1
|
Vollmuth P, Karschnia P, Sahm F, Park YW, Ahn SS, Jain R. A Radiologist's Guide to IDH-Wildtype Glioblastoma for Efficient Communication With Clinicians: Part II-Essential Information on Post-Treatment Imaging. Korean J Radiol 2025; 26:368-389. [PMID: 40015559 PMCID: PMC11955384 DOI: 10.3348/kjr.2024.0983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/08/2024] [Accepted: 11/30/2024] [Indexed: 03/01/2025] Open
Abstract
Owing to recent advancements in various postoperative treatment modalities, such as radiation, chemotherapy, antiangiogenic treatment, and immunotherapy, the radiological and clinical assessment of patients with isocitrate dehydrogenase-wildtype glioblastoma using post-treatment imaging has become increasingly challenging. This review highlights the challenges in differentiating treatment-related changes such as pseudoprogression, radiation necrosis, and pseudoresponse from true tumor progression and aims to serve as a guideline for efficient communication with clinicians for optimal management of patients with post-treatment imaging.
Collapse
Affiliation(s)
- Philipp Vollmuth
- Division for Computational Radiology & Clinical AI (CCIBonn.ai), Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
- Medical Faculty Bonn, University of Bonn, Bonn, Germany
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurosurgery, Friedrich-Alexander-University University, Erlangen-Nuremberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, New York, USA
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
2
|
Gaiaschi L, Bottone MG, De Luca F. Towards Effective Treatment of Glioblastoma: The Role of Combination Therapies and the Potential of Phytotherapy and Micotherapy. Curr Issues Mol Biol 2024; 46:14324-14350. [PMID: 39727987 DOI: 10.3390/cimb46120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and difficult-to-treat brain tumors, with a poor prognosis due to its high resistance to conventional therapies. Current treatment options, including surgical resection, radiotherapy, and chemotherapy, have limited effectiveness in improving long-term survival. Despite the emergence of new therapies, monotherapy approaches have not shown significant improvements, highlighting the need for innovative therapeutic strategies. Combination therapies appear to be the most promising solution, as they target multiple molecular pathways involved in GBM progression. One area of growing interest is the incorporation of phytotherapy and micotherapy as complementary treatments, which offer potential benefits due to their anti-tumor, anti-inflammatory, and immunomodulatory properties. This review examines the current challenges in GBM treatment, discusses the potential of combination therapies, and highlights the promising role of phytotherapy and micotherapy as integrative therapeutic options for GBM management.
Collapse
Affiliation(s)
- Ludovica Gaiaschi
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Maria Grazia Bottone
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Fabrizio De Luca
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
3
|
Foltyn-Dumitru M, Kessler T, Sahm F, Wick W, Heiland S, Bendszus M, Vollmuth P, Schell M. Cluster-based prognostication in glioblastoma: Unveiling heterogeneity based on diffusion and perfusion similarities. Neuro Oncol 2024; 26:1099-1108. [PMID: 38153923 PMCID: PMC11145444 DOI: 10.1093/neuonc/noad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND While the association between diffusion and perfusion magnetic resonance imaging (MRI) and survival in glioblastoma is established, prognostic models for patients are lacking. This study employed clustering of functional imaging to identify distinct functional phenotypes in untreated glioblastomas, assessing their prognostic significance for overall survival. METHODS A total of 289 patients with glioblastoma who underwent preoperative multimodal MR imaging were included. Mean values of apparent diffusion coefficient normalized relative cerebral blood volume and relative cerebral blood flow were calculated for different tumor compartments and the entire tumor. Distinct imaging patterns were identified using partition around medoids (PAM) clustering on the training dataset, and their ability to predict overall survival was assessed. Additionally, tree-based machine-learning models were trained to ascertain the significance of features pertaining to cluster membership. RESULTS Using the training dataset (231/289) we identified 2 stable imaging phenotypes through PAM clustering with significantly different overall survival (OS). Validation in an independent test set revealed a high-risk group with a median OS of 10.2 months and a low-risk group with a median OS of 26.6 months (P = 0.012). Patients in the low-risk cluster had high diffusion and low perfusion values throughout, while the high-risk cluster displayed the reverse pattern. Including cluster membership in all multivariate Cox regression analyses improved performance (P ≤ 0.004 each). CONCLUSIONS Our research demonstrates that data-driven clustering can identify clinically relevant, distinct imaging phenotypes, highlighting the potential role of diffusion, and perfusion MRI in predicting survival rates of glioblastoma patients.
Collapse
Affiliation(s)
- Martha Foltyn-Dumitru
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tobias Kessler
- Department of Neurology and Neurooncology Program, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology and Neurooncology Program, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marianne Schell
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Cho NS, Sanvito F, Le VL, Oshima S, Teraishi A, Yao J, Telesca D, Raymond C, Pope WB, Nghiemphu PL, Lai A, Cloughesy TF, Salamon N, Ellingson BM. Quantification of T2-FLAIR Mismatch in Nonenhancing Diffuse Gliomas Using Digital Subtraction. AJNR Am J Neuroradiol 2024; 45:188-197. [PMID: 38238098 PMCID: PMC11285991 DOI: 10.3174/ajnr.a8094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/10/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND AND PURPOSE The T2-FLAIR mismatch sign on MR imaging is a highly specific imaging biomarker of isocitrate dehydrogenase (IDH)-mutant astrocytomas, which lack 1p/19q codeletion. However, most studies using the T2-FLAIR mismatch sign have used visual assessment. This study quantified the degree of T2-FLAIR mismatch using digital subtraction of fluid-nulled T2-weighted FLAIR images from non-fluid-nulled T2-weighted images in human nonenhancing diffuse gliomas and then used this information to assess improvements in diagnostic performance and investigate subregion characteristics within these lesions. MATERIALS AND METHODS Two cohorts of treatment-naïve, nonenhancing gliomas with known IDH and 1p/19q status were studied (n = 71 from The Cancer Imaging Archive (TCIA) and n = 34 in the institutional cohort). 3D volumes of interest corresponding to the tumor were segmented, and digital subtraction maps of T2-weighted MR imaging minus T2-weighted FLAIR MR imaging were used to partition each volume of interest into a T2-FLAIR mismatched subregion (T2-FLAIR mismatch, corresponding to voxels with positive values on the subtraction maps) and nonmismatched subregion (T2-FLAIR nonmismatch corresponding to voxels with negative values on the subtraction maps). Tumor subregion volumes, percentage of T2-FLAIR mismatch volume, and T2-FLAIR nonmismatch subregion thickness were calculated, and 2 radiologists assessed the T2-FLAIR mismatch sign with and without the aid of T2-FLAIR subtraction maps. RESULTS Thresholds of ≥42% T2-FLAIR mismatch volume classified IDH-mutant astrocytoma with a specificity/sensitivity of 100%/19.6% (TCIA) and 100%/31.6% (institutional); ≥25% T2-FLAIR mismatch volume showed 92.0%/32.6% and 100%/63.2% specificity/sensitivity, and ≥15% T2-FLAIR mismatch volume showed 88.0%/39.1% and 93.3%/79.0% specificity/sensitivity. In IDH-mutant astrocytomas with ≥15% T2-FLAIR mismatch volume, T2-FLAIR nonmismatch subregion thickness was negatively correlated with the percentage T2-FLAIR mismatch volume (P < .0001) across both cohorts. The percentage T2-FLAIR mismatch volume was higher in grades 3-4 compared with grade 2 IDH-mutant astrocytomas (P < .05), and ≥15% T2-FLAIR mismatch volume IDH-mutant astrocytomas were significantly larger than <15% T2-FLAIR mismatch volume IDH-mutant astrocytoma (P < .05) across both cohorts. When evaluated by 2 radiologists, the additional use of T2-FLAIR subtraction maps did not show a significant difference in interreader agreement, sensitivity, or specificity compared with a separate evaluation of T2-FLAIR and T2-weighted MR imaging alone. CONCLUSIONS T2-FLAIR digital subtraction maps may be a useful, automated tool to obtain objective segmentations of tumor subregions based on quantitative thresholds for classifying IDH-mutant astrocytomas using the percentage T2 FLAIR mismatch volume with 100% specificity and exploring T2-FLAIR mismatch/T2-FLAIR nonmismatch subregion characteristics. Conversely, the addition of T2-FLAIR subtraction maps did not enhance the sensitivity or specificity of the visual T2-FLAIR mismatch sign assessment by experienced radiologists.
Collapse
Affiliation(s)
- Nicholas S Cho
- From the UCLA Brain Tumor Imaging Laboratory (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering (N.S.C., V.L.L., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
- Medical Scientist Training Program (N.S.C.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Francesco Sanvito
- From the UCLA Brain Tumor Imaging Laboratory (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Viên Lam Le
- From the UCLA Brain Tumor Imaging Laboratory (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering (N.S.C., V.L.L., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
| | - Sonoko Oshima
- From the UCLA Brain Tumor Imaging Laboratory (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ashley Teraishi
- From the UCLA Brain Tumor Imaging Laboratory (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jingwen Yao
- From the UCLA Brain Tumor Imaging Laboratory (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Donatello Telesca
- Department of Biostatistics (D.T.), Fielding School of Public Health, University of California Los Angeles, Los Angeles, California
| | - Catalina Raymond
- From the UCLA Brain Tumor Imaging Laboratory (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Whitney B Pope
- Department of Radiological Sciences (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Phioanh L Nghiemphu
- UCLA Neuro-Oncology Program (P.L.N., A.L., T.F.C.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Neurology (P.L.N., A.L., T.F.C.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Albert Lai
- UCLA Neuro-Oncology Program (P.L.N., A.L., T.F.C.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Neurology (P.L.N., A.L., T.F.C.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program (P.L.N., A.L., T.F.C.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Neurology (P.L.N., A.L., T.F.C.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Noriko Salamon
- Department of Radiological Sciences (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Benjamin M Ellingson
- From the UCLA Brain Tumor Imaging Laboratory (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., F.S., V.L.L., S.O., A.T., J.Y., C.R., W.B.P., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering (N.S.C., V.L.L., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery (B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Psychiatry and Biobehavioral Sciences (B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
5
|
Kurokawa R, Hagiwara A, Kurokawa M, Ellingson BM, Baba A, Moritani T. Diffusion histogram profiles predict molecular features of grade 4 in histologically lower-grade adult diffuse gliomas following WHO classification 2021. Eur Radiol 2024; 34:1367-1375. [PMID: 37581661 PMCID: PMC10853353 DOI: 10.1007/s00330-023-10071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES In the latest World Health Organization classification 2021, grade 4 adult diffuse gliomas can be diagnosed with several molecular features even without histological evidence of necrosis or microvascular proliferation. We aimed to explore whole tumor histogram-derived apparent diffusion coefficient (ADC) histogram profiles for differentiating between the presence (Mol-4) and absence (Mol-2/3) of grade 4 molecular features in histologically lower-grade gliomas. METHODS Between June 2019 and October 2022, 184 adult patients with diffuse gliomas underwent MRI. After excluding 121 patients, 18 (median age, 64.5 [range, 37-84 years]) Mol-4 and 45 (median 40 [range, 18-73] years) Mol-2/3 patients with histologically lower-grade gliomas were enrolled. Whole tumor volume-of-interest-derived ADC histogram profiles were calculated and compared between the two groups. Stepwise logistic regression analysis with Akaike's information criterion using the ADC histogram profiles with p values < 0.01 and age at diagnosis was used to identify independent variables for predicting the Mol-4 group. RESULTS The 90th percentile (p < 0.001), median (p < 0.001), mean (p < 0.001), 10th percentile (p = 0.014), and entropy (p < 0.001) of normalized ADC were lower, and kurtosis (p < 0.001) and skewness (p = 0.046) were higher in the Mol-4 group than in the Mol-2/3 group. Multivariate logistic regression analysis revealed that the entropy of normalized ADC and age at diagnosis were independent predictive parameters for the Mol-4 group with an area under the curve of 0.92. CONCLUSION ADC histogram profiles may be promising preoperative imaging biomarkers to predict molecular grade 4 among histologically lower-grade adult diffuse gliomas. CLINICAL RELEVANCE STATEMENT This study highlighted the diagnostic usefulness of ADC histogram profiles to differentiate histologically lower grade adult diffuse gliomas with the presence of molecular grade 4 features and those without. KEY POINTS • ADC histogram profiles to predict molecular CNS WHO grade 4 status among histologically lower-grade adult diffuse gliomas were evaluated. • Entropy of ADC and age were independent predictive parameters for molecular grade 4 status. • ADC histogram analysis is useful for predicting molecular grade 4 among histologically lower-grade gliomas.
Collapse
Affiliation(s)
- Ryo Kurokawa
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA.
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Akifumi Hagiwara
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Mariko Kurokawa
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - Akira Baba
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Toshio Moritani
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA
| |
Collapse
|
6
|
Henriksen OM, Maarup S, Hasselbalch B, Poulsen HS, Christensen IJ, Madsen K, Larsen VA, Lassen U, Law I. Magnetic resonance imaging and o-(2-[ 18F]fluoroethyl)-l-tyrosine positron emission tomography for early response assessment of nivolumab and bevacizumab in patients with recurrent high-grade astrocytic glioma. Neurooncol Adv 2024; 6:vdae178. [PMID: 39659835 PMCID: PMC11630048 DOI: 10.1093/noajnl/vdae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Background In the present study, early response assessment by o-(2-[18F]fluoroethyl)-l-tyrosine (FET) positron emission tomography (PET) and contrast-enhanced magnetic resonance imaging (MRI) were investigated in a phase II open-label single-center study of nivolumab plus bevacizumab for recurrent high-grade astrocytic glioma. Methods Twenty patients with nonresectable first recurrence of high-grade astrocytic glioma after EORTC/NCIC protocol underwent [18F]FET PET/MRI at baseline and after 2 cycles of treatment. Whole brain values of contrast-enhancing volume on MRI (CEV), of the mean (TBRmean) and maximal tumor-to-background ratio (TBRmax), and of metabolically active volume (MTV) on [18F]FET PET were obtained. Regional changes in [18F]FET uptake were assessed by parametric response mapping (PRM). Prediction of overall survival (OS) and response (OS > 11 months) were assessed by Cox and receiver operating characteristic (ROC) analysis, respectively. Also, MRI (response assessment in neuro-oncology [RANO] 2.0) and PET-based (PET RANO 1.0) response assessment criteria were compared. Results In ROC analysis responders were separated (P < .05) from nonresponders by lower MTV at follow-up (AUC 0.771, cutoff 18.3 mL), larger decrease in MTV (AUC 0.757, cutoff -5.3 mL), larger decrease in both TBRmax (AUC 0.814, cutoff -0.53) and relative TBRmax (AUC 0.829, cutoff -11%) and smaller PRM progressive volume (AUC 0.843, cutoff 4.0 mL). Change in CEV did not predict response. RANO 2.0 and PET RANO response assessment criteria had similar and only borderline prognostic values. Conclusions The study indicates that [18F]FET PET is superior to contrast-enhanced MRI for early response assessment in patients with recurrent high-grade astrocytic glioma treated with nivolumab and bevacizumab.
Collapse
Affiliation(s)
- Otto Mølby Henriksen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Simone Maarup
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Benedikte Hasselbalch
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Copenhagen, Denmark
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ib Jarle Christensen
- The DCCC Brain Tumor Center, Danish Comprehensive Cancer Center, Copenhagen, Denmark
| | - Karine Madsen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Vibeke Andrée Larsen
- Department of Radiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
7
|
Guo J, Fu X, Li Y, Ming H, Lin Y, Yu S, Wei H, Sun C, Zhang K, Yang X. Ultra high b-value diffusion weighted imaging enables better molecular grading stratification over histological grading in adult-type diffuse glioma. Eur J Radiol 2023; 168:111140. [PMID: 37832200 DOI: 10.1016/j.ejrad.2023.111140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
PURPOSE Accurate preoperative radiological staging of adult-type diffuse glioma is crucial for effective prognostic stratification and selection of appropriate therapeutic interventions. The purpose of this study was to compare the effectiveness of apparent diffusion coefficient (ADC) maps generated from ultrahigh b-value diffusion-weighted imaging (DWI) for molecular grading with that for histological grading of adult-type diffuse glioma, and to evaluate the correlation between these ADC maps and molecular and histological biomarkers. METHODS This study retrospectively enrolled forty adult-type diffuse glioma patients, diagnosed using the 2021 WHO classification criteria. Preoperative imaging data, including multiple b-value DWI and conventional magnetic resonance imaging, were collected. Tumors were graded using both histological and molecular criteria. Histogram analysis was conducted to generate 14 parameters for each tumor. Receiver operating characteristic curves and the area under the curve (AUC) were used to evaluate tumor grading and molecular status differentiation. Analysis of histological biomarkers was performed by calculating the Pearson and Spearman correlation coefficients of continuous and hierarchical variables, respectively. RESULTS The intensity-related parameters for molecular grading were found to be superior to those for histological grading for the identification of WHO grade 4 (WHO4) adult-type diffuse glioma. The AUC of both grading systems increased with increasing b-values, with ADC8000-based histogram parameters showing the best results (molecular grading, square root: AUC = 0.897; histological grading, median: AUC = 0.737). The intensity-related parameters could also differentiate molecular WHO4 gliomas from histologically lower-grade gliomas (ADC8000-based square root: AUC = 0.919), and different ADC8000-based kurtosis was observed between molecular and histological WHO4 gliomas (AUC = 0.833). Significant correlations between the Ki-67 index and molecular status prediction for IDH, CDKN2A, and EGFR were also demonstrated. CONCLUSION The histogram parameters derived from high b-value ADC maps were found to be more effective for differentiating molecular grades of WHO4 adult-type diffuse glioma than for differentiating histological grades.
Collapse
Affiliation(s)
- Jiahe Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiuwei Fu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiming Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haolang Ming
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Lin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Huijie Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China; Institute for Intelligent Healthcare, Tsinghua University, Beijing, China
| | - Xuejun Yang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China; Institute for Intelligent Healthcare, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Ellingson BM, Hagiwara A, Morris CJ, Cho NS, Oshima S, Sanvito F, Oughourlian TC, Telesca D, Raymond C, Abrey LE, Garcia J, Aftab DT, Hessel C, Minei TR, Harats D, Nathanson DA, Wen PY, Cloughesy TF. Depth of Radiographic Response and Time to Tumor Regrowth Predicts Overall Survival Following Anti-VEGF Therapy in Recurrent Glioblastoma. Clin Cancer Res 2023; 29:4186-4195. [PMID: 37540556 PMCID: PMC10592195 DOI: 10.1158/1078-0432.ccr-23-1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/04/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE Antiangiogenic therapies are known to cause high radiographic response rates due to reduction in vascular permeability resulting in a lower degree of contrast extravasation. In this study, we investigate the prognostic ability for model-derived parameters describing enhancing tumor volumetric dynamics to predict survival in recurrent glioblastoma treated with antiangiogenic therapy. EXPERIMENTAL DESIGN N = 276 patients in two phase II trials were used as training data, including bevacizumab ± irinotecan (NCT00345163) and cabozantinib (NCT00704288), and N = 74 patients in the bevacizumab arm of a phase III trial (NCT02511405) were used for validation. Enhancing volumes were estimated using T1 subtraction maps, and a biexponential model was used to estimate regrowth (g) and regression (d) rates, time to tumor regrowth (TTG), and the depth of response (DpR). Response characteristics were compared to diffusion MR phenotypes previously shown to predict survival. RESULTS Optimized thresholds occurred at g = 0.07 months-1 (phase II: HR = 0.2579, P = 5 × 10-20; phase III: HR = 0.2197, P = 5 × 10-5); d = 0.11 months-1 (HR = 0.3365, P < 0.0001; HR = 0.3675, P = 0.0113); TTG = 3.8 months (HR = 0.2702, P = 6 × 10-17; HR = 0.2061, P = 2 × 10-5); and DpR = 11.3% (HR = 0.6326, P = 0.0028; HR = 0.4785, P = 0.0206). Multivariable Cox regression controlling for age and baseline tumor volume confirmed these factors as significant predictors of survival. Patients with a favorable pretreatment diffusion MRI phenotype had a significantly longer TTG and slower regrowth. CONCLUSIONS Recurrent glioblastoma patients with a large, durable radiographic response to antiangiogenic agents have significantly longer survival. This information is useful for interpreting activity of antiangiogenic agents in recurrent glioblastoma.
Collapse
Affiliation(s)
- Benjamin M. Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental PhD Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Connor J. Morris
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas S. Cho
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sonoko Oshima
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Talia C. Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental PhD Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Donatello Telesca
- Department of Biostatistics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | - David A. Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Patrick Y. Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Timothy F. Cloughesy
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
9
|
Kersch CN, Muldoon LL, Claunch CJ, Fu R, Schwartz D, Cha S, Starkey J, Neuwelt EA, Barajas RF. Multiparametric magnetic resonance imaging discerns glioblastoma immune microenvironmental heterogeneity. Neuroradiol J 2023:19714009231163560. [PMID: 37306690 DOI: 10.1177/19714009231163560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
RATIONALE AND OBJECTIVE Poor clinical outcomes for patients with glioblastoma are in part due to dysfunction of the tumor-immune microenvironment. An imaging approach able to characterize immune microenvironmental signatures could provide a framework for biologically based patient stratification and response assessment. We hypothesized spatially distinct gene expression networks can be distinguished by multiparametric Magnetic Resonance Imaging (MRI) phenotypes. MATERIALS AND METHODS Patients with newly diagnosed glioblastoma underwent image-guided tissue sampling allowing for co-registration of MRI metrics with gene expression profiles. MRI phenotypes based on gadolinium contrast enhancing lesion (CEL) and non-enhancing lesion (NCEL) regions were subdivided based on imaging parameters (relative cerebral blood volume (rCBV) and apparent diffusion coefficient (ADC)). Gene set enrichment analysis and immune cell type abundance was estimated using CIBERSORT methodology. Significance thresholds were set at a p-value cutoff 0.005 and an FDR q-value cutoff of 0.1. RESULTS Thirteen patients (eight men, five women, mean age 58 ± 11 years) provided 30 tissue samples (16 CEL and 14 NCEL). Six non-neoplastic gliosis samples differentiated astrocyte repair from tumor associated gene expression. MRI phenotypes displayed extensive transcriptional variance reflecting biological networks, including multiple immune pathways. CEL regions demonstrated higher immunologic signature expression than NCEL, while NCEL regions demonstrated stronger immune signature expression levels than gliotic non-tumor brain. Incorporation of rCBV and ADC metrics identified sample clusters with differing immune microenvironmental signatures. CONCLUSION Taken together, our study demonstrates that MRI phenotypes provide an approach for non-invasively characterizing tumoral and immune microenvironmental glioblastoma gene expression networks.
Collapse
Affiliation(s)
- Cymon N Kersch
- Department of Neurology, Blood-Brain Barrier Program, Oregon Health & Sciences University, USA
- Department of Radiation Medicine, Oregon Health & Sciences University, USA
| | - Leslie L Muldoon
- Department of Neurology, Blood-Brain Barrier Program, Oregon Health & Sciences University, USA
| | - Cheryl J Claunch
- Department of Biomedical Engineering, Knight Cancer Institute, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Sciences University, USA
| | - Rongwei Fu
- OHSU-PSU School of Public Health, Oregon Health & Sciences University, USA
| | - Daniel Schwartz
- Advanced Imaging Research Center, Oregon Health & Sciences University, USA
- Department of Neurology, Layton Aging and Alzheimer's Disease Center, Oregon Health & Sciences University, USA
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Jay Starkey
- Department of Radiology, Oregon Health & Sciences University, USA
| | - Edward A Neuwelt
- Department of Neurology, Blood-Brain Barrier Program, Oregon Health & Sciences University, USA
- Department of Neurosurgery, Oregon Health & Sciences University, USA
- Office of Research and Development, Department of Veterans Affairs Medical Center, USA
| | - Ramon F Barajas
- Advanced Imaging Research Center, Oregon Health & Sciences University, USA
- Department of Radiology, Oregon Health & Sciences University, USA
- Knight Cancer Institute, Oregon Health & Sciences University, USA
| |
Collapse
|
10
|
Song R, Liu F, Ping Y, Zhang Y, Wang L. Potential non-invasive biomarkers in tumor immune checkpoint inhibitor therapy: response and prognosis prediction. Biomark Res 2023; 11:57. [PMID: 37268978 PMCID: PMC10236604 DOI: 10.1186/s40364-023-00498-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/07/2023] [Indexed: 06/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically enhanced the treatment outcomes for diverse malignancies. Yet, only 15-60% of patients respond significantly. Therefore, accurate responder identification and timely ICI administration are critical issues in tumor ICI therapy. Recent rapid developments at the intersection of oncology, immunology, biology, and computer science have provided an abundance of predictive biomarkers for ICI efficacy. These biomarkers can be invasive or non-invasive, depending on the specific sample collection method. Compared with invasive markers, a host of non-invasive markers have been confirmed to have superior availability and accuracy in ICI efficacy prediction. Considering the outstanding advantages of dynamic monitoring of the immunotherapy response and the potential for widespread clinical application, we review the recent research in this field with the aim of contributing to the identification of patients who may derive the greatest benefit from ICI therapy.
Collapse
Affiliation(s)
- Ruixia Song
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
| | - Fengsen Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Ping
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China.
| | - Liping Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Cho NS, Hagiwara A, Sanvito F, Ellingson BM. A multi-reader comparison of normal-appearing white matter normalization techniques for perfusion and diffusion MRI in brain tumors. Neuroradiology 2023; 65:559-568. [PMID: 36301349 PMCID: PMC9905164 DOI: 10.1007/s00234-022-03072-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE There remains no consensus normal-appearing white matter (NAWM) normalization method to compute normalized relative cerebral blood volume (nrCBV) and apparent diffusion coefficient (nADC) in brain tumors. This reader study explored nrCBV and nADC differences using different NAWM normalization methods. METHODS Thirty-five newly diagnosed glioma patients were studied. For each patient, two readers created four NAWM regions of interests: (1) a single plane in the centrum semiovale (CSOp), (2) 3 spheres in the centrum semiovale (CSOs), (3) a single plane in the slice of the tumor center (TUMp), and (4) 3 spheres in the slice of the tumor center (TUMs). Readers repeated NAWM segmentations 1 month later. Differences in nrCBV and nADC of the FLAIR hyperintense tumor, inter-/intra-reader variability, and time to segment NAWM were assessed. As a validation step, the diagnostic performance of each method for IDH-status prediction was evaluated. RESULTS Both readers obtained significantly different nrCBV (P < .001), nADC (P < .001), and time to segment NAWM (P < .001) between the four normalization methods. nrCBV and nADC were significantly different between CSO and TUM methods, but not between planar and spherical methods in the same NAWM region. Broadly, CSO methods were quicker than TUM methods, and spherical methods were quicker than planar methods. For all normalization techniques, inter-reader reproducibility and intra-reader repeatability were excellent (intraclass correlation coefficient > 0.9), and the IDH-status predictive performance remained similar. CONCLUSION The selected NAWM region significantly impacts nrCBV and nADC values. CSO methods, particularly CSOs, may be preferred because of time reduction, similar reader variability, and similar diagnostic performance compared to TUM methods.
Collapse
Affiliation(s)
- Nicholas S Cho
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Akifumi Hagiwara
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Francesco Sanvito
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Benjamin M Ellingson
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Han RH, Johanns TM, Roberts KF, Tao Y, Luo J, Ye Z, Sun P, Blum J, Lin TH, Song SK, Kim AH. Diffusion basis spectrum imaging as an adjunct to conventional MRI leads to earlier diagnosis of high-grade glioma tumor progression versus treatment effect. Neurooncol Adv 2023; 5:vdad050. [PMID: 37215950 PMCID: PMC10195207 DOI: 10.1093/noajnl/vdad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Background Following chemoradiotherapy for high-grade glioma (HGG), it is often challenging to distinguish treatment changes from true tumor progression using conventional MRI. The diffusion basis spectrum imaging (DBSI) hindered fraction is associated with tissue edema or necrosis, which are common treatment-related changes. We hypothesized that DBSI hindered fraction may augment conventional imaging for earlier diagnosis of progression versus treatment effect. Methods Adult patients were prospectively recruited if they had a known histologic diagnosis of HGG and completed standard-of-care chemoradiotherapy. DBSI and conventional MRI data were acquired longitudinally beginning 4 weeks post-radiation. Conventional MRI and DBSI metrics were compared with respect to their ability to diagnose progression versus treatment effect. Results Twelve HGG patients were enrolled between August 2019 and February 2020, and 9 were ultimately analyzed (5 progression, 4 treatment effect). Within new or enlarging contrast-enhancing regions, DBSI hindered fraction was significantly higher in the treatment effect group compared to progression group (P = .0004). Compared to serial conventional MRI alone, inclusion of DBSI would have led to earlier diagnosis of either progression or treatment effect in 6 (66.7%) patients by a median of 7.7 (interquartile range = 0-20.1) weeks. Conclusions In the first longitudinal prospective study of DBSI in adult HGG patients, we found that in new or enlarging contrast-enhancing regions following therapy, DBSI hindered fraction is elevated in cases of treatment effect compared to those with progression. Hindered fraction map may be a valuable adjunct to conventional MRI to distinguish tumor progression from treatment effect.
Collapse
Affiliation(s)
- Rowland H Han
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tanner M Johanns
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kaleigh F Roberts
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yu Tao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zezhong Ye
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jacob Blum
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tsen-Hsuan Lin
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Cho NS, Hagiwara A, Eldred BSC, Raymond C, Wang C, Sanvito F, Lai A, Nghiemphu P, Salamon N, Steelman L, Hassan I, Cloughesy TF, Ellingson BM. Early volumetric, perfusion, and diffusion MRI changes after mutant isocitrate dehydrogenase (IDH) inhibitor treatment in IDH1-mutant gliomas. Neurooncol Adv 2022; 4:vdac124. [PMID: 36033919 PMCID: PMC9400453 DOI: 10.1093/noajnl/vdac124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Inhibition of the isocitrate dehydrogenase (IDH)-mutant enzyme is a novel therapeutic target in IDH-mutant gliomas. Imaging biomarkers of IDH inhibitor treatment efficacy in human IDH-mutant gliomas are largely unknown. This study investigated early volumetric, perfusion, and diffusion MRI changes in IDH1-mutant gliomas during IDH inhibitor treatment. Methods Twenty-nine IDH1-mutant glioma patients who received IDH inhibitor and obtained anatomical, perfusion, and diffusion MRI pretreatment at 3-6 weeks (n = 23) and/or 2-4 months (n = 14) of treatment were retrospectively studied. Normalized relative cerebral blood volume (nrCBV), apparent diffusion coefficient (ADC), and fluid-attenuated inversion recovery (FLAIR) hyperintensity volume were analyzed. Results After 3-6 weeks of treatment, nrCBV was significantly increased (P = .004; mean %change = 24.15%) but not FLAIR volume (P = .23; mean %change = 11.05%) or ADC (P = .52; mean %change = -1.77%). Associations between shorter progression-free survival (PFS) with posttreatment nrCBV > 1.55 (P = .05; median PFS, 240 vs 55 days) and increased FLAIR volume > 4 cm3 (P = .06; 227 vs 29 days) trended toward significance. After 2-4 months, nrCBV, FLAIR volume, and ADC were not significantly different from baseline, but an nrCBV increase > 0% (P = .002; 1121 vs 257 days), posttreatment nrCBV > 1.8 (P = .01; 1121 vs. 270 days), posttreatment ADC < 1.15 μm2/ms (P = .02; 421 vs 215 days), median nrCBV/ADC ratio increase > 0% (P = .02; 1121 vs 270 days), and FLAIR volume change > 4 cm3 (P = .03; 421 vs 226.5 days) were associated with shorter PFS. Conclusions Increased nrCBV at 3-6 weeks of treatment may reflect transient therapeutic and/or tumor growth changes, whereas nrCBV, ADC, and FLAIR volume changes occurring at 2-4 months of treatment may more accurately reflect antitumor response to IDH inhibition.
Collapse
Affiliation(s)
- Nicholas S Cho
- Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA,UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Akifumi Hagiwara
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA,Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Blaine S C Eldred
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francesco Sanvito
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA,Unit of Radiology, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Albert Lai
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Phioanh Nghiemphu
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- Corresponding Author: Benjamin M. Ellingson, PhD, UCLA Brain Tumor Imaging Laboratory (BTIL), Professor of Radiology, Psychiatry, and Neurosurgery, Departments of Radiological Sciences, Psychiatry, and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA 90024, USA ()
| |
Collapse
|
14
|
Hu W, Liu H, Li Z, Liu J, Chen L. Impact of molecular and clinical variables on survival outcome with immunotherapy for glioblastoma patients: A systematic review and meta-analysis. CNS Neurosci Ther 2022; 28:1476-1491. [PMID: 35822692 PMCID: PMC9437230 DOI: 10.1111/cns.13915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Given that only a subset of patients with glioblastoma multiforme (GBM) responds to immuno-oncology, this study aimed to assess the impact of multiple factors on GBM immunotherapy prognosis and investigate the potential predictors. METHODS A quantitative meta-analysis was conducted using the random-effects model. Several potential factors were also reviewed qualitatively. RESULTS A total of 39 clinical trials were included after screening 1317 papers. Patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation [hazard ratio (HR) for overall survival (OS) = 2.30, p < 0.0001; HR for progression-free survival (PFS) = 2.10, p < 0.0001], gross total resection (HR for OS = 0.70, p = 0.02; HR for PFS = 0.56, p = 0.004), and no baseline steroid use (HR for OS = 0.52, p = 0.0002; HR for PFS = 0.61, p = 0.02) had a relatively significant favorable OS and PFS following immunotherapy. Patients with a Karnofsky Performance Status score < 80 (HR = 1.73, p = 0.0007) and undergoing two prior relapses (HR = 2.08, p = 0.003) were associated with worse OS. Age, gender, tumor programmed death-ligand 1 expression, and history of chemotherapy were not associated with survival outcomes. Notably, immunotherapy significantly improved the OS among patients undergoing two prior recurrences (HR = 0.40, p = 0.008) but not among patients in any other subgroups, as opposed to non-immunotherapy. CONCLUSION Several factors were associated with prognostic outcomes of GBM patients receiving immunotherapy; multiple recurrences might be a candidate predictor. More marker-driven prospective studies are warranted.
Collapse
Affiliation(s)
- Wentao Hu
- School of Medicine, Nankai University, Tianjin, China.,Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Liu
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ze Li
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jialin Liu
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ling Chen
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|