuanxilu 119, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
23
|
Raleigh D, Chen W, Choudhury A, Youngblood M, Polley MY, Lucas CH, Mirchia K, Maas S, Suwala A, Won M, Bayley J, Harmanci A, Harmanci A, Klisch T, Nguyen M, Vasudevan H, McCortney K, Yu T, Bhave V, Lam TC, Pu J, Leung G, Chang J, Perlow H, Palmer J, Haberler C, Berghoff A, Preusser M, Nicolaides T, Mawrin C, Agnihotri S, Resnick A, Rood B, Chew J, Young J, Boreta L, Braunstein S, Schulte J, Butowski N, Santagata S, Spetzler D, Bush NAO, Villanueva-Meyer J, Chandler J, Solomon D, Rogers C, Pugh S, Mehta M, Sneed P, Berger M, Horbinski C, McDermott M, Perry A, Bi W, Patel A, Sahm F, Magill S. Targeted gene expression profiling predicts meningioma outcomes and radiotherapy responses. RESEARCH SQUARE 2023:rs.3.rs-2663611. [PMID: 36993741 PMCID: PMC10055655 DOI: 10.21203/rs.3.rs-2663611/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Surgery is the mainstay of treatment for meningioma, the most common primary intracranial tumor, but improvements in meningioma risk stratification are needed and current indications for postoperative radiotherapy are controversial. Recent studies have proposed prognostic meningioma classification systems using DNA methylation profiling, copy number variants, DNA sequencing, RNA sequencing, histology, or integrated models based on multiple combined features. Targeted gene expression profiling has generated robust biomarkers integrating multiple molecular features for other cancers, but is understudied for meningiomas. Methods Targeted gene expression profiling was performed on 173 meningiomas and an optimized gene expression biomarker (34 genes) and risk score (0 to 1) was developed to predict clinical outcomes. Clinical and analytical validation was performed on independent meningiomas from 12 institutions across 3 continents (N = 1856), including 103 meningiomas from a prospective clinical trial. Gene expression biomarker performance was compared to 9 other classification systems. Results The gene expression biomarker improved discrimination of postoperative meningioma outcomes compared to all other classification systems tested in the independent clinical validation cohort for local recurrence (5-year area under the curve [AUC] 0.81) and overall survival (5-year AUC 0.80). The increase in area under the curve compared to the current standard of care, World Health Organization 2021 grade, was 0.11 for local recurrence (95% confidence interval [CI] 0.07-0.17, P < 0.001). The gene expression biomarker identified meningiomas benefiting from postoperative radiotherapy (hazard ratio 0.54, 95% CI 0.37-0.78, P = 0.0001) and re-classified up to 52.0% meningiomas compared to conventional clinical criteria, suggesting postoperative management could be refined for 29.8% of patients. Conclusions A targeted gene expression biomarker improves discrimination of meningioma outcomes compared to recent classification systems and predicts postoperative radiotherapy responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Minhee Won
- NRG Statistics and Data Management Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Joshua Palmer
- The Ohios State University James Comprehensive Cancer Center
| | | | | | | | | | | | | | | | - Brian Rood
- Center for Cancer and Immunology Research, Children's National Research Institute
| | | | | | | | - Steve Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco California
| | | | | | | | | | | | | | | | | | - C Rogers
- NRG Statistics and Data Management Center
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Minczeles NS, Bos EM, de Leeuw RC, Kros JM, Konijnenberg MW, Bromberg JEC, de Herder WW, Dirven CMF, Hofland J, Brabander T. Efficacy and safety of peptide receptor radionuclide therapy with [ 177Lu]Lu-DOTA-TATE in 15 patients with progressive treatment-refractory meningioma. Eur J Nucl Med Mol Imaging 2023; 50:1195-1204. [PMID: 36454268 DOI: 10.1007/s00259-022-06044-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/13/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE There is no evidence-based systemic therapy for patients with progressive meningiomas for whom surgery or external radiotherapy is no longer an option. In this study, the efficacy and safety of peptide receptor radionuclide therapy (PRRT) in patients with progressive, treatment-refractory meningiomas were evaluated. METHODS Retrospective analysis of all meningioma patients treated with [177Lu]Lu-DOTA-TATE from 2000 to 2020 in our centre. Primary outcomes were response according to RANO bidimensional and volumetric criteria and progression-free survival (PFS). Overall survival (OS) and tumour growth rate (TGR) were secondary endpoints. TGR was calculated as the percentage change in surface or volume per month. RESULTS Fifteen meningioma patients received [177Lu]Lu-DOTA-TATE (7.5-29.6 GBq). Prior to PRRT, all patients had received external radiotherapy, and 14 patients had undergone surgery. All WHO grades were included WHO 1 (n=3), WHO 2 (n=5), and WHO 3 (n=6). After PRRT, stable disease was observed in six (40%) patients. The median PFS was 7.8 months with a 6-month PFS rate of 60%. The median OS was 13.6 months with a 12-month OS rate of 60%. All patients had progressive disease prior to PRRT, with an average TGR of 4.6% increase in surface and 14.8% increase in volume per month. After PRRT, TGR declined to 3.1% in surface (p=0.016) and 5.0% in volume (p=0.013) per month. CONCLUSION In this cohort of meningioma patients with exhaustion of surgical and radiotherapeutic options and progressive disease, it was shown that PRRT plays a role in controlling tumour growth.
Collapse
Affiliation(s)
- Noémie S Minczeles
- Department of Internal Medicine, Section of Endocrinology, ENETS Centre of Excellence Rotterdam, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands. .,Department of Radiology & Nuclear Medicine, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands.
| | - Eelke M Bos
- Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands
| | - Reinoud C de Leeuw
- Department of Radiology & Nuclear Medicine, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Mark W Konijnenberg
- Department of Radiology & Nuclear Medicine, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | | | - Wouter W de Herder
- Department of Internal Medicine, Section of Endocrinology, ENETS Centre of Excellence Rotterdam, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Johannes Hofland
- Department of Internal Medicine, Section of Endocrinology, ENETS Centre of Excellence Rotterdam, Erasmus MC and Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology & Nuclear Medicine, ENETS Centre of Excellence Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Brastianos PK, Twohy EL, Gerstner ER, Kaufmann TJ, Iafrate AJ, Lennerz J, Jeyapalan S, Piccioni DE, Monga V, Fadul CE, Schiff D, Taylor JW, Chowdhary SA, Bettegowda C, Ansstas G, De La Fuente M, Anderson MD, Shonka N, Damek D, Carrillo J, Kunschner-Ronan LJ, Chaudhary R, Jaeckle KA, Senecal FM, Kaley T, Morrison T, Thomas AA, Welch MR, Iwamoto F, Cachia D, Cohen AL, Vora S, Knopp M, Dunn IF, Kumthekar P, Sarkaria J, Geyer S, Carrero XW, Martinez-Lage M, Cahill DP, Brown PD, Giannini C, Santagata S, Barker FG, Galanis E. Alliance A071401: Phase II Trial of Focal Adhesion Kinase Inhibition in Meningiomas With Somatic NF2 Mutations. J Clin Oncol 2023; 41:618-628. [PMID: 36288512 PMCID: PMC9870228 DOI: 10.1200/jco.21.02371] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/14/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023] Open
Abstract
PURPOSE Patients with progressive or recurrent meningiomas have limited systemic therapy options. Focal adhesion kinase (FAK) inhibition has a synthetic lethal relationship with NF2 loss. Given the predominance of NF2 mutations in meningiomas, we evaluated the efficacy of GSK2256098, a FAK inhibitor, as part of the first genomically driven phase II study in recurrent or progressive grade 1-3 meningiomas. PATIENTS AND METHODS Eligible patients whose tumors screened positively for NF2 mutations were treated with GSK2256098, 750 mg orally twice daily, until progressive disease. Efficacy was evaluated using two coprimary end points: progression-free survival at 6 months (PFS6) and response rate by Macdonald criteria, where PFS6 was evaluated separately within grade-based subgroups: grade 1 versus 2/3 meningiomas. Per study design, the FAK inhibitor would be considered promising in this patient population if either end point met the corresponding decision criteria for efficacy. RESULTS Of 322 patients screened for all mutation cohorts of the study, 36 eligible and evaluable patients with NF2 mutations were enrolled and treated: 12 grade 1 and 24 grade 2/3 patients. Across all grades, one patient had a partial response and 24 had stable disease as their best response to treatment. In grade 1 patients, the observed PFS6 rate was 83% (10/12 patients; 95% CI, 52 to 98). In grade 2/3 patients, the observed PFS6 rate was 33% (8/24 patients; 95% CI, 16 to 55). The study met the PFS6 efficacy end point both for the grade 1 and the grade 2/3 cohorts. Treatment was well tolerated; seven patients had a maximum grade 3 adverse event that was at least possibly related to treatment with no grade 4 or 5 events. CONCLUSION GSK2256098 was well tolerated and resulted in an improved PFS6 rate in patients with recurrent or progressive NF2-mutated meningiomas, compared with historical controls. The criteria for promising activity were met, and FAK inhibition warrants further evaluation for this patient population.
Collapse
Affiliation(s)
| | - Erin L. Twohy
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | | | | | - A. John Iafrate
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jochen Lennerz
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | - David Schiff
- University of Virginia Medical Center, Charlottesville, VA
| | - Jennie W. Taylor
- University of California, San Francisco Brain Tumor Center, San Francisco, CA
| | - Sajeel A. Chowdhary
- Lynn Cancer Institute, Boca Raton Regional Hospital/Baptist Hospital South Florida, Boca Raton, FL
| | | | | | | | | | | | | | | | | | | | | | | | - Thomas Kaley
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Mary R. Welch
- Columbia University Irving Medical Center, New York, NY
| | - Fabio Iwamoto
- Columbia University Irving Medical Center, New York, NY
| | | | | | - Shivangi Vora
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Michael Knopp
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Ian F. Dunn
- College of Medicine, University of Oklahoma, Oklahoma City, OK
| | | | | | - Susan Geyer
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | - Xiomara W. Carrero
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN
| | | | - Daniel P. Cahill
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | - Sandro Santagata
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
26
|
Jungwirth G, Yu T, Liu F, Cao J, Alaa Eddine M, Moustafa M, Abdollahi A, Warta R, Unterberg A, Herold-Mende C. Pharmacological Landscape of FDA-Approved Anticancer Drugs Reveals Sensitivities to Ixabepilone, Romidepsin, Omacetaxine, and Carfilzomib in Aggressive Meningiomas. Clin Cancer Res 2023; 29:233-243. [PMID: 36282277 DOI: 10.1158/1078-0432.ccr-22-2085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/29/2022] [Accepted: 10/21/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE To date, there are no systemic treatment options for patients with recurrent or refractory meningioma. EXPERIMENTAL DESIGN To identify effective drugs, we performed a large-scale drug screening using FDA-approved drugs on several meningioma cell lines. The impact of the top four compounds was assessed on cell viability, proliferation, colony formation, migration, and apoptosis. In addition, the antineoplastic effects of the selected drugs were validated in a heterotopic xenograft mouse model. RESULTS Analyses of the viability of meningioma cells treated with 119 antineoplastic FDA-approved drugs resulted in categorization into sensitive and resistant drug-response groups based on the mean IC50 values and peak serum concentrations (Cmax) in patients. Eighty drugs, including 15 alkylating agents, 14 antimetabolites, and 13 tyrosine kinase inhibitors, were classified as resistant (IC50 > Cmax). The sensitive drug-response group (n = 29, IC50 < Cmax) included RNA/protein synthesis inhibitors, proteasome inhibitors, topoisomerase, tyrosine-kinase, and partial histone deacetylase and microtubule inhibitors. The IC50 value of the four most effective compounds (carfilzomib, omacetaxine, ixabepilone, and romidepsin) ranged from 0.12 to 9.5 nmol/L. Most of them caused cell-cycle arrest in the G2-M-phase and induced apoptosis. Furthermore, all drugs except romidepsin significantly inhibited tumor growth in vivo. The strongest antineoplastic effect was observed for ixabepilone, which reduced tumor volume by 86%. CONCLUSIONS In summary, a large-scale drug screening provides a comprehensive insight into the anti-meningioma activities of FDA-approved drugs, and identified carfilzomib, omacetaxine, ixabepilone, and romidepsin as novel potent antineoplastic agents for the treatment of aggressive meningiomas. The most pronounced effects were observed with ixabepilone mandating for further clinical investigation.
Collapse
Affiliation(s)
- Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Tao Yu
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Fang Liu
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Junguo Cao
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Montadar Alaa Eddine
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Mahmoud Moustafa
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD), Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD), Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
The role of bevacizumab for treatment-refractory intracranial meningiomas: a single institution's experience and a systematic review of the literature. Acta Neurochir (Wien) 2022; 164:3011-3023. [PMID: 36117185 DOI: 10.1007/s00701-022-05348-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Meningiomas account for over 30% of all primary brain tumors. While surgery can be curative for these tumors, several factors may lead to a higher likelihood of recurrence. For recurrent meningiomas, bevacizumab may be considered as a therapeutic agent, but literature regarding its efficacy is sparse. Thus, we present a systematic review of the literature and case series of patients from our institution with treatment-refractory meningiomas who received bevacizumab. METHODS Patients at our institution who were diagnosed with recurrent meningioma between January 2000 and September 2020 and received bevacizumab monotherapy were included in this study. Bevacizumab duration and dosages were noted, as well as progression-free survival (PFS) after the first bevacizumab injection. A systematic review of the literature was also performed. RESULTS Twenty-three patients at our institution with a median age of 55 years at initial diagnosis qualified for this study. When bevacizumab was administered, 2 patients had WHO grade I meningiomas, 10 patients had WHO grade II meningiomas, and 11 patients had WHO grade III meningiomas. Median PFS after the first bevacizumab injection was 7 months. Progression-free survival rate at 6 months was 57%. Two patients stopped bevacizumab due to hypertension and aphasia. Systematic review of the literature showed limited ability for bevacizumab to control tumor growth. CONCLUSION Bevacizumab is administered to patients with treatment-refractory meningiomas and, though its effectiveness is limited, outperforms other systemic therapies reported in the literature. Further studies are required to identify a successful patient profile for utilization of bevacizumab.
Collapse
|
29
|
Mair MJ, Leibetseder A, Heller G, Puhr R, Tomasich E, Goldberger S, Hatziioannou T, Wöhrer A, Widhalm G, Dieckmann K, Aichholzer M, Weis S, von Oertzen T, Furtner J, Pichler J, Preusser M, Berghoff AS. Early Postoperative Treatment versus Initial Observation in CNS WHO Grade 2 and 3 Oligodendroglioma: Clinical Outcomes and DNA Methylation Patterns. Clin Cancer Res 2022; 28:4565-4573. [PMID: 35998208 DOI: 10.1158/1078-0432.ccr-22-1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The treatment of oligodendroglioma consists of tumor resection and radiochemotherapy. The timing of radiochemotherapy remains unclear, and predictive biomarkers are limited. EXPERIMENTAL DESIGN Adult patients diagnosed with isocitrate dehydrogenase (IDH)-mutated, 1p/19q-codeleted CNS WHO grade 2 and 3 oligodendroglioma at the Medical University of Vienna and the Kepler University Hospital Linz (Austria) in 1992 to 2019 were included. Progression-free (PFS) and overall survival (OS) between early postoperative treatment and initial observation were compared using propensity score-weighted Cox regression models. DNA methylation analysis of tumor tissue was performed using Illumina MethylationEPIC 850k microarrays. RESULTS One hundred thirty-one out of 201 (65.2%) patients with CNS WHO grade 2 and 70 of 201 (34.8%) with grade 3 oligodendroglioma were identified. Eighty-three of 201 (41.3%) patients underwent early postoperative treatment, of whom 56 of 83 (67.5%) received radiochemotherapy, 15 of 84 (18.1%) radiotherapy (RT) only and 12 of 83 (14.5%) chemotherapy only. Temozolomide-based treatment was administered to 64 of 68 (94.1%) patients, whereas RT + procarbazine, lomustine (CCNU), and vincristine (PCV) were applied in 2 of 69 (3.5%) patients. Early treatment was not associated with PFS [adjusted hazard ratio (HR) 0.74; 95% CI, 0.33-1.65, P = 0.459] or OS (adjusted HR: 2.07; 95% CI, 0.52-8.21, P = 0.302) improvement. Unsupervised clustering analysis of DNA methylation profiles from patients receiving early treatment revealed two methylation clusters correlating with PFS, whereas no association of clustering with O6-methylguanine methyltransferase (MGMT) promoter methylation, CNS WHO grade, extent of resection, and treating center could be observed. CONCLUSIONS In this retrospective study, early postoperative treatment was not associated with improved PFS/OS in oligodendroglioma. The potentially predictive value of whole-genome methylation profiling should be validated in prospective trials.
Collapse
Affiliation(s)
- Maximilian J Mair
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Annette Leibetseder
- Department of Neurology 1, Neuromed Campus, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Rainer Puhr
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Erwin Tomasich
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sebastian Goldberger
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Teresa Hatziioannou
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Adelheid Wöhrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Martin Aichholzer
- Department of Neurosurgery, Neuromed Campus, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Serge Weis
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Tim von Oertzen
- Department of Neurology 1, Neuromed Campus, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Julia Furtner
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Josef Pichler
- Department of Internal Medicine and Neurooncology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Diagnostic and Therapeutic Strategy in Anaplastic (Malignant) Meningioma, CNS WHO Grade 3. Cancers (Basel) 2022; 14:cancers14194689. [PMID: 36230612 PMCID: PMC9562197 DOI: 10.3390/cancers14194689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Only 1% of all meningioma diagnosis is classified as malignant (anaplastic) meningioma. Due to their rarity, clinical management of these tumors presents several gaps. In this review, we investigate current knowledge of anaplastic meningioma focusing on their pathological and radiological diagnosis, molecular assessment, and loco-regional and systemic management. Despite the current marginal role of systemic therapy, it is possible that the increasing knowledge of molecular altered pathways of the disease will lead to the development of novel effective systemic treatments. Abstract Background: Meningiomas are the most common primary central nervous system malignancies accounting for 36% of all intracranial tumors. However, only 1% of meningioma is classified as malignant (anaplastic) meningioma. Due to their rarity, clinical management of these tumors presents several gaps. Methods: We carried out a narrative review aimed to investigate current knowledge of anaplastic meningioma focusing on their pathological and radiological diagnosis, molecular assessment, and loco-regional and systemic management. Results: The most frequent genetic alteration occurring in meningioma is the inactivation in the neurofibromatosis 2 genes (merlin). The accumulation of copy number losses, including 1p, 6p/q, 10q, 14q, and 18p/q, and less frequently 2p/q, 3p, 4p/q, 7p, 8p/q, and 9p, compatible with instability, is restricted to NF2 mutated meningioma. Surgery and different RT approaches represent the milestone of grade 3 meningioma management, while there is a marginal role of systemic therapy. Conclusions: Anaplastic meningiomas are rare tumors, and diagnosis should be suspected and confirmed by trained radiologists and pathologists. Despite the current marginal role of systemic therapy, it is possible that the increasing knowledge of molecular altered pathways of the disease will lead to the development of novel effective systemic treatments.
Collapse
|
31
|
Okano A, Miyawaki S, Teranishi Y, Ohara K, Hongo H, Sakai Y, Ishigami D, Nakatomi H, Saito N. Advances in Molecular Biological and Translational Studies in World Health Organization Grades 2 and 3 Meningiomas: A Literature Review. Neurol Med Chir (Tokyo) 2022; 62:347-360. [PMID: 35871574 PMCID: PMC9464479 DOI: 10.2176/jns-nmc.2022-0114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
The treatment of World Health Organization (WHO) grades 2 and 3 meningiomas remains difficult and controversial. The pathogenesis of high-grade meningiomas was expected to be elucidated to improve treatment strategies. The molecular biology of meningiomas has been clarified in recent years. High-grade meningiomas have been linked to NF2 mutations and 22q deletion. CDKN2A/B homozygous deletion and TERT promoter mutations are independent prognostic factors for WHO grade 3 meningiomas. In addition to 22q loss, 1p, 14p, and 9q loss have been linked to high-grade meningiomas. Meningiomas enriched in copy number alterations may be biologically invasive. Furthermore, several new comprehensive classifications of meningiomas have been proposed based on these molecular biological features, including DNA methylation status. The new classifications may have implications for treatment strategies for refractory aggressive meningiomas because they provide a more accurate prognosis compared to the conventional WHO classification. Although several systemic therapies, including molecular targeted therapies, may be effective in treating refractory aggressive meningiomas, these drugs are being tested. Systemic drug therapy for meningioma is expected to be developed in the future. Thus, this review aims to discuss the distinct genomic alterations observed in WHO grade 2 and 3 meningiomas, as well as their diagnostic and therapeutic implications and systemic drug therapies for high-grade meningiomas.
Collapse
Affiliation(s)
- Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Yu Sakai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Daiichiro Ishigami
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
- Department of Neurosurgery, Kyorin University
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| |
Collapse
|
32
|
Pellerino A, Bruno F, Palmiero R, Pronello E, Bertero L, Soffietti R, Rudà R. Clinical Significance of Molecular Alterations and Systemic Therapy for Meningiomas: Where Do We Stand? Cancers (Basel) 2022; 14:2256. [PMID: 35565385 PMCID: PMC9100910 DOI: 10.3390/cancers14092256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/25/2022] Open
Abstract
Meningiomas are common intracranial tumors that can be treated successfully in most cases with surgical resection and/or adjuvant radiotherapy. However, approximately 20% of patients show an aggressive clinical course with tumor recurrence or progressive disease, resulting in significant morbidity and increased mortality. Despite several studies that have investigated different cytotoxic agents in aggressive meningiomas in the past several years, limited evidence of efficacy and clinical benefit has been reported thus far. Novel molecular alterations have been linked to a particular clinicopathological phenotype and have been correlated with grading, location, and prognosis of meningiomas. In this regard, SMO, AKT, and PIK3CA mutations are typical of anterior skull base meningiomas, whereas KLF4 mutations are specific for secretory histology, and BAP1 alterations are common in progressive rhabdoid meningiomas. Alterations in TERT, DMD, and BAP1 correlate with poor outcomes. Moreover, some actionable mutations, including SMO, AKT1, and PIK3CA, regulate meningioma growth and are under investigation in clinical trials. PD-L1 and/or M2 macrophage expression in the microenvironment provides evidence for the investigation of immunotherapy in progressive meningiomas.
Collapse
Affiliation(s)
- Alessia Pellerino
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
| | - Francesco Bruno
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
| | - Rosa Palmiero
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
| | - Edoardo Pronello
- Department of Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University and City of Health and Science Hospital, 10126 Turin, Italy;
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
| | - Roberta Rudà
- Division of Neuro-Oncology, Department Neuroscience, University and City of Health and Science Hospital, 10126 Turin, Italy; (A.P.); (F.B.); (R.P.); (R.R.)
- Department of Neurology, Castelfranco Veneto and Treviso Hospital, 31100 Treviso, Italy
| |
Collapse
|
33
|
Gemcitabine Cooperates with Everolimus to Inhibit the Growth of and Sensitize Malignant Meningioma Cells to Apoptosis Induced by Navitoclax, an Inhibitor of Anti-Apoptotic BCL-2 Family Proteins. Cancers (Basel) 2022; 14:cancers14071706. [PMID: 35406478 PMCID: PMC8997110 DOI: 10.3390/cancers14071706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Meningioma is the most common intracranial neoplasm derived from the arachnoid cap cells of the leptomeninges. Malignant meningioma is generally more aggressive than other meningioma and frequently recurs even after surgery and radiation therapy. Clinical trials have been performed on candidate drugs, including everolimus, an inhibitor of mammalian target of rapamycin. However, an effective standard systemic therapy has not yet been established and the prognosis of patients with malignant meningioma is still poor. We recently reported the radiosensitization effects of gemcitabine in malignant meningioma cells, which suggests its potential to enhance the efficacy of candidate drugs for meningioma. In the present study, we demonstrated that gemcitabine enhanced the therapeutic effects of everolimus in malignant meningioma cells, and these effects were further augmented by navitoclax, an inhibitor of anti-apoptotic BCL-2 family proteins, both in vitro and in vivo. The present results provide support for the clinical application of gemcitabine and navitoclax in combination with everolimus to the treatment of patients with malignant meningioma. Abstract Despite several clinical trials with encouraging findings, effective standard systemic therapies have yet to be established for malignant meningioma and the prognosis of these patients remains poor. Accumulating preclinical and clinical evidence suggests that gemcitabine is effective against malignant meningioma. To identify drugs with therapeutic effects that may be enhanced in combination with gemcitabine, we screened drugs that have been tested in preclinical and clinical trials for meningioma. In IOMM-Lee and HKBMM malignant meningioma cells, gemcitabine enhanced the growth inhibitory effects of the mTOR inhibitor everolimus, the clinical benefits of which have been demonstrated in patients with meningioma. The synergistic growth inhibitory effects of this combination were accompanied by cellular senescence characterized by an increase in senescence-associated β-galactosidase activity. To enhance the effects of this combination, we screened senolytic drugs that selectively kill senescent cells, and found that navitoclax, an inhibitor of anti-apoptotic BCL-2 family proteins, effectively reduced the number of viable malignant meningioma cells in combination with everolimus and gemcitabine by inducing apoptotic cell death. The suppression of tumor growth in vivo by the combination of everolimus with gemcitabine was significantly stronger than that by either treatment alone. Moreover, navitoclax, in combination with everolimus and gemcitabine, significantly reduced tumor sizes with an increase in the number of cleaved caspase-3-positive apoptotic cells. The present results suggest that the addition of gemcitabine with or without navitoclax to everolimus is a promising strategy that warrants further evaluation in future clinical trials for malignant meningioma.
Collapse
|
34
|
Affiliation(s)
- Christine Marosi
- Clinical Division of Palliative Care, Department for Internal Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|