1
|
Kapteijn MY, Bakker N, Koekkoek JAF, Versteeg HH, Buijs JT. Venous Thromboembolism in Patients with Glioblastoma: Molecular Mechanisms and Clinical Implications. Thromb Haemost 2025; 125:421-434. [PMID: 39168144 PMCID: PMC12040436 DOI: 10.1055/s-0044-1789592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
Patients with glioblastoma are among the cancer patients with the highest risk of developing venous thromboembolism (VTE). Long-term thromboprophylaxis is not generally prescribed because of the increased susceptibility of glioblastoma patients to intracranial hemorrhage. This review provides an overview of the current clinical standard for glioblastoma patients, as well as the molecular and genetic background which underlies the high incidence of VTE. The two main procoagulant proteins involved in glioblastoma-related VTE, podoplanin and tissue factor, are described, in addition to the genetic aberrations that can be linked to a hypercoagulable state in glioblastoma. Furthermore, possible novel biomarkers and future treatment strategies are discussed, along with the potential of sequencing approaches toward personalized risk prediction for VTE. A glioblastoma-specific VTE risk stratification model may help identifying those patients in which the increased risk of bleeding due to extended anticoagulation is outweighed by the decreased risk of VTE.
Collapse
Affiliation(s)
- Maaike Y. Kapteijn
- Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nina Bakker
- Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan A. F. Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H. Versteeg
- Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T. Buijs
- Division of Thrombosis and Hemostasis, Department of Medicine, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Sloan AR, Gordillo AJ, Kennemer A, Khorana AA, Horbinski C, Kaelber DC, Cameron SJ, Lathia JD. VTE incidence shortens survival in IDH-WT glioblastoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.08.25319908. [PMID: 39830282 PMCID: PMC11741497 DOI: 10.1101/2025.01.08.25319908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Background Venous thromboembolisms (VTE's) are the second leading cause of death in cancer patients. While previous analyses have demonstrated VTE rates are greater in GBM patients using smaller patient cohorts in high-grade glioma, since the release of the update 5 th edition of the World Health Organization (WHO) classification a systematic analysis in a large-scale cohort of patients with IDH-wildtype GBM with clinical outcomes is lacking. Methods This study utilizes the online database, TriNetx, to build patient cohorts for outcomes analysis. TriNetX is a database comprised of over 50 healthcare organization patient information that is quarriable by CPT, ICD, RxNorm, and other proprietary codes. Patient cohort demographics were used for propensity score matching. Risk ratios, odds ratios, hazard ratios, and Kaplan Meier curves were utilized for primary outcomes including survival and time-to-event analyses. Results 24% of patients with GBM experienced at least 1 VTE or PE after their diagnosis. Compared to a population of patients with no cancer history with an index event of an inpatient visit, patients with GBM were at 20.4 (12.23-34.17) and 5.96 (3.85-9.23) times higher risk of experiencing a VTE/PE at 1- and 5-year follow-up, respectively. Sex differences were not seen between VTE/PE rates and survival after VTE/PE at 1- and 5-year follow-up (p>0.05). Lastly, patients with GBM and a VTE/PE after diagnosis experienced worse survival at 1- and 5-year follow-up compared to those without a VTE/PE (p<0.0001 and p = 0.0014, respectively). Conclusions Patients with GBM experience increased risks of thrombotic events after diagnosis. These risks are not sex-dependent but do affect overall survival.
Collapse
|
3
|
Sloan AR, Gordillo AJ, Kennemer A, Khorana AA, Horbinski C, Kaelber DC, Cameron SJ, Lathia JD. Venous thromboembolism incidence shortens survival in isocitrate dehydrogenase wild-type glioblastoma. Neurooncol Adv 2025; 7:vdaf018. [PMID: 40264942 PMCID: PMC12012773 DOI: 10.1093/noajnl/vdaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Affiliation(s)
- Anthony R Sloan
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alan J Gordillo
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Austin Kennemer
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alok A Khorana
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Craig Horbinski
- Department of Pathology, Northwestern University, Chicago, Illinois, USA
| | - David C Kaelber
- The Center for Clinical Informatics Research and Education, The MetroHealth System and the Departments of Internal Medicine, Pediatrics, and Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Scott J Cameron
- Department of Cardiovascular Medicine Section of Vascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Justin D Lathia
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Ospina JP, Wen PY. Medical and neurologic management of brain tumor patients. Curr Opin Neurol 2024; 37:657-665. [PMID: 39221926 DOI: 10.1097/wco.0000000000001315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW This article discusses commonly encountered medical and neurological complications in patients with brain tumors and highlights recommendations for their management based on updated evidence. RECENT FINDINGS Use of dexamethasone is correlated with worse prognosis in patients with glioblastoma, and in brain metastases, high doses may lead to increased side effects without additional clinical benefit. There are multiple antiseizure medications (ASM) to choose from and possible interactions and toxicity must be considered when choosing an agent. Additionally, there is growing interest in the use of AMPA receptor blockers as ASM in patients with brain tumors. Nonpharmacological strategies for the management of fatigue remain paramount. Cognitive decline is common after whole brain radiation (WBRT) and hippocampal-sparing WBRT results in superior cognitive outcomes. Venous thromboembolism is a common complication and there is growing evidence on the use of direct oral anticoagulants (DOACs) in this population. SUMMARY There is evolving evidence on the management of medical and neurological complications in patients with brain tumors. These complications, require early identification and multidisciplinary collaboration and expertise.
Collapse
Affiliation(s)
- Juan Pablo Ospina
- Center for Neuro-Oncology, Dana-Farber Cancer Institute
- Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
- Department of Neurology, Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute
- Division of Neuro-Oncology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| |
Collapse
|
5
|
Hovman FR, Poulsen FR, Hansen S, Dahlrot RH. The risk of venous thromboembolism in adult patients with diffuse glioma: a nationwide population-based study. Acta Oncol 2024; 63:887-892. [PMID: 39543846 PMCID: PMC11579532 DOI: 10.2340/1651-226x.2024.40137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND PURPOSE Venous thromboembolism (VTE) is a cause of increased morbidity and risk of death. Studies report VTE in up to 30% of glioma patients but the results vary. The VTE risk is relevant when evaluating prophylaxis to avoid unnecessary bleeding or overdiagnosis. This study examines the VTE incidence in patients with glioma WHO grade 2-4, and when VTE occurred, risk factors, and overall survival (OS) for patients with WHO grade 4. MATERIALS AND METHODS In total 3,630 patients with WHO grade 2 (n = 230), grade 3 (n = 317), and grade 4 (n = 3,083) gliomas from 2010 to 2018 were identified using the Danish Neuro-Oncology Registry. VTE diagnoses and time of death were obtained from Statistics Denmark. RESULTS AND INTERPRETATION The VTE incidence was 5.2, 6.3, and 6.8% in patients with WHO grade 2, 3, and 4 gliomas, respectively. The VTE incidence rate was highest during the first 3 months after the diagnosis with 53 events. Increasing age (HR 1.03, 95%CI 1.01-1.04), male sex (HR 1.47, 95%CI 1.09-1.99), poor performance status (HR 1.57, 95%CI 1.10-2.25), and post-operative long-course radiochemotherapy (HR 2.10, 95%CI 1.19-3.72) were predictors of VTE in patients with glioma WHO grade 4. There was no difference in OS comparing patients having VTE to those without (p = 0.068). In conclusion, patients with glioma WHO grade 2-4 were at high risk of VTE, especially the first 3 months after diagnosis. Increasing age, male sex, poor performance status, and long-course radiochemotherapy were associated with increased risk of VTE in patients with glioma WHO grade 4.
Collapse
Affiliation(s)
- Frederik R Hovman
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Frantz R Poulsen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark; Department of Clinical Research, and BRIDGE (Brain Research - Inter Disciplinary Guided Excellence), University of Southern Denmark, Odense, Denmark
| | - Steinbjørn Hansen
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Rikke H Dahlrot
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Cao M, Zhang W, Chen J, Zhang Y. Identification of a coagulation-related gene signature for predicting prognosis in recurrent glioma. Discov Oncol 2024; 15:642. [PMID: 39527288 PMCID: PMC11555177 DOI: 10.1007/s12672-024-01520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Recurrent gliomas rapidly progress and have high mortality and poor prognosis in the central nervous system. Therefore, further investigation of prognostic and therapeutic markers is needed. METHODS The mRNA expression, clinical data, and coagulation-related genes (CRGs) associated with recurrent glioma were obtained and calculated from the Chinese Glioma Genome Atlas and Kyoto Encyclopedia of Genes and Genomes databases. The significant CRGs were calculated by Weighted gene co-expression network analysis and PPI network. A prediction model was constructed using the least absolute shrinkage and selection operator regression analysis. Recurrent gliomas were stratified into high and low-risk groups based on the median risk score (RS). The Kaplan-Meier curve was used to analyze the difference in overall survival (OS) between these groups, while the receiver operating characteristic (ROC) curve was used to evaluate the accuracy of the gene model at 1-, 3-, and 5-years. Clinical factors, including age, gender, MGMT methylation status, radiotherapy, chemotherapy, and RS, were included in the univariate and multivariate regression analysis. A prognostic nomogram and calibration curve were established based on these factors. RESULTS Overall, seven CRGs associated with the prognosis were identified, including BTK, ITGB1, GNAI3, CFH, LYN, CFI, and F3. OS and survival rates were lower in the high-risk group compared with the low-risk group. The ROC curve demonstrated the area under the curve values >0.65 at 1-, 3-, and 5-years, confirming the reliability of the prognostic model. The univariate regression analysis indicated that tumor grade (grades 2, 3, and 4), histopathology (GBM or not), chemotherapy, IDH mutation, and 1p19q co-deletion status were independent prognostic indicators. Univariate and multivariate regression analyses indicated that RS was an independent prognostic factor for patients with recurrent glioma. Immune analysis revealed low infiltration of resting dendritic cells and high expression of programmed death receptor 1 in the high-risk group. CONCLUSION This study comprehensively investigated the correlation between CRGs and recurrent glioma prognosis, offering crucial insights for further research into glioma recurrence mechanisms and treatment strategies.
Collapse
Affiliation(s)
- Ming Cao
- Department of Neurosurgery, WuXi Children's Hospital, Wuxi, 214000, China.
| | - Wenwen Zhang
- Department of Oncology, Wuxi Taihu Hospital, Wuxi, 214000, China
| | - Jie Chen
- Department of Neurosurgery, WuXi Children's Hospital, Wuxi, 214000, China
| | - Yuchen Zhang
- Department of Neurosurgery, WuXi Children's Hospital, Wuxi, 214000, China
| |
Collapse
|
7
|
Yang Y, Hong Y, Zhao K, Huang M, Li W, Zhang K, Zhao N. Spatial transcriptomics analysis identifies therapeutic targets in diffuse high-grade gliomas. Front Mol Neurosci 2024; 17:1466302. [PMID: 39530009 PMCID: PMC11552449 DOI: 10.3389/fnmol.2024.1466302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Diffuse high-grade gliomas are the most common malignant adult neuroepithelial tumors in humans and a leading cause of cancer-related death worldwide. The advancement of high throughput transcriptome sequencing technology enables rapid and comprehensive acquisition of transcriptome data from target cells or tissues. This technology aids researchers in understanding and identifying critical therapeutic targets for the prognosis and treatment of diffuse high-grade glioma. Methods Spatial transcriptomics was conducted on two cases of isocitrate dehydrogenase (IDH) wild-type diffuse high-grade glioma (Glio-IDH-wt) and two cases of IDH-mutant diffuse high-grade glioma (Glio-IDH-mut). Gene set enrichment analysis and clustering analysis were employed to pinpoint differentially expressed genes (DEGs) involved in the progression of diffuse high-grade gliomas. The spatial distribution of DEGs in the spatially defined regions of human glioma tissues was overlaid in the t-distributed stochastic neighbor embedding (t-SNE) plots. Results We identified a total of 10,693 DEGs, with 5,677 upregulated and 5,016 downregulated, in spatially defined regions of diffuse high-grade gliomas. Specifically, SPP1, IGFBP2, CALD1, and TMSB4X exhibited high expression in carcinoma regions of both Glio-IDH-wt and Glio-IDH-mut, and 3 upregulated DEGs (SMOC1, APOE, and HIPK2) and 4 upregulated DEGs (PPP1CB, UBA52, S100A6, and CTSB) were only identified in tumor regions of Glio-IDH-wt and Glio-IDH-mut, respectively. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses revealed that upregulated DEGs were closely related to PI3K/Akt signaling pathway, virus infection, and cytokine-cytokine receptor interaction. Importantly, the expression of these DEGs was validated using GEPIA databases. Furthermore, the study identified spatial expression patterns of key regulatory genes, including those involved in protein post-translational modification and RNA binding protein-encoding genes, with spatially defined regions of diffuse high-grade glioma. Discussion Spatial transcriptome analysis is one of the breakthroughs in the field of medical biotechnology as this can map the analytes such as RNA information in their physical location in tissue sections. Our findings illuminate previously unexplored spatial expression profiles of key biomarkers in diffuse high-grade glioma, offering novel insight for the development of therapeutic strategies in glioma.
Collapse
Affiliation(s)
- Yongtao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yingzhou Hong
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Kai Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Minhao Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenhu Li
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kui Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ninghui Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Veiga VC, Peres SV, Ostolin TLVDP, Moraes FR, Belucci TR, Clara CA, Cavalcanti AB, Chaddad-Neto FEA, Batistella GNDR, Neville IS, Baeta AM, Yamada CAF, on behalf of the TROMBOGLIO Study Group. Incidence of venous thromboembolism and bleeding in patients with malignant central nervous system neoplasm: Systematic review and meta-analysis. PLoS One 2024; 19:e0304682. [PMID: 38900739 PMCID: PMC11189257 DOI: 10.1371/journal.pone.0304682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Central nervous system (CNS) malignant neoplasms may lead to venous thromboembolism (VTE) and bleeding, which result in rehospitalization, morbidity and mortality. We aimed to assess the incidence of VTE and bleeding in this population. METHODS This systematic review and meta-analysis (PROSPERO CRD42023423949) were based on a standardized search of PubMed, Virtual Health Library and Cochrane (n = 1653) in July 2023. After duplicate removal, data screening and collection were conducted by independent reviewers. The combined rates and 95% confidence intervals for the incidence of VTE and bleeding were calculated using the random effects model with double arcsine transformation. Subgroup analyses were performed based on sex, age, income, and type of tumor. Heterogeneity was calculated using Cochran's Q test and I2 statistics. Egger's test and funnel graphs were used to assess publication bias. RESULTS Only 36 studies were included, mainly retrospective cohorts (n = 30, 83.3%) from North America (n = 20). Most studies included were published in high-income countries. The sample size of studies varied between 34 and 21,384 adult patients, mostly based on gliomas (n = 30,045). For overall malignant primary CNS neoplasm, the pooled incidence was 13.68% (95%CI 9.79; 18.79) and 11.60% (95%CI 6.16; 18.41) for VTE and bleeding, respectively. The subgroup with elderly people aged 60 or over had the highest incidence of VTE (32.27% - 95%CI 14.40;53.31). The studies presented few biases, being mostly high quality. Despite some variability among the studies, we observed consistent results by performing sensitivity analysis, which highlight the robustness of our findings. CONCLUSIONS Our study showed variability in the pooled incidence for both overall events and subgroup analyses. It was highlighted that individuals over 60 years old or diagnosed with GBM had a higher pooled incidence of VTE among those with overall CNS malignancies. It is important to note that the results of this meta-analysis refer mainly to studies carried out in high-income countries. This highlights the need for additional research in Latin America, and low- and middle-income countries.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Alex M. Baeta
- BP–A Beneficência Portuguesa de São Paulo, São Paulo, Brasil
| | | | | |
Collapse
|
9
|
Lim-Fat MJ, Iorgulescu JB, Rahman R, Bhave V, Muzikansky A, Woodward E, Whorral S, Allen M, Touat M, Li X, Xy G, Patel J, Gerstner ER, Kalpathy-Cramer J, Youssef G, Chukwueke U, McFaline-Figueroa JR, Nayak L, Lee EQ, Reardon DA, Beroukhim R, Huang RY, Bi WL, Ligon KL, Wen PY. Clinical and Genomic Predictors of Adverse Events in Newly Diagnosed Glioblastoma. Clin Cancer Res 2024; 30:1327-1337. [PMID: 38252427 DOI: 10.1158/1078-0432.ccr-23-3018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Adverse clinical events cause significant morbidity in patients with GBM (GBM). We examined whether genomic alterations were associated with AE (AE) in patients with GBM. EXPERIMENTAL DESIGN We identified adults with histologically confirmed IDH-wild-type GBM with targeted next-generation sequencing (OncoPanel) at Dana Farber Cancer Institute from 2013 to 2019. Seizure at presentation, lymphopenia, thromboembolic events, pseudoprogression, and early progression (within 6 months of diagnosis) were identified as AE. The biologic function of genetic variants was categorized as loss-of-function (LoF), no change in function, or gain-of-function (GoF) using a somatic tumor mutation knowledge base (OncoKB) and consensus protein function predictions. Associations between functional genomic alterations and AE were examined using univariate logistic regressions and multivariable regressions adjusted for additional clinical predictors. RESULTS Our study included 470 patients diagnosed with GBM who met the study criteria. We focused on 105 genes that had sequencing data available for ≥ 90% of the patients and were altered in ≥10% of the cohort. Following false-discovery rate (FDR) correction and multivariable adjustment, the TP53, RB1, IGF1R, and DIS3 LoF alterations were associated with lower odds of seizures, while EGFR, SMARCA4, GNA11, BRD4, and TCF3 GoF and SETD2 LoF alterations were associated with higher odds of seizures. For all other AE of interest, no significant associations were found with genomic alterations following FDR correction. CONCLUSIONS Genomic biomarkers based on functional variant analysis of a routine clinical panel may help identify AE in GBM, particularly seizures. Identifying these risk factors could improve the management of patients through better supportive care and consideration of prophylactic therapies.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rifaquat Rahman
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Varun Bhave
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alona Muzikansky
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Eleanor Woodward
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sydney Whorral
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marie Allen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | | | | | - Jay Patel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth R Gerstner
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ugonma Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - J Ricardo McFaline-Figueroa
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lakshmi Nayak
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rameen Beroukhim
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raymond Y Huang
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith L Ligon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Zeng Q, Lu G, Yuan J, Ding J, Chen J, Gao X, Huang Y, Shi T, Yu H, Ni H, Li Y. Prevalence, characteristics, and risk factors of venous thromboembolism in patients with brain tumor undergoing craniotomy: a meta-analysis. Neurol Sci 2024; 45:1565-1580. [PMID: 37947983 DOI: 10.1007/s10072-023-07160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Brain tumor patients undergoing craniotomy are significantly associated with the development of venous thromboembolism (VTE), while the contributing factors remains controversial. Our study aimed to investigate the prevalence and risk factors for VTE in postoperational brain tumor patients. METHODS We searched the PubMed, Embase, Web of Science, Medline, and Cochrane Library databases from their inception to July 2023. Article selection, data extraction, and study quality assessment were performed independently by two reviewers. Publication bias was assessed using Egger's and Begg's tests. Stata 15.0 software was used for data analysis. RESULTS A total of 25 studies were considered, with a total of 49,620 brain tumor individuals. The pooled prevalence of VTE during hospitalization in postoperational brain tumor patients was 9% [95% CI: (0.08, 0.10)]. Moreover, our results demonstrated that patients with VTE were older than those without VTE [mean difference [MD] = 8.14, 95% CI: (4.97, 11.30)]. The following variables were significantly associated with VTE: prior history of VTE [OR = 7.81, 95% CI: (3.62, 16.88)], congestive heart failure [OR = 2.33, 95% CI: (1.08-5.05)], diabetes [OR = 1.87, 95% CI: (1.12-3.10)], hypertension [OR = 1.27, 95% CI: (1.07-1.50)], steroid use [OR = 1.63, 95% CI: (1.41, 1.88)], high white blood cells counts [MD = 0.32, 95% CI: (0.01, 0.63)], and high fibrinogen levels [MD = 0.19, 95% CI: (0.08, 0.30)]. CONCLUSION This meta-analysis identified risk factors for postoperational VTE in patients with brain tumor, which can serve as a theoretical foundation for medical staff to manage and treat VTE. TRIAL REGISTRATION CRD42023357459.
Collapse
Affiliation(s)
- Qingping Zeng
- School of Nursing, Medical College of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Neuro Intensive Care Unit, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Guangyu Lu
- School of Public Health, Medical College of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jing Yuan
- Department of Echocardiography, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jiali Ding
- School of Nursing, Medical College of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Neuro Intensive Care Unit, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Juan Chen
- School of Nursing, Medical College of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Neuro Intensive Care Unit, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Xianru Gao
- School of Nursing, Medical College of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Neuro Intensive Care Unit, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Yujia Huang
- Department of Neuro Intensive Care Unit, Clinical Medical College of Yangzhou University, Yangzhou, China
- Neuro-Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Tian Shi
- Department of Neuro Intensive Care Unit, Clinical Medical College of Yangzhou University, Yangzhou, China
- Neuro-Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Hailong Yu
- Department of Neuro Intensive Care Unit, Clinical Medical College of Yangzhou University, Yangzhou, China
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Hongbin Ni
- Department of Neurosurgery, Nanjing Drum Tower Hospital, School of Medicine, Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| | - Yuping Li
- Department of Neuro Intensive Care Unit, Clinical Medical College of Yangzhou University, Yangzhou, China.
- Neuro-Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
11
|
Saidak Z, Laville A, Soudet S, Sevestre MA, Constans JM, Galmiche A. An MRI Radiomics Approach to Predict the Hypercoagulable Status of Gliomas. Cancers (Basel) 2024; 16:1289. [PMID: 38610968 PMCID: PMC11010849 DOI: 10.3390/cancers16071289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Venous thromboembolic events are frequent complications of Glioblastoma Multiforme (GBM) and low-grade gliomas (LGGs). The overexpression of tissue factor (TF) plays an essential role in the local hypercoagulable phenotype that underlies these complications. Our aim was to build an MRI radiomics model for the non-invasive exploration of the hypercoagulable status of LGG/GBM. Radiogenomics data from The Cancer Genome Atlas (TCGA) and REMBRANDT (Repository for molecular BRAin Neoplasia DaTa) cohorts were used. A logistic regression model (Radscore) was built in order to identify the top 20% TF-expressing tumors, considered to be at high thromboembolic risk. The most contributive MRI radiomics features from LGG/GBM linked to high TF were identified in TCGA using Least Absolute Shrinkage and Selection Operator (LASSO) regression. A logistic regression model was built, whose performance was analyzed with ROC in the TCGA/training and REMBRANDT/validation cohorts: AUC = 0.87 [CI95: 0.81-0.94, p < 0.0001] and AUC = 0.78 [CI95: 0.56-1.00, p = 0.02], respectively. In agreement with the key role of the coagulation cascade in gliomas, LGG patients with a high Radscore had lower overall and disease-free survival. The Radscore was linked to the presence of specific genomic alterations, the composition of the tumor coagulome and the tumor immune infiltrate. Our findings suggest that a non-invasive assessment of the hypercoagulable status of LGG/GBM is possible with MRI radiomics.
Collapse
Affiliation(s)
- Zuzana Saidak
- UR7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (Z.S.); (S.S.); (M.-A.S.); (J.-M.C.)
- Service de Biochimie, Centre de Biologie Humaine, CHU Amiens, 80054 Amiens, France
| | - Adrien Laville
- INSERM UMR 1030, Gustave Roussy Cancer Campus, 94805 Villejuif, France;
- Service de Radiothérapie, CHU Amiens, 80054 Amiens, France
| | - Simon Soudet
- UR7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (Z.S.); (S.S.); (M.-A.S.); (J.-M.C.)
- Service de Médecine Vasculaire, CHU Amiens, 80054 Amiens, France
| | - Marie-Antoinette Sevestre
- UR7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (Z.S.); (S.S.); (M.-A.S.); (J.-M.C.)
- Service de Médecine Vasculaire, CHU Amiens, 80054 Amiens, France
| | - Jean-Marc Constans
- UR7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (Z.S.); (S.S.); (M.-A.S.); (J.-M.C.)
- Service d’Imagerie Médicale, CHU Amiens, 80054 Amiens, France
| | - Antoine Galmiche
- UR7516 CHIMERE, Université de Picardie Jules Verne, 80054 Amiens, France; (Z.S.); (S.S.); (M.-A.S.); (J.-M.C.)
- Service de Biochimie, Centre de Biologie Humaine, CHU Amiens, 80054 Amiens, France
| |
Collapse
|
12
|
Kapteijn MY, Lanting VR, Kaptein FHJ, Guman NAM, Laghmani EH, Kuipers TB, Mei H, Goeman JJ, Mulder FI, van Duinen SG, Taphoorn MJB, Dirven L, Broekman MLD, van Es N, Klok FA, Koekkoek JAF, Versteeg HH, Buijs JT. RNA-sequencing to discover genes and signaling pathways associated with venous thromboembolism in glioblastoma patients: A case-control study. Thromb Res 2023; 232:27-34. [PMID: 37918288 DOI: 10.1016/j.thromres.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Glioblastoma patients are at high risk of developing venous thromboembolism (VTE). Tumor-intrinsic features are considered to play a role, but the underlying pathophysiological mechanisms remain incompletely understood. OBJECTIVES To identify tumor-expressed genes and signaling pathways that associate with glioblastoma-related VTE by using next generation RNA-sequencing (RNA-Seq). METHODS The tumor gene expression profile of 23 glioblastoma patients with VTE and 23 glioblastoma patients without VTE was compared using an unpaired analysis. Ingenuity Pathway Analysis (IPA) core analysis was performed on the top 50 differentially expressed genes to explore associated functions and pathways. Based on full RNA-Seq data, molecular glioblastoma subtypes were determined by performing cluster analysis. RESULTS Of the 19,327 genes, 1246 (6.4 %) were differentially expressed between glioblastoma patients with and without VTE (unadjusted P < 0.05). The most highly overexpressed gene was GLI1, a classical target gene in the Sonic Hedgehog (Shh) signaling pathway (log2 fold change: 3.7; unadjusted P < 0.0001, adjusted P = 0.219). In line, Shh signaling was among the top canonical pathways and processes associated with VTE. The proportion of patients with the proneural/neural glioblastoma subtype was higher among those with VTE than controls. CONCLUSION Shh signaling may be involved in the development of glioblastoma-related VTE.
Collapse
Affiliation(s)
- Maaike Y Kapteijn
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Vincent R Lanting
- Amsterdam University Medical Center location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, the Netherlands; Tergooi Hospital, Department of Internal Medicine, Hilversum, the Netherlands
| | - Fleur H J Kaptein
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Noori A M Guman
- Amsterdam University Medical Center location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, the Netherlands; Tergooi Hospital, Department of Internal Medicine, Hilversum, the Netherlands
| | - El Houari Laghmani
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas B Kuipers
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Jelle J Goeman
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Frits I Mulder
- Amsterdam University Medical Center location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, the Netherlands; Tergooi Hospital, Department of Internal Medicine, Hilversum, the Netherlands
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Marike L D Broekman
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, Den Haag, the Netherlands
| | - Nick van Es
- Amsterdam University Medical Center location University of Amsterdam, Department of Vascular Medicine, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension & Thrombosis, Amsterdam, the Netherlands
| | - Frederikus A Klok
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Div. of Thrombosis & Hemostasis, Dept. of Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
13
|
Yannoutsos A, Cacciatore C, Jaouen S, Farge D, Frere C. Treatment of cancer-associated venous thromboembolism: A focus on special populations. JOURNAL DE MEDECINE VASCULAIRE 2023; 48:124-135. [PMID: 37914457 DOI: 10.1016/j.jdmv.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/02/2023] [Indexed: 11/03/2023]
Abstract
Current evidence-based clinical practice guidelines recommend the use of both low-molecular-weight heparin (LMWH) and direct factor Xa inhibitors (apixapan, edoxaban and rivaroxaban) as first-line options for the treatment of venous thromboembolism (VTE) in patients with cancer. However, most of these guidelines refer to the general cancer patient population and provide limited guidance for specific subgroups of patients at particularly high risk of bleeding, such as those with gastrointestinal cancers, primary or metastatic brain tumors, thrombocytopenia, or renal impairment. In these complex populations, the management of cancer-associated thrombosis (CAT) poses unique challenges and requires a nuanced approach based on the primum non nocere principle. This comprehensive review critically examines the relevant literature and discusses the therapeutic options currently available for the management of CAT in these special situations.
Collapse
Affiliation(s)
- Alexandra Yannoutsos
- Department of Vascular Medicine, Groupe Hospitalier Paris Saint-Joseph, Paris, France
| | - Carlotta Cacciatore
- Department of Internal Medicine (UF 04), CRMR MATHEC, Maladies Auto-Immunes et Thérapie Cellulaire, Saint-Louis Hospital, AP-HP Nord, Université de Paris, Paris, France
| | - Simon Jaouen
- Department of Hematology, CHRU de Brest, Brest, France
| | - Dominique Farge
- Department of Internal Medicine (UF 04), CRMR MATHEC, Maladies Auto-Immunes et Thérapie Cellulaire, Saint-Louis Hospital, AP-HP Nord, Université de Paris, Paris, France
| | - Corinne Frere
- Sorbonne Université, INSERM UMRS 1166, GRC 27 GRECO, Paris, France; DMU BioGeMH, AP-HP, Sorbonne Université, Paris, France.
| |
Collapse
|