1
|
Jia H, Wei J, Zheng W, Li Z. The dual role of autophagy in cancer stem cells: implications for tumor progression and therapy resistance. J Transl Med 2025; 23:583. [PMID: 40414839 DOI: 10.1186/s12967-025-06595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
Cancer stem cells (CSCs) constitute a small yet crucial subgroup in tumors, known for their capacity to self-renew, differentiate, and promote tumor growth, metastasis, and resistance to therapy. These characteristics position CSCs as significant factors in tumor recurrence and unfavorable clinical results, emphasizing their role as targets for therapy. Autophagy, an evolutionarily preserved cellular mechanism for degradation and recycling, has a complex function in cancer by aiding cell survival during stress and preserving balance by eliminating damaged organelles and proteins. Although autophagy can hinder tumor growth by reducing genomic instability, it also aids tumor advancement, particularly in harsh microenvironments, highlighting its dual characteristics. Recent research has highlighted the complex interactions between autophagy and CSCs, showing that autophagy governs CSC maintenance, boosts survival, and aids in resistance to chemotherapy and radiotherapy. On the other hand, in specific situations, autophagy may restrict CSC growth by increasing differentiation or inducing cell death. These intricate interactions offer both obstacles and possibilities for therapeutic intervention. Pharmacological modulation of autophagy, via inhibitors like chloroquine or by enhancing autophagy when advantageous, has demonstrated potential in making CSCs more responsive to standard treatments. Nonetheless, applying these strategies in clinical settings necessitates a better understanding of context-dependent autophagy dynamics and the discovery of dependable biomarkers indicating autophagic activity in CSCs. Progressing in this area might unveil novel, accurate strategies to tackle therapy resistance, lessen tumor recurrence, and ultimately enhance patient outcomes.
Collapse
Affiliation(s)
- Haiqing Jia
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China
| | - Jing Wei
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China
| | - Wei Zheng
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China.
| | - Zhuo Li
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China.
| |
Collapse
|
2
|
Xu J, Shi P, Yang L, Cui H. Basic mechanism of mobilizing cell movement during invasion of glioblastoma and target selection of targeted therapy. J Adv Res 2025:S2090-1232(25)00286-3. [PMID: 40345646 DOI: 10.1016/j.jare.2025.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/09/2025] [Accepted: 04/27/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM), also known as glioblastoma multiforme, is a rapidly growing and highly invasive malignant tumor. Due to the inability to clearly distinguish between glioblastoma and normal tissue, surgery cannot achieve safe resection, often leading to poor patient prognosis and inevitable tumor recurrence. According to previous studies, GBM invasion is related to intercellular adhesion, matrix degradation, extracellular matrix and its related adhesion molecules, as well as the molecular matrix of protein hydrolases in the microenvironment of GBM cells and stromal cells. AIM OF REVIEW The aim is to enhance our understanding of the molecular mechanisms underlying GBM invasion and to advance research on targeted therapies for inhibiting GBM invasion. KEY SCIENTIFIC CONCEPTS OF REVIEW This article describes the protein hydrolases that may affect GBM cell invasion, changes in the cytoskeleton during motility, and the regulatory mechanisms of intracellular signaling pathways in GBM invasion. In addition, we also explored the possibility of targeted therapy against invasion related molecules in GBM.
Collapse
Affiliation(s)
- Jie Xu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Pengfei Shi
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China.
| | - Liqun Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| |
Collapse
|
3
|
Yi L, Zhang Z, Zhou W, Zhang Y, Hu Y, Guo A, Cheng Y, Qian Z, Zhou P, Gao X. BRD4 Degradation Enhanced Glioma Sensitivity to Temozolomide by Regulating Notch1 via Glu-Modified GSH-Responsive Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409753. [PMID: 39544152 DOI: 10.1002/advs.202409753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/20/2024] [Indexed: 11/17/2024]
Abstract
Temozolomide (TMZ) serves as the principal chemotherapeutic agent for glioma; nonetheless, its therapeutic efficacy is compromised by the rapid emergence of drug resistance, the inadequate targeting of glioma cells, and significant systemic toxicity. ARV-825 may play a role in modulating drug resistance by degrading the BRD4 protein, thereby exerting anti-glioma effects. Therefore, to surmount TMZ resistance and achieve efficient and specific drug delivery, a dual-targeted glutathione (GSH)-responsive nanoparticle system (T+A@Glu-NP) is designed and synthesized for the co-delivery of ARV-825 and TMZ. As anticipated, T+A@Glu-NPs significantly enhanced penetration of the blood-brain barrier (BBB), facilitated drug uptake by glioma cells, and exhibited efficient accumulation in brain tissue. Additionally, T+A@Glu-NPs exhibited augmented efficacy against glioma both in vitro and in vivo through the induction of apoptosis, inhibition of proliferation, and cell cycle arrest. Furthermore, mechanistic exploration revealed that T+A@Glu-NPs degraded the BRD4 protein, leading to the downregulation of Notch1 gene transcription and the inhibition of the Notch1 signaling pathway, thereby augmenting the therapeutic efficacy of glioma chemotherapy. Taken together, the findings suggest that T+A@Glu-NPs represents a novel and promising therapeutic strategy for glioma chemotherapy.
Collapse
Affiliation(s)
- Linbin Yi
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhenyu Zhang
- Department of Plastic and Burn Surgery, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjie Zhou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China
| | - Yunchu Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yuzhu Hu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Anjie Guo
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Peizhi Zhou
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| |
Collapse
|
4
|
Chen Z, Wang J, Peng P, Liu G, Dong M, Zhang X, Zhang Y, Yang X, Wan L, Xiang W, Zhang S, Zhang B, Wu Q, Yu X, Wan F. Hypoxia-induced TGFBI maintains glioma stem cells by stabilizing EphA2. Theranostics 2024; 14:5778-5792. [PMID: 39346536 PMCID: PMC11426234 DOI: 10.7150/thno.95141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Rationale: Glioma stem cells (GSCs) have emerged as pivotal drivers of tumor malignancy, sustained by various microenvironmental factors, including immune molecules and hypoxia. In our previous study, we elucidated the significant role of transforming growth factor beta-induced protein (TGFBI), a protein secreted by M2-like tumor-associated macrophages, in promoting the malignant behavior of glioblastoma (GBM) under normoxic conditions. Building upon these findings, the objective of this study was to comprehensively explore the crucial role and underlying mechanisms of autocrine TGFBI in GSCs under hypoxic conditions. Methods: We quantified TGFBI expression in glioma specimens and datasets. In vitro and in vivo assays were employed to investigate the effects of TGFBI on sustaining self-renewal and tumorigenesis of GSCs under hypoxia. RNA-seq and LC-MS/MS were conducted to explore TGFBI signaling mechanisms. Results: TGFBI is preferentially expressed in GSCs under hypoxic conditions. Targeting TGFBI impair GSCs self-renewal and tumorigenesis. Mechanistically, TGFBI was upregulated by HIF1α in GSCs and predominantly activates the AKT-c-MYC signaling pathway in GSCs by stabilizing the EphA2 protein through preventing its degradation. Conclusion: TGFBI plays a crucial role in maintaining the stem cell properties of GSCs in the hypoxic microenvironment. Targeting the TGFBI/EphA2 axis emerges as a promising and innovative strategy for GBM treatment, with the potential to improve the clinical outcomes of patients.
Collapse
Affiliation(s)
- Zirong Chen
- Department of General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou, China
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhong Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Peng
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Guohao Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Minhai Dong
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaolin Zhang
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Zhang
- Department of Histology and Embryology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Xue Yang
- Department of Oncology, Tianjin Huanghe Hospital, Tianjin, China
| | - Lijun Wan
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wang Xiang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuxia Wu
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingjiang Yu
- Department of Histology and Embryology School of Basic Medicine Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wan
- Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
5
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
6
|
Wang S, Gu S, Chen J, Yuan Z, Liang P, Cui H. Mechanism of Notch Signaling Pathway in Malignant Progression of Glioblastoma and Targeted Therapy. Biomolecules 2024; 14:480. [PMID: 38672496 PMCID: PMC11048644 DOI: 10.3390/biom14040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of glioma and the most common primary tumor of the central nervous system. Despite significant advances in clinical management strategies and diagnostic techniques for GBM in recent years, it remains a fatal disease. The current standard of care includes surgery, radiation, and chemotherapy, but the five-year survival rate for patients is less than 5%. The search for a more precise diagnosis and earlier intervention remains a critical and urgent challenge in clinical practice. The Notch signaling pathway is a critical signaling system that has been extensively studied in the malignant progression of glioblastoma. This highly conserved signaling cascade is central to a variety of biological processes, including growth, proliferation, self-renewal, migration, apoptosis, and metabolism. In GBM, accumulating data suggest that the Notch signaling pathway is hyperactive and contributes to GBM initiation, progression, and treatment resistance. This review summarizes the biological functions and molecular mechanisms of the Notch signaling pathway in GBM, as well as some clinical advances targeting the Notch signaling pathway in cancer and glioblastoma, highlighting its potential as a focus for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shenghao Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Sikuan Gu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Zhiqiang Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
7
|
Philchenkov A, Dubrovska A. Cancer Stem Cells as a Therapeutic Target: Current Clinical Development and Future Prospective. Stem Cells 2024; 42:173-199. [PMID: 38096483 DOI: 10.1093/stmcls/sxad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 03/16/2024]
Abstract
The key role of cancer stem cells (CSCs) in tumor development and therapy resistance makes them essential biomarkers and therapeutic targets. Numerous agents targeting CSCs, either as monotherapy or as part of combination therapy, are currently being tested in clinical trials to treat solid tumors and hematologic malignancies. Data from ongoing and future clinical trials testing novel approaches to target tumor stemness-related biomarkers and pathways may pave the way for further clinical development of CSC-targeted treatments and CSC-guided selection of therapeutic regimens. In this concise review, we discuss recent progress in developing CSC-directed treatment approaches, focusing on clinical trials testing CSC-directed therapies. We also consider the further development of CSC-assay-guided patient stratification and treatment personalization.
Collapse
Affiliation(s)
- Alex Philchenkov
- RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|