1
|
Ehret V, Dürr SC, Ustsinau U, Friske J, Scherer T, Fürnsinn C, Starčuková J, Helbich TH, Philippe C, Krššák M. Deuterium Metabolic Imaging Enables the Tracing of Substrate Fluxes Through the Tricarboxylic Acid Cycle in the Liver. NMR IN BIOMEDICINE 2025; 38:e5309. [PMID: 39676029 DOI: 10.1002/nbm.5309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Alterations in tricarboxylic acid (TCA) cycle metabolism are associated with hepatic metabolic disorders. Elevated hepatic acetate concentrations, often attributed to high caloric intake, are recognized as a pivotal factor in the etiology of obesity and metabolic syndrome. Therefore, the assessment of acetate breakdown and TCA cycle activity plays a central role in understanding the impact of diet-induced alterations on liver metabolism. Magnetic resonance-based deuterium metabolic imaging (DMI) could help to unravel the underlying mechanisms involved in disease development and progression, however, the application of conventional deuterated glucose does not lead to substantial enrichment in hepatic glutamine and glutamate. This study aimed to demonstrate the feasibility of DMI for tracking deuterated acetate breakdown via the TCA cycle in lean and diet-induced fatty liver (FL) rats using 3D DMI after an intraperitoneal infusion of sodium acetate-d3 at 9.4T. Localized and nonlocalized liver spectra acquired at 10 time points post-injection over a 130-min study revealed similar intrahepatic acetate uptake in both animal groups (AUCFL = 717.9 ± 131.1 mM▯min-1, AUClean = 605.1 ± 119.9 mM▯min-1, p = 0.62). Metabolic breakdown could be observed in both groups with an emerging glutamine/glutamate (Glx) peak as a downstream metabolic product (AUCFL = 113.6 ± 23.8 mM▯min-1, AUClean = 136.7 ± 41.7 mM▯min-1, p = 0.68). This study showed the viability of DMI for tracking substrate flux through the TCA cycle, underscoring its methodological potential for imaging metabolic processes in the body.
Collapse
Affiliation(s)
- Viktoria Ehret
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Sabine C Dürr
- Imaging Unit CIUS, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Usevalad Ustsinau
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Joachim Friske
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Jana Starčuková
- Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Papageorgakopoulou MA, Bania A, Lagogianni IA, Birmpas K, Assimakopoulou M. The Role of Glia Telomere Dysfunction in the Pathogenesis of Central Nervous System Diseases. Mol Neurobiol 2024; 61:5868-5881. [PMID: 38240992 PMCID: PMC11249767 DOI: 10.1007/s12035-024-03947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 07/16/2024]
Abstract
Maintaining the telomere length is decisive for the viability and homeostasis process of all the cells of an organism, including human glial cells. Telomere shortening of microglial cells has been widely associated with the onset and progression of neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Additionally, traumatic brain injury appears to have a positive correlation with the telomere-shortening process of microglia, and telomere length can be used as a non-invasive biomarker for the clinical management of these patients. Moreover, telomere involvement through telomerase reactivation and homologous recombination also known as the alternative lengthening of telomeres (ALT) has been described in gliomagenesis pathways, and particular focus has been given in the translational significance of these mechanisms in gliomas diagnosis and prognostic classification. Finally, glia telomere shortening is implicated in some psychiatric diseases. Given that telomere dysfunction of glial cells is involved in the central nervous system (CNS) disease pathogenesis, it represents a promising drug target that could lead to the incorporation of new tools in the medicinal arsenal for the management of so far incurable conditions.
Collapse
Affiliation(s)
| | - Angelina Bania
- School of Medicine, University of Patras, 26504, Patras, Greece
| | | | | | - Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, Preclinical Medicine Department Building, 1 Asklipiou, 26504, Patras, Greece.
| |
Collapse
|
3
|
Pan F, Liu X, Wan J, Guo Y, Sun P, Zhang X, Wang J, Bao Q, Yang L. Advances and prospects in deuterium metabolic imaging (DMI): a systematic review of in vivo studies. Eur Radiol Exp 2024; 8:65. [PMID: 38825658 PMCID: PMC11144684 DOI: 10.1186/s41747-024-00464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/02/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Deuterium metabolic imaging (DMI) has emerged as a promising non-invasive technique for studying metabolism in vivo. This review aims to summarize the current developments and discuss the futures in DMI technique in vivo. METHODS A systematic literature review was conducted based on the PRISMA 2020 statement by two authors. Specific technical details and potential applications of DMI in vivo were summarized, including strategies of deuterated metabolites detection, deuterium-labeled tracers and corresponding metabolic pathways in vivo, potential clinical applications, routes of tracer administration, quantitative evaluations of metabolisms, and spatial resolution. RESULTS Of the 2,248 articles initially retrieved, 34 were finally included, highlighting 2 strategies for detecting deuterated metabolites: direct and indirect DMI. Various deuterated tracers (e.g., [6,6'-2H2]glucose, [2,2,2'-2H3]acetate) were utilized in DMI to detect and quantify different metabolic pathways such as glycolysis, tricarboxylic acid cycle, and fatty acid oxidation. The quantifications (e.g., lactate level, lactate/glutamine and glutamate ratio) hold promise for diagnosing malignancies and assessing early anti-tumor treatment responses. Tracers can be administered orally, intravenously, or intraperitoneally, either through bolus administration or continuous infusion. For metabolic quantification, both serial time point methods (including kinetic analysis and calculation of area under the curves) and single time point quantifications are viable. However, insufficient spatial resolution remains a major challenge in DMI (e.g., 3.3-mL spatial resolution with 10-min acquisition at 3 T). CONCLUSIONS Enhancing spatial resolution can facilitate the clinical translation of DMI. Furthermore, optimizing tracer synthesis, administration protocols, and quantification methodologies will further enhance their clinical applicability. RELEVANCE STATEMENT Deuterium metabolic imaging, a promising non-invasive technique, is systematically discussed in this review for its current progression, limitations, and future directions in studying in vivo energetic metabolism, displaying a relevant clinical potential. KEY POINTS • Deuterium metabolic imaging (DMI) shows promise for studying in vivo energetic metabolism. • This review explores DMI's current state, limits, and future research directions comprehensively. • The clinical translation of DMI is mainly impeded by limitations in spatial resolution.
Collapse
Affiliation(s)
- Feng Pan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinjie Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiayu Wan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yusheng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Sun
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Xiaoxiao Zhang
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Jiazheng Wang
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Qingjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
4
|
Bøgh N, Vaeggemose M, Schulte RF, Hansen ESS, Laustsen C. Repeatability of deuterium metabolic imaging of healthy volunteers at 3 T. Eur Radiol Exp 2024; 8:44. [PMID: 38472611 PMCID: PMC10933246 DOI: 10.1186/s41747-024-00426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Magnetic resonance (MR) imaging of deuterated glucose, termed deuterium metabolic imaging (DMI), is emerging as a biomarker of pathway-specific glucose metabolism in tumors. DMI is being studied as a useful marker of treatment response in a scan-rescan scenario. This study aims to evaluate the repeatability of brain DMI. METHODS A repeatability study was performed in healthy volunteers from December 2022 to March 2023. The participants consumed 75 g of [6,6'-2H2]glucose. The delivery of 2H-glucose to the brain and its conversion to 2H-glutamine + glutamate, 2H-lactate, and 2H-water DMI was imaged at baseline and at 30, 70, and 120 min. DMI was performed using MR spectroscopic imaging on a 3-T system equipped with a 1H/2H-tuned head coil. Coefficients of variation (CoV) were computed for estimation of repeatability and between-subject variability. In a set of exploratory analyses, the variability effects of region, processing, and normalization were estimated. RESULTS Six male participants were recruited, aged 34 ± 6.5 years (mean ± standard deviation). There was 42 ± 2.7 days between sessions. Whole-brain levels of glutamine + glutamate, lactate, and glucose increased to 3.22 ± 0.4 mM, 1.55 ± 0.3 mM, and 3 ± 0.7 mM, respectively. The best signal-to-noise ratio and repeatability was obtained at the 120-min timepoint. Here, the within-subject whole-brain CoVs were -10% for all metabolites, while the between-subject CoVs were -20%. CONCLUSIONS DMI of glucose and its downstream metabolites is feasible and repeatable on a clinical 3 T system. TRIAL REGISTRATION ClinicalTrials.gov, NCT05402566 , registered the 25th of May 2022. RELEVANCE STATEMENT Brain deuterium metabolic imaging of healthy volunteers is repeatable and feasible at clinical field strengths, enabling the study of shifts in tumor metabolism associated with treatment response. KEY POINTS • Deuterium metabolic imaging is an emerging tumor biomarker with unknown repeatability. • The repeatability of deuterium metabolic imaging is on par with FDG-PET. • The study of deuterium metabolic imaging in clinical populations is feasible.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- The MR Research Centre, Dept. Of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark.
- A&E, Gødstrup Hospital, Herning, Denmark.
| | - Michael Vaeggemose
- The MR Research Centre, Dept. Of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
- GE HealthCare, Brondby, Denmark
| | | | - Esben S S Hansen
- The MR Research Centre, Dept. Of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Christoffer Laustsen
- The MR Research Centre, Dept. Of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| |
Collapse
|
5
|
Zhang Y, Quan Z, Lou F, Fang Y, Thompson GJ, Chen G, Zhang X. A proton birdcage coil integrated with interchangeable single loops for multi-nuclear MRI/MRS. J Zhejiang Univ Sci B 2024; 25:168-180. [PMID: 38303499 PMCID: PMC10835210 DOI: 10.1631/jzus.b2300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Energy metabolism is fundamental for life. It encompasses the utilization of carbohydrates, lipids, and proteins for internal processes, while aberrant energy metabolism is implicated in many diseases. In the present study, using three-dimensional (3D) printing from polycarbonate via fused deposition modeling, we propose a multi-nuclear radiofrequency (RF) coil design with integrated 1H birdcage and interchangeable X-nuclei (2H, 13C, 23Na, and 31P) single-loop coils for magnetic resonance imaging (MRI)/magnetic resonance spectroscopy (MRS). The single-loop coil for each nucleus attaches to an arc bracket that slides unrestrictedly along the birdcage coil inner surface, enabling convenient switching among various nuclei and animal handling. Compared to a commercial 1H birdcage coil, the proposed 1H birdcage coil exhibited superior signal-excitation homogeneity and imaging signal-to-noise ratio (SNR). For X-nuclei study, prominent peaks in spectroscopy for phantom solutions showed excellent SNR, and the static and dynamic peaks of in vivo spectroscopy validated the efficacy of the coil design in structural imaging and energy metabolism detection simultaneously.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Zhiyan Quan
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, China
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Feiyang Lou
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, China
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
- School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Yujiao Fang
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Garth J Thompson
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gao Chen
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China.
| | - Xiaotong Zhang
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China. ,
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310009, China. ,
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, China. ,
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China. ,
- School of Medicine, Zhejiang University, Hangzhou 310020, China. ,
- College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China. ,
| |
Collapse
|
6
|
Song KH, Ge X, Engelbach J, Rich KM, Ackerman JJH, Garbow JR. Deuterium Magnetic Resonance Spectroscopy Quantifies Tumor Fraction in a Mouse Model of a Mixed Radiation Necrosis / GL261-Glioblastoma Lesion. Mol Imaging Biol 2024; 26:173-178. [PMID: 37516675 PMCID: PMC11151282 DOI: 10.1007/s11307-023-01837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE Distinguishing recurrent brain tumor from treatment effects, including late time-to-onset radiation necrosis (RN), presents an on-going challenge in post-treatment imaging of neuro-oncology patients. Experiments were performed in a novel mouse model that recapitulates the relevant clinical histologic features of recurrent glioblastoma growing in a RN environment, the mixed tumor/RN model. The goal of this work was to apply single-voxel deuterium (2H) magnetic resonance spectroscopy (MRS), in concert with administration of deuterated glucose, to determine if the metabolic signature of aerobic glycolysis (Warburg effect: glucose → lactate in the presence of O2), a distinguishing characteristic of proliferating tumor, provides a quantitative readout of the tumor fraction (percent) in a mixed tumor/RN lesion. PROCEDURES 2H MRS employed the SPin-ECho full-Intensity Acquired Localized (SPECIAL) MRS pulse sequence and outer volume suppression at 11.74 T. For each subject, a single 2H MRS voxel was placed over the mixed lesion as defined by contrast enhanced (CE) 1H T1-weighted MRI. Following intravenous administration of [6,6-2H2]glucose (Glc), 2H MRS monitored the glycolytic conversion to [3,3-2H2]lactate (Lac) and glutamate + glutamine (Glu + Gln = Glx). RESULTS Based on previous work, the tumor fraction of the mixed lesion was quantified as the ratio of tumor volume, defined by 1H magnetization transfer experiments, vs. the total mixed-lesion volume. Metabolite 2H MR spectral-amplitude values were converted to metabolite concentrations using the natural-abundance semi-heavy water (1HO2H) resonance as an internal concentration standard. The 2H MR-determined [Lac] / [Glx] ratio was strongly linearly correlated with tumor fraction in the mixed lesion (n = 9), Pearson's r = 0.87, and 77% of the variation in the [Lac] / [Glx] ratio was due to tumor percent r2 = 0.77. CONCLUSIONS This preclinical study supports the proposal that 2H MR could occupy a well-defined secondary role when standard-of-care 1H imaging is non-diagnostic regarding tumor presence and/or response to therapy.
Collapse
Affiliation(s)
- Kyu-Ho Song
- Department of Radiology, Biomedical MR Center, Washington University, 660 South Euclid Avenue, MO 63110, St. Louis, MO, Mail Stop Code: MSC 8227-0082-02, USA
| | - Xia Ge
- Department of Radiology, Biomedical MR Center, Washington University, 660 South Euclid Avenue, MO 63110, St. Louis, MO, Mail Stop Code: MSC 8227-0082-02, USA
| | - John Engelbach
- Department of Radiology, Biomedical MR Center, Washington University, 660 South Euclid Avenue, MO 63110, St. Louis, MO, Mail Stop Code: MSC 8227-0082-02, USA
| | - Keith M Rich
- Department of Neurosurgery, Washington University, St. Louis, MO, USA
| | - Joseph J H Ackerman
- Department of Radiology, Biomedical MR Center, Washington University, 660 South Euclid Avenue, MO 63110, St. Louis, MO, Mail Stop Code: MSC 8227-0082-02, USA
- Department of Chemistry, Washington University, St. Louis, MO, USA
- Department of Internal Medicine, Washington University, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University, MO, St. Louis, USA
| | - Joel R Garbow
- Department of Radiology, Biomedical MR Center, Washington University, 660 South Euclid Avenue, MO 63110, St. Louis, MO, Mail Stop Code: MSC 8227-0082-02, USA.
- Alvin J. Siteman Cancer Center, Washington University, MO, St. Louis, USA.
| |
Collapse
|
7
|
Song KH, Ge X, Engelbach JA, Thio LL, Neil JJ, Ackerman JJH, Garbow JR. Subcutaneous deuterated substrate administration in mice: An alternative to tail vein infusion. Magn Reson Med 2024; 91:681-686. [PMID: 37849055 PMCID: PMC10966607 DOI: 10.1002/mrm.29888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE Tail-vein catheterization and subsequent in-magnet infusion is a common route of administration of deuterium (2 H)-labeled substrates in small-animal deuterium (D) MR studies. With mice, because of the tail vein's small diameter, this procedure is challenging. It requires considerable personnel training and practice, is prone to failure, and may preclude serial studies. Motivated by the need for an alternative, the time courses for common small-molecule deuterated substrates and downstream metabolites in brain following subcutaneous infusion were determined in mice and are presented herein. METHODS Three 2 H-labeled substrates-[6,6-2 H2 ]glucose, [2 H3 ]acetate, and [3,4,4,4-2 H4 ]beta-hydroxybutyrate-and 2 H2 O were administered to mice in-magnet via subcutaneous catheter. Brain time courses of the substrates and downstream metabolites (and semi-heavy water) were determined via single-voxel DMRS. RESULTS Subcutaneous catheter placement and substrate administration was readily accomplished with limited personnel training. Substrates reached pseudo-steady state in brain within ∼30-40 min of bolus infusion. Time constants characterizing the appearance in brain of deuterated substrates or semi-heavy water following 2 H2 O administration were similar (∼15 min). CONCLUSION Administration of deuterated substrates via subcutaneous catheter for in vivo DMRS experiments with mice is robust, requires limited personnel training, and enables substantial dosing. It is suitable for metabolic studies where pseudo-steady state substrate administration/accumulation is sufficient. It is particularly advantageous for serial longitudinal studies over an extended period because it avoids inevitable damage to the tail vein following multiple catheterizations.
Collapse
Affiliation(s)
- Kyu-Ho Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John A Engelbach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Liu Lin Thio
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey J Neil
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph J H Ackerman
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of the Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of the Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Adamson PM, Datta K, Watkins R, Recht LD, Hurd RE, Spielman DM. Deuterium metabolic imaging for 3D mapping of glucose metabolism in humans with central nervous system lesions at 3T. Magn Reson Med 2024; 91:39-50. [PMID: 37796151 PMCID: PMC10841984 DOI: 10.1002/mrm.29830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE To explore the potential of 3T deuterium metabolic imaging (DMI) using a birdcage 2 H radiofrequency (RF) coil in both healthy volunteers and patients with central nervous system (CNS) lesions. METHODS A modified gradient filter, home-built 2 H volume RF coil, and spherical k-space sampling were employed in a three-dimensional chemical shift imaging acquisition to obtain high-quality whole-brain metabolic images of 2 H-labeled water and glucose metabolic products. These images were acquired in a healthy volunteer and three subjects with CNS lesions of varying pathologies. Hardware and pulse sequence experiments were also conducted to improve the signal-to-noise ratio of DMI at 3T. RESULTS The ability to quantify local glucose metabolism in correspondence to anatomical landmarks across patients with varying CNS lesions is demonstrated, and increased lactate is observed in one patient with the most active disease. CONCLUSION DMI offers the potential to examine metabolic activity in human subjects with CNS lesions with DMI at 3T, promising for the potential of the future clinical translation of this metabolic imaging technique.
Collapse
Affiliation(s)
- Philip M. Adamson
- Department of Electrical Engineering, Stanford University, Stanford, California USA
| | - Keshav Datta
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Ron Watkins
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Lawrence D. Recht
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Ralph E. Hurd
- Department of Radiology, Stanford University, Stanford, California, USA
| | | |
Collapse
|
9
|
Chen Ming Low J, Wright AJ, Hesse F, Cao J, Brindle KM. Metabolic imaging with deuterium labeled substrates. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:39-51. [PMID: 37321757 DOI: 10.1016/j.pnmrs.2023.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/12/2023] [Accepted: 02/07/2023] [Indexed: 06/17/2023]
Abstract
Deuterium metabolic imaging (DMI) is an emerging clinically-applicable technique for the non-invasive investigation of tissue metabolism. The generally short T1 values of 2H-labeled metabolites in vivo can compensate for the relatively low sensitivity of detection by allowing rapid signal acquisition in the absence of significant signal saturation. Studies with deuterated substrates, including [6,6'-2H2]glucose, [2H3]acetate, [2H9]choline and [2,3-2H2]fumarate have demonstrated the considerable potential of DMI for imaging tissue metabolism and cell death in vivo. The technique is evaluated here in comparison with established metabolic imaging techniques, including PET measurements of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) uptake and 13C MR imaging of the metabolism of hyperpolarized 13C-labeled substrates.
Collapse
Affiliation(s)
- Jacob Chen Ming Low
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Alan J Wright
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Friederike Hesse
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Jianbo Cao
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
10
|
Nabavizadeh A, Barkovich MJ, Mian A, Ngo V, Kazerooni AF, Villanueva-Meyer JE. Current state of pediatric neuro-oncology imaging, challenges and future directions. Neoplasia 2023; 37:100886. [PMID: 36774835 PMCID: PMC9945752 DOI: 10.1016/j.neo.2023.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Imaging plays a central role in neuro-oncology including primary diagnosis, treatment planning, and surveillance of tumors. The emergence of quantitative imaging and radiomics provided an uprecedented opportunity to compile mineable databases that can be utilized in a variety of applications. In this review, we aim to summarize the current state of conventional and advanced imaging techniques, standardization efforts, fast protocols, contrast and sedation in pediatric neuro-oncologic imaging, radiomics-radiogenomics, multi-omics and molecular imaging approaches. We will also address the existing challenges and discuss future directions.
Collapse
Affiliation(s)
- Ali Nabavizadeh
- Department of Radiology, Hospital of University of Pennsylvania, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
| | - Matthew J Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Ali Mian
- Division of Neuroradiology, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri, USA
| | - Van Ngo
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Anahita Fathi Kazerooni
- Center for Data-Driven Discovery in Biomedicine (D3b), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|