1
|
Mahdi A, Aittaleb M, Tissir F. Targeting Glioma Stem Cells: Therapeutic Opportunities and Challenges. Cells 2025; 14:675. [PMID: 40358199 PMCID: PMC12072158 DOI: 10.3390/cells14090675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/25/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Glioblastoma (GBM), or grade 4 glioma, is the most common and aggressive primary brain tumor in adults with a median survival of 15 months. Increasing evidence suggests that GBM's aggressiveness, invasiveness, and therapy resistance are driven by glioma stem cells (GSCs), a subpopulation of tumor cells that share molecular and functional characteristics with neural stem cells (NSCs). GSCs are heterogeneous and highly plastic. They evade conventional treatments by shifting their state and entering in quiescence, where they become metabolically inactive and resistant to radiotherapy and chemotherapy. GSCs can exit quiescence and be reactivated to divide into highly proliferative tumor cells which contributes to recurrence. Understanding the molecular mechanisms regulating the biology of GSCs, their plasticity, and the switch between quiescence and mitotic activity is essential to shape new therapeutic strategies. This review examines the latest evidence on GSC biology, their role in glioblastoma progression and recurrence, emerging therapeutic approaches aimed at disrupting their proliferation and survival, and the mechanisms underlying their resistance to therapy.
Collapse
Affiliation(s)
| | | | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Education City, Doha P.O. Box 5825, Qatar; (A.M.); (M.A.)
| |
Collapse
|
2
|
Habibi MA, Ahmadvand MH, Delbari P, Mirjani MS, Zare AH, Mehdizadeh B, Allahdadi A, Ardestani Z, Rad RH, Aliasgary A, Sabet S, Eftekhar MS, Mohammadzadeh I, Hajikarimloo B. The safety and efficacy of tyrosine kinase inhibitors against EGFR in patients with glioma; A systematic review, meta-analysis, and sub-group analysis on glioblastoma. J Clin Neurosci 2025; 135:111138. [PMID: 40022869 DOI: 10.1016/j.jocn.2025.111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Gliomas, particularly glioblastoma (GBM), remain challenging to treat and have a poor prognosis. Tyrosine kinase inhibitors (TKIs) targeting EGFR have shown promise, but their efficacy in gliomas is not well established. This study aimed to systematically review and meta-analyze the safety and efficacy of EGFR TKIs in patients with glioma, specifically for primary and recurrent GBM. METHODS A comprehensive literature search was conducted across PubMed, Embase, Scopus, and Web of Science up to January 1, 2024. Randomized controlled trials and observational studies evaluating TKIs in glioma patients were included. Primary outcomes were overall survival (OS), progression-free survival (PFS), and adverse events. A random-effects meta-analysis was performed to pool results. All statistical analysis was performed using STATA v.17. RESULTS A total of 2,424 patients from 51 studies were included. The pooled mean OS was 12.68 months (95 % CI: 6.29-19.08) with 1-year and 2-year OS rates of 43 % (95 % CI: 34 %-52 %) and 14 % (95 % CI: 8 %-20 %), respectively. The mean PFS was 9.61 months (95 % CI: 4.83-14.38). The overall response rate was 19 % (95 % CI: 1 %-36 %). Grade ≥ 3 adverse events occurred in 35 % of patients (95 % CI: 13 %-57 %). Subgroup analyses revealed that combination therapies outperformed TKI monotherapy, and some newer TKIs, like vandetanib, showed improved efficacy. CONCLUSIONS TKIs demonstrate modest but meaningful benefits in glioma treatment, particularly when combined with other therapies. While initial survival improvements are observed, long-term outcomes remain challenging. Further research is needed to develop more potent, brain-penetrant TKIs and optimize combination strategies to improve outcomes in glioma patients.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Pouria Delbari
- Tehran University of Medical Sciences, Tehran, Iran; Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | | | | | - Baran Mehdizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Allahdadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Ardestani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Hamidi Rad
- Department of Medicine, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Aliasgary
- Student Research Committee of Qom University of Medical Sciences, Qom, Iran
| | - Saba Sabet
- Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shahir Eftekhar
- Department of Surgery, School of Medicine, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Ibrahim Mohammadzadeh
- Skull Base Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bardia Hajikarimloo
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Salbini M, Formato A, Mongiardi MP, Levi A, Falchetti ML. Kinase-Targeted Therapies for Glioblastoma. Int J Mol Sci 2025; 26:3737. [PMID: 40332381 PMCID: PMC12027600 DOI: 10.3390/ijms26083737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Protein phosphorylation and dephosphorylation are key mechanisms that regulate cellular activities. The addition or removal of phosphate groups by specific enzymes, known as kinases and phosphatases, activates or inhibits many enzymes and receptors involved in various cell signaling pathways. Dysregulated activity of these enzymes is associated with various diseases, predominantly cancers. Synthetic and natural single- and multiple-kinase inhibitors are currently being used as targeted therapies for different tumors, including glioblastoma. Glioblastoma IDH-wild-type is the most aggressive brain tumor in adults, with a median overall survival of 15 months. The great majority of glioblastoma patients present mutations in receptor tyrosine kinase (RTK) signaling pathways responsible for tumor initiation and/or progression. Despite this, the multi-kinase inhibitor regorafenib has only recently been approved for glioblastoma patients in some countries. In this review, we analyze the history of kinase inhibitor drugs in glioblastoma therapy.
Collapse
Affiliation(s)
| | | | | | | | - Maria Laura Falchetti
- Institute of Biochemistry and Cell Biology, National Research Council, Via Ercole Ramarini 32, Monterotondo, 00015 Rome, Italy; (M.S.); (A.F.); (M.P.M.); (A.L.)
| |
Collapse
|
4
|
Nadora D, Ezzati S, Bol B, Aboud O. Serendipity in Neuro-Oncology: The Evolution of Chemotherapeutic Agents. Int J Mol Sci 2025; 26:2955. [PMID: 40243541 PMCID: PMC11988343 DOI: 10.3390/ijms26072955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/01/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The development of novel therapeutics in neuro-oncology faces significant challenges, often marked by high costs and low success rates. Despite advances in molecular biology and genomics, targeted therapies have had limited impact on improving patient outcomes in brain tumors, particularly gliomas, due to the complex, multigenic nature of these malignancies. While significant efforts have been made to design drugs that target specific signaling pathways and genetic mutations, the clinical success of these rational approaches remains sparse. This review critically examines the landscape of neuro-oncology drug discovery, highlighting instances where serendipity has led to significant breakthroughs, such as the unexpected efficacy of repurposed drugs and off-target effects that proved beneficial. By exploring historical and contemporary cases, we underscore the role of chance in the discovery of impactful therapies, arguing that embracing serendipity alongside rational drug design may enhance future success in neuro-oncology drug development.
Collapse
Affiliation(s)
- Denise Nadora
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (S.E.); (B.B.)
| | - Shawyon Ezzati
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (S.E.); (B.B.)
| | - Brandon Bol
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (S.E.); (B.B.)
| | - Orwa Aboud
- Department of Neurology, Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
- Department of Neurological Surgery, Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Ellingson BM, Okobi Q, Chong R, Plawat R, Zhao E, Gafita A, Sonni I, Chun S, Filka E, Yao J, Telesca D, Li S, Li G, Lai A, Nghiemphu P, Czernin J, Nathanson DA, Cloughesy TF. A comparative study of preclinical and clinical molecular imaging response to EGFR inhibition using osimertinib in glioblastoma. Neurooncol Adv 2025; 7:vdaf022. [PMID: 40051661 PMCID: PMC11883343 DOI: 10.1093/noajnl/vdaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Background To demonstrate the potential value of 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) as a rapid, non-invasive metabolic imaging surrogate for pharmacological modulation of EGFR signaling in EGFR-driven GBM, we synchronously conducted a preclinical imaging study using patient-derived orthotopic xenograft (PDOX) models and validated it in a phase II molecular imaging study in recurrent GBM (rGBM) patients using osimertinib. Methods A GBM PDOX mouse model study was performed concurrently with an open-label, single-arm, single-center, phase II study of osimertinib (NCT03732352) that enrolled 12 patients with rGBM with EGFR alterations. Patients received osimertinib daily and 3 18F-FDG PET scans: two 24 h apart prior to dosing, and one 48 h after dosing. Results GBM PDOX models suggest osimertinib has limited impact on both 18F-FDG uptake (+ 9.8%-+25.9%) and survival (+ 15.5%; P = .01), which may be explained by insufficient exposure in the brain (Kpuu: 0.30) required to robustly inhibit the EGFR alterations found in GBM. Treatment with osimertinib had subtle, but measurable decreases in the linear rate of change of 18F-FDG nSUV growth rate averaging -4.5% per day (P = .01) and change in 18F-FDG uptake was correlated with change in tumor growth rate (R2 = 0.4719, P = .0195). No metabolic (PERCIST) or radiographic (RANO) responses were seen, and no improvements in PFS or OS were observed. Conclusions This study demonstrated the feasibility of using FDG PET as a clinically reliable imaging biomarker for assessing EGFR inhibition in GBM, while revealing osimertinib's limited impact on both metabolic activity and tumor growth in GBM, findings that were concordant between preclinical and clinical observations.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- UCLA Brain Tumor Imaging Laboratory (BTIL), Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Qunicy Okobi
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Robert Chong
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Rhea Plawat
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Eva Zhao
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Andrei Gafita
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Ida Sonni
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Saewon Chun
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Emese Filka
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Donatello Telesca
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, USA
| | - Shanpeng Li
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, USA
| | - Gang Li
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, California, USA
| | - Albert Lai
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Phioanh Nghiemphu
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Johannes Czernin
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - David A Nathanson
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Bae WH, Maraka S, Daher A. Challenges and advances in glioblastoma targeted therapy: the promise of drug repurposing and biomarker exploration. Front Oncol 2024; 14:1441460. [PMID: 39439947 PMCID: PMC11493774 DOI: 10.3389/fonc.2024.1441460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma remains the most prevalent and aggressive primary malignant brain tumor in adults, characterized by limited treatment options and a poor prognosis. Previous drug repurposing efforts have yielded only marginal survival benefits, particularly those involving inhibitors targeting receptor tyrosine kinase and cyclin-dependent kinase-retinoblastoma pathways. This limited efficacy is likely due to several critical challenges, including the tumor's molecular heterogeneity, the dynamic evolution of its genetic profile, and the restrictive nature of the blood-brain barrier that impedes effective drug delivery. Emerging diagnostic tools, such as circulating tumor DNA and extracellular vesicles, offer promising non-invasive methods for real-time tumor monitoring, potentially enabling the application of targeted therapies to more selected patient populations. Moreover, innovative drug delivery strategies, including focused ultrasound, implantable drug-delivery systems, and engineered nanoparticles, hold potential for enhancing the bioavailability and therapeutic efficacy of treatments.
Collapse
Affiliation(s)
- William Han Bae
- Division of Hematology/Oncology, Department of Internal Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Stefania Maraka
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| | - Ahmad Daher
- Department of Neurology and Rehabilitation, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Hoosemans L, Vooijs M, Hoeben A. Opportunities and Challenges of Small Molecule Inhibitors in Glioblastoma Treatment: Lessons Learned from Clinical Trials. Cancers (Basel) 2024; 16:3021. [PMID: 39272879 PMCID: PMC11393907 DOI: 10.3390/cancers16173021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent central nervous system tumour (CNS). Patients with GBM have a dismal prognosis of 15 months, despite an intensive treatment schedule consisting of surgery, chemoradiation and concurrent chemotherapy. In the last decades, many trials have been performed investigating small molecule inhibitors, which target specific genes involved in tumorigenesis. So far, these trials have been unsuccessful, and standard of care for GBM patients has remained the same since 2005. This review gives an overview of trials investigating small molecule inhibitors on their own, combined with chemotherapy or other small molecule inhibitors. We discuss possible resistance mechanisms in GBM, focussing on intra- and intertumoral heterogeneity, bypass mechanisms and the influence of the tumour microenvironment. Moreover, we emphasise how combining inhibitors can help overcome these resistance mechanisms. We also address strategies for improving trial outcomes through modifications to their design. In summary, this review aims to elucidate different resistance mechanisms against small molecule inhibitors, highlighting their significance in the search for novel therapeutic combinations to improve the overall survival of GBM patients.
Collapse
Affiliation(s)
- Linde Hoosemans
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Ann Hoeben
- Department of Medical Oncology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
8
|
Waheed A, Rasheed S, Usama M, Chaurasia B. The future of neuro-oncology: precision medicine and targeted therapies. Neurosurg Rev 2024; 47:431. [PMID: 39141197 DOI: 10.1007/s10143-024-02696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Aiman Waheed
- Rawalpindi Medical University and Allied Hospitals, Tipu Rd, Chamanzar Colony, Rawalpindi, Pakistan
| | - Sanan Rasheed
- Rawalpindi Medical University and Allied Hospitals, Tipu Rd, Chamanzar Colony, Rawalpindi, Pakistan
| | - Muhammad Usama
- Al Nafees Medical College And Hospital, Farash Town Phase I Farash Town, Islamabad, Islamabad Capital Territory, Islamabad, Pakistan
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal.
| |
Collapse
|
9
|
Duan XP, Qin BD, Jiao XD, Liu K, Wang Z, Zang YS. New clinical trial design in precision medicine: discovery, development and direction. Signal Transduct Target Ther 2024; 9:57. [PMID: 38438349 PMCID: PMC10912713 DOI: 10.1038/s41392-024-01760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
In the era of precision medicine, it has been increasingly recognized that individuals with a certain disease are complex and different from each other. Due to the underestimation of the significant heterogeneity across participants in traditional "one-size-fits-all" trials, patient-centered trials that could provide optimal therapy customization to individuals with specific biomarkers were developed including the basket, umbrella, and platform trial designs under the master protocol framework. In recent years, the successive FDA approval of indications based on biomarker-guided master protocol designs has demonstrated that these new clinical trials are ushering in tremendous opportunities. Despite the rapid increase in the number of basket, umbrella, and platform trials, the current clinical and research understanding of these new trial designs, as compared with traditional trial designs, remains limited. The majority of the research focuses on methodologies, and there is a lack of in-depth insight concerning the underlying biological logic of these new clinical trial designs. Therefore, we provide this comprehensive review of the discovery and development of basket, umbrella, and platform trials and their underlying logic from the perspective of precision medicine. Meanwhile, we discuss future directions on the potential development of these new clinical design in view of the "Precision Pro", "Dynamic Precision", and "Intelligent Precision". This review would assist trial-related researchers to enhance the innovation and feasibility of clinical trial designs by expounding the underlying logic, which be essential to accelerate the progression of precision medicine.
Collapse
Affiliation(s)
- Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
10
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
11
|
Ezzati S, Salib S, Balasubramaniam M, Aboud O. Epidermal Growth Factor Receptor Inhibitors in Glioblastoma: Current Status and Future Possibilities. Int J Mol Sci 2024; 25:2316. [PMID: 38396993 PMCID: PMC10889328 DOI: 10.3390/ijms25042316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma, a grade 4 glioma as per the World Health Organization, poses a challenge in adult primary brain tumor management despite advanced surgical techniques and multimodal therapies. This review delves into the potential of targeting epidermal growth factor receptor (EGFR) with small-molecule inhibitors and antibodies as a treatment strategy. EGFR, a mutationally active receptor tyrosine kinase in over 50% of glioblastoma cases, features variants like EGFRvIII, EGFRvII and missense mutations, necessitating a deep understanding of their structures and signaling pathways. Although EGFR inhibitors have demonstrated efficacy in other cancers, their application in glioblastoma is hindered by blood-brain barrier penetration and intrinsic resistance. The evolving realm of nanodrugs and convection-enhanced delivery offers promise in ensuring precise drug delivery to the brain. Critical to success is the identification of glioblastoma patient populations that benefit from EGFR inhibitors. Tools like radiolabeled anti-EGFR antibody 806i facilitate the visualization of EGFR conformations, aiding in tailored treatment selection. Recognizing the synergistic potential of combination therapies with downstream targets like mTOR, PI3k, and HDACs is pivotal for enhancing EGFR inhibitor efficacy. In conclusion, the era of precision oncology holds promise for targeting EGFR in glioblastoma, contingent on tailored treatments, effective blood-brain barrier navigation, and the exploration of synergistic therapies.
Collapse
Affiliation(s)
- Shawyon Ezzati
- California Northstate University College of Medicine, Elk Grove, CA 95757, USA; (S.E.); (S.S.)
| | - Samuel Salib
- California Northstate University College of Medicine, Elk Grove, CA 95757, USA; (S.E.); (S.S.)
| | | | - Orwa Aboud
- Department of Neurology, Department of Neurological Surgery, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
12
|
Lu Y, Liao L, Du K, Mo J, Zou X, Liang J, Chen J, Tang W, Su L, Wu J, Zhang J, Tan Y. Clinical activity and safety of sintilimab, bevacizumab, and TMZ in patients with recurrent glioblastoma. BMC Cancer 2024; 24:133. [PMID: 38273249 PMCID: PMC10811825 DOI: 10.1186/s12885-024-11848-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
PURPOSE There are limited and no standard therapies for recurrent glioblastoma. We herein report the antitumour activity and safety of sintilimab, bevacizumab and temozolomide (TMZ) in recurrent glioblastoma. METHODS We retrospectively analysed eight patients with recurrent glioblastoma treated with sintilimab (200 mg) every three weeks + bevacizumab (10 mg/kg) every three weeks + TMZ (200 mg/m²orally) (5 days orally every 28 days for a total of four weeks). The primary objective was investigator-assessed median progression-free survival(mPFS). Secondary objectives were to assess the 6-month PFS, objective response rate (ORR) and duration of response (DOR) accroding to RANO criteria. RESULTS The mPFS time for 8 patients was 3.340 months (95% CI: 2.217-4.463), The longest PFS was close to 9 months. Five patients were assessed to have achieved partial response (PR), with an overall remission rate of 62.5%, Four patients experienced a change in tumour volume at the best response time of greater than 60% shrinkage from baseline, and one patient remained progression free upon review, with a DOR of more than 6.57 months. The 6-month PFS was 25% (95% CI: 5.0-55.0%). Three patients had a treatment-related adverse events, though no grade 4 or 5 adverse events occurred. CONCLUSION In this small retrospective study, the combination regimen of sintilimab, bevacizumab and TMZ showed promising antitumour activity in treatment of recurrent glioblastoma, with a good objective remission rate.
Collapse
Affiliation(s)
- Yinghao Lu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Limin Liao
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Kunpeng Du
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Jianhua Mo
- Department of Image, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xia Zou
- Department of Image, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Junxian Liang
- Department of Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jiahui Chen
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Wenwen Tang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Liwei Su
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Jieping Wu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China
| | - Junde Zhang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China.
| | - Yujing Tan
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, No 253, Gongye Road, Guangzhou, 510280, China.
| |
Collapse
|
13
|
Shikalov A, Koman I, Kogan NM. Targeted Glioma Therapy-Clinical Trials and Future Directions. Pharmaceutics 2024; 16:100. [PMID: 38258110 PMCID: PMC10820492 DOI: 10.3390/pharmaceutics16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common type of glioma, with a median survival of 14.6 months post-diagnosis. Understanding the molecular profile of such tumors allowed the development of specific targeted therapies toward GBM, with a major role attributed to tyrosine kinase receptor inhibitors and immune checkpoint inhibitors. Targeted therapeutics are drugs that work by specific binding to GBM-specific or overexpressed markers on the tumor cellular surface and therefore contain a recognition moiety linked to a cytotoxic agent, which produces an antiproliferative effect. In this review, we have summarized the available information on the targeted therapeutics used in clinical trials of GBM and summarized current obstacles and advances in targeted therapy concerning specific targets present in GBM tumor cells, outlined efficacy endpoints for major classes of investigational drugs, and discussed promising strategies towards an increase in drug efficacy in GBM.
Collapse
Affiliation(s)
| | | | - Natalya M. Kogan
- Department of Molecular Biology, Institute of Personalized and Translational Medicine, Ariel University, Ariel 40700, Israel; (A.S.); (I.K.)
| |
Collapse
|
14
|
Álvarez-Torres MDM, Balaña C, Fuster-García E, Puig J, García-Gómez JM. Unlocking Bevacizumab's Potential: rCBV max as a Predictive Biomarker for Enhanced Survival in Glioblastoma IDH-Wildtype Patients. Cancers (Basel) 2023; 16:161. [PMID: 38201588 PMCID: PMC10778147 DOI: 10.3390/cancers16010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Aberrant vascular architecture and angiogenesis are hallmarks of glioblastoma IDH-wildtype, suggesting that these tumors are suitable for antiangiogenic therapy. Bevacizumab was FDA-approved in 2009 following promising results in two clinical trials. However, its use for recurrent glioblastomas remains a subject of debate, as it does not universally improve patient survival. PURPOSES In this study, we aimed to analyze the influence of tumor vascularity on the benefit provided by BVZ and propose preoperative rCBVmax at the high angiogenic tumor habitat as a predictive biomarker to select patients who can benefit the most. METHODS Clinical and MRI data from 106 patients with glioblastoma IDH-wildtype have been analyzed. Thirty-nine of them received BVZ, and the remaining sixty-seven did not receive a second-line treatment. The ONCOhabitats method was used to automatically calculate rCBV. RESULTS We found a median survival from progression of 305 days longer for patients with moderate vascular tumors who received BVZ than those who did not receive any second-line treatment. This contrasts with patients with high-vascular tumors who only presented a median survival of 173 days longer when receiving BVZ. Furthermore, better responses to BVZ were found for the moderate-vascular group with a higher proportion of patients alive at 6, 12, 18, and 24 months after progression. CONCLUSIONS We propose rCBVmax as a potential biomarker to select patients who can benefit more from BVZ after tumor progression. In addition, we propose a threshold of 7.5 to stratify patients into moderate- and high-vascular groups to select the optimal second-line treatment.
Collapse
Affiliation(s)
- María del Mar Álvarez-Torres
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de Valencia, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
| | - Carmen Balaña
- Applied Research Group in Oncology (B-ARGO Group), Institut Catala d’Oncologia (ICO), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain;
| | - Elies Fuster-García
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de Valencia, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
| | - Josep Puig
- Radiology Department CDI, Hospital Clinic of Barcelona, 08036 Barcelona, Spain;
| | - Juan Miguel García-Gómez
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de Valencia, 46022 Valencia, Spain; (E.F.-G.); (J.M.G.-G.)
| |
Collapse
|
15
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
16
|
Annakib S, Rigau V, Darlix A, Gozé C, Duffau H, Bauchet L, Jarlier M, Fabbro M. Bevacizumab in recurrent WHO grades II-III glioma. Front Oncol 2023; 13:1212714. [PMID: 37534252 PMCID: PMC10391542 DOI: 10.3389/fonc.2023.1212714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Purpose The management of recurrent WHO grades II-III (rGII-III) glioma is not well established. This study describes the clinical outcomes in patients who received bevacizumab as rescue treatment. Methods In this retrospective study, the main inclusion criteria were as follows: adult patients with histologicaly proved rGII-III glioma according 2016 WHO classification treated with bevacizumab from 2011 to 2019, T1 contrast enhancement on MRI. Efficacy was assessed using the high-grade glioma 2017 Response Assessment in Neuro-Oncology criteria. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method. Results Eighty-one patients were included (M/F ratio: 1.7, median age at diagnosis: 38 years) among whom 46 (56.8%) had an initial diagnosis of grade II glioma. Previous treatments included at least one surgical intervention, radiotherapy (98.8%), and ≥ 2 chemotherapy lines (64.2%). After bevacizumab initiation, partial response, stable disease, and progressive disease were observed in 27.2%, 22.2%, and 50.6% of patients. The median PFS and OS were 4.9 months (95% confidence interval [CI] 3.7-6.1) and 7.6 months (95% CI 5.5-9.9). Bevacizumab severe toxicity occurred in 12.3%. Twenty-four (29.6%) patients discontinued bevacizumab without radiological progression. Oligodendroglioma and age ≥ 38 years at diagnosis were more frequent in this subgroup (odds ratio = 0.24, 95% CI 0.07-0.84, p = 0.023 and 0.36, 95% CI 0.13-0.99, p = 0.042). Ten of these 24 patients were alive at 12 months and two patients at 8 years after bevacizumab initiation, without any subsequent treatment. Conclusion Bevacizumab can be an option for heavily pretreated patients with rGII-III glioma with contrast enhancement. In our study, bevacizumab displayed prolonged activity in a subgroup of patients.
Collapse
Affiliation(s)
- Soufyan Annakib
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
- Department of Medical Oncology, CHU de Nîmes, University of Montpellier, Nimes, France
| | - Valérie Rigau
- Department of Pathology and Onco-biology, CHU de Montpellier, University of Montpellier, Montpellier, France
- Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Amélie Darlix
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
- Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Catherine Gozé
- Department of Pathology and Onco-biology, CHU de Montpellier, University of Montpellier, Montpellier, France
- Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, Montpellier, France
- Faculty of Medicine, University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, Montpellier, France
- Department of Neurosurgery, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Luc Bauchet
- Institut de Génomique Fonctionnelle, INSERM, CNRS, University of Montpellier, Montpellier, France
- Department of Neurosurgery, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Marta Jarlier
- Department of Biostatistics, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
| | - Michel Fabbro
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
17
|
Singh H. Role of Molecular Targeted Therapeutic Drugs in Treatment of Glioblastoma: A Review Article. Glob Med Genet 2023; 10:42-47. [PMID: 37077370 PMCID: PMC10110362 DOI: 10.1055/s-0043-57028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Glioblastoma is remarkably periodic primary brain tumor, characterizing an eminently heterogeneous pattern of neoplasms that are utmost destructive and threatening cancers. An enhanced and upgraded knowledge of the various molecular pathways that cause malignant changes in glioblastoma has resulted in advancement of numerous biomarkers and the interpretation of various agents that pointedly target tumor cells and microenvironment. In this review, literature or information on various targeted therapy for glioblastoma is discussed. English language articles were scrutinized in plentiful directory or databases like PubMed, ScienceDirect, Web of Sciences, Google Scholar, and Scopus. The important keywords used for searching databases are "Glioblastoma," "Targeted therapy in glioblastoma," "Therapeutic drugs in glioblastoma," and "Molecular targets in glioblastoma."
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| |
Collapse
|
18
|
Prajapati HP, Ansari A. Updates in the Management of Recurrent Glioblastoma Multiforme. J Neurol Surg A Cent Eur Neurosurg 2023; 84:174-187. [PMID: 35772723 DOI: 10.1055/s-0042-1749351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Glioblastoma is the most aggressive and diffusely infiltrative primary brain tumor. Recurrence is almost universal even after all primary standard treatments. This article aims to review the literature and update the standard treatment strategies for patients with recurrent glioblastoma. METHODS A systematic search was performed with the phrase "recurrent glioblastoma and management" as a search term in PubMed central, Medline, and Embase databases to identify all the articles published on the subject till December 2020. The review included peer-reviewed original articles, clinical trials, review articles, and keywords in title and abstract. RESULTS Out of 513 articles searched, 73 were included in this review after screening for eligibility. On analyzing the data, most of the studies report a median overall survival (OS) of 5.9 to 11.4 months after re-surgery and 4.7 to 7.6 months without re-surgery. Re-irradiation with stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) result in a median OS of 10.2 months (range: 7.0-12 months) and 9.8 months (ranged: 7.5-11.0 months), respectively. Radiation necrosis was found in 16.6% (range: 0-24.4%) after SRS. Chemotherapeutic agents like nitrosourea (carmustine), bevacizumab, and temozolomide (TMZ) rechallenge result in a median OS in the range of 5.1 to 7.5, 6.5 to 9.2, and 5.1-13.0 months and six months progression free survival (PFS-6) in the range of 13 to 17.5%, 25 to 42.6%, and 23 to 58.3%, respectively. Use of epithelial growth factor receptor (EGFR) inhibitors results in a median OS in the range of 2.0 to 3.0 months and PFS-6 in 13%. CONCLUSION Although recurrent glioblastoma remains a fatal disease with universal mortality, the literature suggests that a subset of patients may benefit from maximal treatment efforts.
Collapse
Affiliation(s)
- Hanuman Prasad Prajapati
- Department of Neurosurgery, Uttar Pradesh University of Medical Sciences, Etawah, Uttar Pradesh, India
| | - Ahmad Ansari
- Department of Neurosurgery, Uttar Pradesh University of Medical Sciences, Safai, Uttar Pradesh, India
| |
Collapse
|
19
|
Willman M, Willman J, Figg J, Dioso E, Sriram S, Olowofela B, Chacko K, Hernandez J, Lucke-Wold B. Update for astrocytomas: medical and surgical management considerations. EXPLORATION OF NEUROSCIENCE 2023:1-26. [PMID: 36935776 PMCID: PMC10019464 DOI: 10.37349/en.2023.00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/10/2022] [Indexed: 02/25/2023]
Abstract
Astrocytomas include a wide range of tumors with unique mutations and varying grades of malignancy. These tumors all originate from the astrocyte, a star-shaped glial cell that plays a major role in supporting functions of the central nervous system (CNS), including blood-brain barrier (BBB) development and maintenance, water and ion regulation, influencing neuronal synaptogenesis, and stimulating the immunological response. In terms of epidemiology, glioblastoma (GB), the most common and malignant astrocytoma, generally occur with higher rates in Australia, Western Europe, and Canada, with the lowest rates in Southeast Asia. Additionally, significantly higher rates of GB are observed in males and non-Hispanic whites. It has been suggested that higher levels of testosterone observed in biological males may account for the increased rates of GB. Hereditary syndromes such as Cowden, Lynch, Turcot, Li-Fraumeni, and neurofibromatosis type 1 have been linked to increased rates of astrocytoma development. While there are a number of specific gene mutations that may influence malignancy or be targeted in astrocytoma treatment, O6-methylguanine-DNA methyltransferase (MGMT) gene function is an important predictor of astrocytoma response to chemotherapeutic agent temozolomide (TMZ). TMZ for primary and bevacizumab in the setting of recurrent tumor formation are two of the main chemotherapeutic agents currently approved in the treatment of astrocytomas. While stereotactic radiosurgery (SRS) has debatable implications for increased survival in comparison to whole-brain radiotherapy (WBRT), SRS demonstrates increased precision with reduced radiation toxicity. When considering surgical resection of astrocytoma, the extent of resection (EoR) is taken into consideration. Subtotal resection (STR) spares the margins of the T1 enhanced magnetic resonance imaging (MRI) region, gross total resection (GTR) includes the margins, and supramaximal resection (SMR) extends beyond the margin of the T1 and into the T2 region. Surgical resection, radiation, and chemotherapy are integral components of astrocytoma treatment.
Collapse
Affiliation(s)
- Matthew Willman
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jonathan Willman
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John Figg
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Emma Dioso
- School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Sai Sriram
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bankole Olowofela
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kevin Chacko
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jairo Hernandez
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
20
|
D'Alessandris QG, Martini M, Cenci T, DI Bonaventura R, Lauretti L, Stumpo V, Olivi A, Larocca LM, Pallini R, Montano N. Tailored therapy for recurrent glioblastoma: report of a personalized molecular approach. J Neurosurg Sci 2023; 67:103-107. [PMID: 32550606 DOI: 10.23736/s0390-5616.20.04943-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Failure of clinical trials with targeted therapies in glioblastoma (GBM) is probably related to the enrollment of molecularly unselected patients. In this study we report the results of a precision medicine protocol in recurrent GBM. METHODS We prospectively evaluated 34 patients with recurrent GBM. We determined the expression of vascular endothelial growth factor (VEGF), epidermal growth factor receptor variant III (EGFRvIII), and phosphatase and tensin homolog (PTEN). According to the molecular pattern we administered bevacizumab alone in patients with VEGF overexpression, absence of EGFRvIII, and normal PTEN (group A; N.=16); bevacizumab + erlotinib in patients with VEGF overexpression, expression of EGFRvIII, and normal PTEN (group B; N.=14); and bevacizumab + sirolimus in patients with VEGF overexpression and loss of PTEN, irrespective of the EGFRvIII status (group C; N.=4). We evaluated the response rate, the clinical benefit rate, the 6-month progression-free survival (PFS-6), the 12-month PFS (PFS-12) and the safety profile of the treatment. Moreover, we compared our results with the ones of EORTC 26101 trial. RESULTS Response rate was 50% in the whole cohort with the highest rate in group C (75%). Clinical benefit rate was 71% with the highest rate in group C (75%). PFS-6 was 56% in the whole cohort with the highest rate in group B (64%). PFS-12 was 21% in the whole cohort with the highest rate in group B (29%). When comparing our results with those from the combination arm of the EORTC 26101 trial we found a significantly higher PFS-6 and PFS-12 in our cohort. CONCLUSIONS The precision medicine protocol for recurrent GBM is feasible and leads to improved results if compared with studies lacking molecular selection.
Collapse
Affiliation(s)
- Quintino G D'Alessandris
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Maurizio Martini
- Department of Pathology, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Tonia Cenci
- Department of Pathology, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Rina DI Bonaventura
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Liverana Lauretti
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Vittorio Stumpo
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Alessandro Olivi
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Luigi M Larocca
- Department of Pathology, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Roberto Pallini
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Nicola Montano
- Department of Neurosurgery, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy -
| |
Collapse
|
21
|
El Atat O, Naser R, Abdelkhalek M, Habib RA, El Sibai M. Molecular targeted therapy: A new avenue in glioblastoma treatment. Oncol Lett 2022; 25:46. [PMID: 36644133 PMCID: PMC9811647 DOI: 10.3892/ol.2022.13632] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma, also referred to as glioblastoma multiforme (GBM), is grade IV astrocytoma characterized by being fast-growing and the most aggressive brain tumor. In adults, it is the most prevalent type of malignant brain tumor. Despite the advancements in both diagnosis tools and therapeutic treatments, GBM is still associated with poor survival rate without any statistically significant improvement in the past three decades. Patient's genome signature is one of the key factors causing the development of this tumor, in addition to previous radiation exposure and other environmental factors. Researchers have identified genomic and subsequent molecular alterations affecting core pathways that trigger the malignant phenotype of this tumor. Targeting intrinsically altered molecules and pathways is seen as a novel avenue in GBM treatment. The present review shed light on signaling pathways and intrinsically altered molecules implicated in GBM development. It discussed the main challenges impeding successful GBM treatment, such as the blood brain barrier and tumor microenvironment (TME), the plasticity and heterogeneity of both GBM and TME and the glioblastoma stem cells. The present review also presented current advancements in GBM molecular targeted therapy in clinical trials. Profound and comprehensive understanding of molecular participants opens doors for innovative, more targeted and personalized GBM therapeutic modalities.
Collapse
Affiliation(s)
- Oula El Atat
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Rayan Naser
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Maya Abdelkhalek
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Ralph Abi Habib
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Mirvat El Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon,Correspondence to: Professor Mirvat El Sibai, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Koraytem Street, Beirut 1102 2801, Lebanon, E-mail:
| |
Collapse
|
22
|
Tsai HP, Lin CJ, Wu CH, Chen YT, Lu YY, Kwan AL, Lieu AS. Prognostic Impact of Low-Level p53 Expression on Brain Astrocytomas Immunopositive for Epidermal Growth Factor Receptor. Curr Issues Mol Biol 2022; 44:4142-4151. [PMID: 36135196 PMCID: PMC9497491 DOI: 10.3390/cimb44090284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Although the expression of p53 and epidermal growth factor receptor (EGFR) is associated with therapeutic resistance and patient outcomes in many malignancies, the relationship in astrocytomas is unclear. This study aims to correlate p53 and EGFR expression in brain astrocytomas with overall patient survival. Eighty-two patients with astrocytomas were enrolled in the study. Semi-quantitative p53 and EGFR immunohistochemical staining was measured in tumor specimens. The mean follow-up after astrocytoma surgery was 18.46 months. The overall survival rate was 83%. Survival was reduced in EGFR-positive patients compared with survival in EGFR-negative patients (p < 0.05). However, no significant differences in survival were detected between patients with high and low p53 expression. In patients with low p53 expression, positive EGFR staining was associated with significantly worse survival compared with patients with negative EGFR staining (log-rank test: p < 0.001). Survival rates in positive and negative EGFR groups with high p53 protein expression were similar (log-rank test: p = 0.919). The IC50 of an EGFR inhibitor was higher in GBM cells with high p53 protein expression compared with the IC50 in cells with low p53 expression. Combined EGFR and p53 expression may have prognostic significance in astrocytomas.
Collapse
Affiliation(s)
- Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Yi-Ting Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung City 807, Taiwan
- Cosmetic Applications and Management Department, Yuh-Ing Junior College of Health Care & Management, Kaohsiung City 807, Taiwan
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22903, USA
| | - Ann-Shung Lieu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
23
|
Leone A, Colamaria A, Fochi NP, Sacco M, Landriscina M, Parbonetti G, de Notaris M, Coppola G, De Santis E, Giordano G, Carbone F. Recurrent Glioblastoma Treatment: State of the Art and Future Perspectives in the Precision Medicine Era. Biomedicines 2022; 10:1927. [PMID: 36009473 PMCID: PMC9405902 DOI: 10.3390/biomedicines10081927] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/20/2022] Open
Abstract
Current treatment guidelines for the management of recurrent glioblastoma (rGBM) are far from definitive, and the prognosis remains dismal. Despite recent advancements in the pharmacological and surgical fields, numerous doubts persist concerning the optimal strategy that clinicians should adopt for patients who fail the first lines of treatment and present signs of progressive disease. With most recurrences being located within the margins of the previously resected lesion, a comprehensive molecular and genetic profiling of rGBM revealed substantial differences compared with newly diagnosed disease. In the present comprehensive review, we sought to examine the current treatment guidelines and the new perspectives that polarize the field of neuro-oncology, strictly focusing on progressive disease. For this purpose, updated PRISMA guidelines were followed to search for pivotal studies and clinical trials published in the last five years. A total of 125 articles discussing locoregional management, radiotherapy, chemotherapy, and immunotherapy strategies were included in our analysis, and salient findings were critically summarized. In addition, an in-depth description of the molecular profile of rGBM and its distinctive characteristics is provided. Finally, we integrate the above-mentioned evidence with the current guidelines published by international societies, including AANS/CNS, EANO, AIOM, and NCCN.
Collapse
Affiliation(s)
- Augusto Leone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Nicola Pio Fochi
- Department of Neurosurgery, University of Foggia, 71122 Foggia, Italy
| | - Matteo Sacco
- Department of Neurosurgery, Riuniti Hospital, 71122 Foggia, Italy
| | - Matteo Landriscina
- Unit of Medical
Oncology and Biomolecular Therapy, Department of Medical and Surgical
Sciences, University of Foggia, 71122 Foggia, Italy
| | | | - Matteo de Notaris
- Department of Neurosurgery, “Rummo” Hospital, 82100 Benevento, Italy
| | - Giulia Coppola
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Elena De Santis
- Department of Anatomical Histological Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Guido Giordano
- Unit of Medical
Oncology and Biomolecular Therapy, Department of Medical and Surgical
Sciences, University of Foggia, 71122 Foggia, Italy
| | - Francesco Carbone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, 76133 Karlsruhe, Germany
- Department of Neurosurgery, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
24
|
Huang W, Zou L, Hao Z, Wang B, Mao F, Duan Q, Guo D. S645C Point Mutation Suppresses Degradation of EGFR to Promote Progression of Glioblastoma. Front Oncol 2022; 12:904383. [PMID: 35814475 PMCID: PMC9259983 DOI: 10.3389/fonc.2022.904383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background The tightly controlled activity of EGFR is important for the homeostasis of self-renewal of human tissue. Mutations in the extracellular domain of EGFR are frequent and function as a novel mechanism for oncogenic EGFR activation in GBM, and impact the response of patients to small-molecule inhibitors. Methods We constructed glioblastoma cell lines stably expressing wild-type EGFR and the mutant of EGFR S645C. We detected cell growth in vitro and in vivo. We evaluated the anti-tumor activity and effectiveness of gefitinib and osimertinib in cells. Results In the present study, we identified an oncogenic substituted mutation of EGFR—S645C. The mutation can promote the proliferation and colony formation of glioblastoma in vitro and in vivo. Mechanistically, the EGFR S645C mutation potentially changes the formation of hydrogen bonds within dimerized EGFR and inhibits the degradation of EGFR to prolong downstream signaling. The mutation induces resistance to gefitinib but presents an opportunity for osimertinib treatment. Conclusion The study indicated a novel oncogenic mutation and advises on the precise treatment of individual patients with the EGFR S645C mutation.
Collapse
Affiliation(s)
- Wenda Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Qiuhong Duan,
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Qiuhong Duan,
| |
Collapse
|
25
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 2022; 21:39. [PMID: 35135556 PMCID: PMC8822752 DOI: 10.1186/s12943-022-01513-z] [Citation(s) in RCA: 402] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Collapse
Affiliation(s)
- Keyang Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Weijie Ye
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjing Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
26
|
Sevastre AS, Costachi A, Tataranu LG, Brandusa C, Artene SA, Stovicek O, Alexandru O, Danoiu S, Sfredel V, Dricu A. Glioblastoma pharmacotherapy: A multifaceted perspective of conventional and emerging treatments (Review). Exp Ther Med 2021; 22:1408. [PMID: 34676001 PMCID: PMC8524703 DOI: 10.3892/etm.2021.10844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Due to its localisation, rapid onset, high relapse rate and resistance to most currently available treatment methods, glioblastoma multiforme (GBM) is considered to be the deadliest type of all gliomas. Although surgical resection, chemotherapy and radiotherapy are among the therapeutic strategies used for the treatment of GBM, the survival rates achieved are not satisfactory, and there is an urgent need for novel effective therapeutic options. In addition to single-target therapy, multi-target therapies are currently under development. Furthermore, drugs are being optimised to improve their ability to cross the blood-brain barrier. In the present review, the main strategies applied for GBM treatment in terms of the most recent therapeutic agents and approaches that are currently under pre-clinical and clinical testing were discussed. In addition, the most recently reported experimental data following the testing of novel therapies, including stem cell therapy, immunotherapy, gene therapy, genomic correction and precision medicine, were reviewed, and their advantages and drawbacks were also summarised.
Collapse
Affiliation(s)
- Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Alexandra Costachi
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Department of Neurosurgery, ‘Bagdasar-Arseni’ Emergency Clinical Hospital, 041915 Bucharest, Romania
| | - Corina Brandusa
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Stefan Alexandru Artene
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Olivian Stovicek
- Department of Pharmacology, Faculty of Nursing Targu Jiu, Titu Maiorescu University of Bucharest, 210106 Targu Jiu, Romania
| | - Oana Alexandru
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
27
|
A multi-center prospective study of re-irradiation with bevacizumab and temozolomide in patients with bevacizumab refractory recurrent high-grade gliomas. J Neurooncol 2021; 155:297-306. [PMID: 34689306 DOI: 10.1007/s11060-021-03875-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/11/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Survival is dismal for bevacizumab refractory high-grade glioma patients. We prospectively investigated the efficacy of re-irradiation, bevacizumab, and temozolomide in bevacizumab-naïve and bevacizumab-exposed recurrent high-grade glioma, without volume limitations, in a single arm trial. METHODS Recurrent high-grade glioma patients were stratified based on WHO grade (4 vs. < 4) and prior exposure to bevacizumab (yes vs. no). Eligible patients received radiation using a simultaneous integrated boost technique (55 Gy to enhancing disease, 45 Gy to non-enhancing disease in 25 fractions) with bevacizumab 10 mg/kg every 2 weeks IV and temozolomide 75 mg/m2 daily followed by maintenance bevacizumab 10 mg/kg every 2 weeks and temozolomide 50 mg/m2 daily for 6 weeks then a 2 week holiday until progression. Primary endpoint was overall survival. Quality of life was studied using FACT-Br and FACT-fatigue scales. RESULTS Fifty-four patients were enrolled. The majority (n = 36, 67%) were bevacizumab pre-exposed GBM. Median OS for all patients was 8.5 months and 7.9 months for the bevacizumab pre-exposed GBM group. Patients ≥ 36 months from initial radiation had a median OS of 13.3 months compared to 7.5 months for those irradiated < 36 months earlier (p < 0.01). FACT-Br and FACT-Fatigue scores initially declined during radiation but returned to pretreatment baseline. Treatment was well tolerated with 5 patients experiencing > grade 3 lymphopenia and 2 with > grade 3 thrombocytopenia. No radiographic or clinical radiation necrosis occurred. CONCLUSIONS Re-irradiation with bevacizumab and temozolomide is a safe and feasible salvage treatment for patients with large volume bevacizumab-refractory high-grade glioma. Patients further from their initial radiotherapy may derive greater benefit with this regimen.
Collapse
|
28
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
29
|
Colardo M, Segatto M, Di Bartolomeo S. Targeting RTK-PI3K-mTOR Axis in Gliomas: An Update. Int J Mol Sci 2021; 22:4899. [PMID: 34063168 PMCID: PMC8124221 DOI: 10.3390/ijms22094899] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the most common and challenging malignancies of the central nervous system (CNS), due to their infiltrative nature, tendency to recurrence, and poor response to treatments. Indeed, despite the advances in neurosurgical techniques and in radiation therapy, the modest effects of therapy are still challenging. Moreover, tumor recurrence is associated with the onset of therapy resistance; it is therefore critical to identify effective and well-tolerated pharmacological approaches capable of inducing durable responses in the appropriate patient groups. Molecular alterations of the RTK/PI3K/Akt/mTOR signaling pathway are typical hallmarks of glioma, and several clinical trials targeting one or more players of this axis have been launched, showing disappointing results so far, due to the scarce BBB permeability of certain compounds or to the occurrence of resistance/tolerance mechanisms. However, as RTK/PI3K/mTOR is one of the pivotal pathways regulating cell growth and survival in cancer biology, targeting still remains a strong rationale for developing strategies against gliomas. Future rigorous clinical studies, aimed at addressing the tumor heterogeneity, the interaction with the microenvironment, as well as diverse posology adjustments, are needed-which might unravel the therapeutic efficacy and response prediction of an RTK/PI3K/mTOR-based approach.
Collapse
Affiliation(s)
| | | | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, IS, Italy; (M.C.); (M.S.)
| |
Collapse
|
30
|
Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M, Choulier L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers (Basel) 2021; 13:1795. [PMID: 33918704 PMCID: PMC8069979 DOI: 10.3390/cancers13081795] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), the most frequent and aggressive glial tumor, is currently treated as first line by the Stupp protocol, which combines, after surgery, radiotherapy and chemotherapy. For recurrent GBM, in absence of standard treatment or available clinical trials, various protocols including cytotoxic drugs and/or bevacizumab are currently applied. Despite these heavy treatments, the mean overall survival of patients is under 18 months. Many clinical studies are underway. Based on clinicaltrials.org and conducted up to 1 April 2020, this review lists, not only main, but all targeted therapies in phases II-IV of 257 clinical trials on adults with newly diagnosed or recurrent GBMs for the last twenty years. It does not involve targeted immunotherapies and therapies targeting tumor cell metabolism, that are well documented in other reviews. Without surprise, the most frequently reported drugs are those targeting (i) EGFR (40 clinical trials), and more generally tyrosine kinase receptors (85 clinical trials) and (ii) VEGF/VEGFR (75 clinical trials of which 53 involving bevacizumab). But many other targets and drugs are of interest. They are all listed and thoroughly described, on an one-on-one basis, in four sections related to targeting (i) GBM stem cells and stem cell pathways, (ii) the growth autonomy and migration, (iii) the cell cycle and the escape to cell death, (iv) and angiogenesis.
Collapse
Affiliation(s)
- Elisabete Cruz Da Silva
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Marie-Cécile Mercier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Nelly Etienne-Selloum
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Monique Dontenwill
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Laurence Choulier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| |
Collapse
|
31
|
Interstitial Photodynamic Therapy Using 5-ALA for Malignant Glioma Recurrences. Cancers (Basel) 2021; 13:cancers13081767. [PMID: 33917116 PMCID: PMC8067827 DOI: 10.3390/cancers13081767] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Interstitial photodynamic therapy (iPDT) using 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) as a cytotoxic photosensitizer could be a feasible treatment option for malignant gliomas. In a monocentric cohort of consecutive patients treated between 2006 and 2018, a risk profile analysis of salvage iPDT for local malignant glioma recurrences and associated outcome measures are presented here. It was considered indicated in patients with circumscribed biopsy-proven malignant glioma recurrences after standard therapy, if not deemed eligible for safe complete resection. A 3D treatment-planning software was used to determine the number and suitable positions of the cylindrical diffusing fibers placed stereotactically to ensure optimal interstitial irradiation of the target volume. Outcome measurements included the risk profile of the procedure, estimated time-to-treatment-failure (TTF), post-recurrence survival (PRS) and prognostic factors. Forty-seven patients were treated, of which 44 (median age, 49.4 years, range, 33.4-87.0 years, 27 males) could be retrospectively evaluated. Recurrent gliomas included 37 glioblastomas (WHO grade IV) and 7 anaplastic astrocytomas (WHO grade III). Thirty (68.2%) tumors were O-6-methylguanine-DNA methyltransferase (MGMT)-methylated, 29 (65.9%)-isocitrate dehydrogenase (IDH)-wildtype. Twenty-six (59.1%) patients were treated for their first, 9 (20.5%)-for their second, 9 (20.5%)-for the third or further recurrence. The median iPDT target volume was 3.34 cm3 (range, 0.50-22.8 cm3). Severe neurologic deterioration lasted for more than six weeks in one patient only. The median TTF was 7.1 (95% confidence interval (CI), 4.4-9.8) months and the median PRS was 13.0 (95% CI, 9.2-16.8) months. The 2- and 5-year PRS rates were 25.0% and 4.5%, respectively. The treatment response was heterogeneous and not significantly associated with patient characteristics, treatment-related factors or molecular markers. The promising outcome and acceptable risk profile deserve further prospective evaluation particularly to identify mechanisms and prognostic factors of favorable treatment response.
Collapse
|
32
|
Chatwin HV, Cruz Cruz J, Green AL. Pediatric high-grade glioma: moving toward subtype-specific multimodal therapy. FEBS J 2021; 288:6127-6141. [PMID: 33523591 DOI: 10.1111/febs.15739] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Pediatric high-grade gliomas (pHGG) comprise a deadly, heterogenous category of pediatric gliomas with a clear need for more effective treatment options. Advances in high-throughput molecular techniques have enhanced molecular understanding of these tumors, but outcomes are still poor, and treatments beyond resection and radiation have not yet been clearly established as standard of care. In this review, we first discuss the history of treatment approaches to pHGG to this point. We then review four distinct categories of pHGG, including histone 3-mutant, IDH-mutant, histone 3/IDH-wildtype, and radiation-induced pHGG. We discuss the molecular understanding of each subgroup and targeted treatment options in development. Finally, we look at the development and current status of two novel approaches to pHGG as a whole: localized convection-enhanced chemotherapy delivery and immunotherapy, including checkpoint inhibitors, vaccine therapy, and CAR-T cells. Through this review, we demonstrate the potential for rational, molecularly driven, subtype-specific therapy to be used with other novel approaches in combinations that could meaningfully improve the prognosis in pHGG.
Collapse
Affiliation(s)
- Hannah V Chatwin
- Department of Pediatrics, Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joselyn Cruz Cruz
- Department of Pediatrics, Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Adam L Green
- Department of Pediatrics, Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA.,Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
33
|
El-Khayat SM, Arafat WO. Therapeutic strategies of recurrent glioblastoma and its molecular pathways 'Lock up the beast'. Ecancermedicalscience 2021; 15:1176. [PMID: 33680090 PMCID: PMC7929780 DOI: 10.3332/ecancer.2021.1176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) has a poor prognosis-despite aggressive primary treatment composed of surgery, radiotherapy and chemotherapy, median survival is still around 15 months. It starts to grow again after a year of treatment and eventually nothing is effective at this stage. Recurrent GBM is one of the most disappointing fields for researchers in which their efforts have gained no benefit for patients. They were directed for a long time towards understanding the molecular basis that leads to the development of GBM. It is now known that GBM is a heterogeneous disease and resistance comes mainly from the regrowth of malignant cells after eradicating specific clones by targeted treatment. Epidermal growth factor receptor, platelet derived growth factor receptor, vascular endothelial growth factor receptor are known to be highly active in primary and recurrent GBM through different underlying pathways, despite this bevacizumab is the only Food and Drug Administration (FDA) approved drug for recurrent GBM. Immunotherapy is another important promising modality of treatment of GBM, after proper understanding of the microenvironment of the tumour and overcoming the reasons that historically stigmatise GBM as an 'immunologically cold tumour'. Radiotherapy can augment the effect of immunotherapy by different mechanisms. Also, dual immunotherapy which targets immune pathways at different stages and through different receptors further enhances immune stimulation against GBM. Delivery of pro-drugs to be activated at the tumour site and suicidal genes by gene therapy using different vectors shows promising results. Despite using neurotropic viral vectors specifically targeting glial cells (which are the cells of origin of GBM), no significant improvement of overall-survival has been seen as yet. Non-viral vectors 'polymeric and non-polymeric' show significant tumour shrinkage in pre-clinical trials and now at early-stage clinical trials. To this end, in this review, we aim to study the possible role of different molecular pathways that are involved in GBM's recurrence, we will also review the most relevant and recent clinical experience with targeted treatments and immunotherapies. We will discuss trials utilised tyrosine receptor kinase inhibitors, immunotherapy and gene therapy in recurrent GBM pointing to the causes of potential disappointing preliminary results of some of them. Additionally, we are suggesting a possible future treatment based on recent successful clinical data that could alter the outcome for GBM patients.
Collapse
Affiliation(s)
- Shaimaa M El-Khayat
- Cancer Management and Research Department, Medical Research Institute, Alexandria University, Alexandria 21568, Egypt
| | - Waleed O Arafat
- Alexandria Clinical Oncology Department, Alexandria University, Alexandria 21568, Egypt
| |
Collapse
|
34
|
Liu S, Zhao Q, Shi W, Zheng Z, Liu Z, Meng L, Dong L, Jiang X. Advances in radiotherapy and comprehensive treatment of high-grade glioma: immunotherapy and tumor-treating fields. J Cancer 2021; 12:1094-1104. [PMID: 33442407 PMCID: PMC7797642 DOI: 10.7150/jca.51107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022] Open
Abstract
High-grade gliomas (HGGs) are the most common primary malignant brain tumors. They have a high degree of malignancy and show invasive growth. The personal treatment plan for HGG is based on the patient's age, performance status, and degree of tumor invasion. The basic treatment plan for HGG involves tumor resection, radiotherapy (RT) with concomitant temozolomide (TMZ), and adjuvant TMZ chemotherapy. The basic radiation technology includes conventional RT, three-dimensional conformal RT, intensity-modulated RT, and stereotactic RT. As our understanding of tumor pathogenesis has deepened, so-called comprehensive treatment schemes have attracted attention. These combine RT with chemotherapy, molecular targeted therapy, immunotherapy, or tumor-treating fields. These emerging treatments are expected to improve the prospects of patients with HGG. In the present article, we review the recent advances in RT and comprehensive treatment for patients with newly diagnosed and recurrent HGG.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Weiyan Shi
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zijing Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Lihua Dong
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
35
|
Birzu C, French P, Caccese M, Cerretti G, Idbaih A, Zagonel V, Lombardi G. Recurrent Glioblastoma: From Molecular Landscape to New Treatment Perspectives. Cancers (Basel) 2020; 13:E47. [PMID: 33375286 PMCID: PMC7794906 DOI: 10.3390/cancers13010047] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma is the most frequent and aggressive form among malignant central nervous system primary tumors in adults. Standard treatment for newly diagnosed glioblastoma consists in maximal safe resection, if feasible, followed by radiochemotherapy and adjuvant chemotherapy with temozolomide; despite this multimodal treatment, virtually all glioblastomas relapse. Once tumors progress after first-line therapy, treatment options are limited and management of recurrent glioblastoma remains challenging. Loco-regional therapy with re-surgery or re-irradiation may be evaluated in selected cases, while traditional systemic therapy with nitrosoureas and temozolomide rechallenge showed limited efficacy. In recent years, new clinical trials using, for example, regorafenib or a combination of tyrosine kinase inhibitors and immunotherapy were performed with promising results. In particular, molecular targeted therapy could show efficacy in selected patients with specific gene mutations. Nonetheless, some molecular characteristics and genetic alterations could change during tumor progression, thus affecting the efficacy of precision medicine. We therefore reviewed the molecular and genomic landscape of recurrent glioblastoma, the strategy for clinical management and the major phase I-III clinical trials analyzing recent drugs and combination regimens in these patients.
Collapse
Affiliation(s)
- Cristina Birzu
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (C.B.); (A.I.)
| | - Pim French
- Department of Neurology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 54, 35128 Padua, Italy; (M.C.); (G.C.); (V.Z.)
| | - Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 54, 35128 Padua, Italy; (M.C.); (G.C.); (V.Z.)
| | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière—Charles Foix, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (C.B.); (A.I.)
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 54, 35128 Padua, Italy; (M.C.); (G.C.); (V.Z.)
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 54, 35128 Padua, Italy; (M.C.); (G.C.); (V.Z.)
| |
Collapse
|
36
|
Funakoshi Y, Hata N, Kuga D, Hatae R, Sangatsuda Y, Fujioka Y, Takigawa K, Mizoguchi M. Update on Chemotherapeutic Approaches and Management of Bevacizumab Usage for Glioblastoma. Pharmaceuticals (Basel) 2020; 13:E470. [PMID: 33339404 PMCID: PMC7766528 DOI: 10.3390/ph13120470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma, the most common primary brain tumor in adults, has one of the most dismal prognoses in cancer. In 2009, bevacizumab was approved for recurrent glioblastoma in the USA. To evaluate the clinical impact of bevacizumab as a first-line drug for glioblastoma, two randomized clinical trials, AVAglio and RTOG 0825, were performed. Bevacizumab was found to improve progression-free survival (PFS) and was reported to be beneficial for maintaining patient performance status as an initial treatment. These outcomes led to bevacizumab approval in Japan in 2013 as an insurance-covered first-line drug for glioblastoma concurrently with its second-line application. However, prolongation of overall survival was not evinced in these clinical trials; hence, the clinical benefit of bevacizumab for newly diagnosed glioblastomas remains controversial. A recent meta-analysis of randomized controlled trials of bevacizumab combined with temozolomide in recurrent glioblastoma also showed an effect only on PFS, and the benefit of bevacizumab even for recurrent glioblastoma is controversial. Here, we discuss the clinical impact of bevacizumab for glioblastoma treatment by reviewing previous clinical trials and real-world evidence by focusing on Japanese experiences. Moreover, the efficacy and safety of bevacizumab are summarized, and we provide suggestions for updating the approaches and management of bevacizumab.
Collapse
Affiliation(s)
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan; (Y.F.); (D.K.); (R.H.); (Y.S.); (Y.F.); (K.T.); (M.M.)
| | | | | | | | | | | | | |
Collapse
|
37
|
Paranthaman S, Goravinahalli Shivananjegowda M, Mahadev M, Moin A, Hagalavadi Nanjappa S, Nanjaiyah ND, Chidambaram SB, Gowda DV. Nanodelivery Systems Targeting Epidermal Growth Factor Receptors for Glioma Management. Pharmaceutics 2020; 12:pharmaceutics12121198. [PMID: 33321953 PMCID: PMC7763629 DOI: 10.3390/pharmaceutics12121198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
A paradigm shift in treating the most aggressive and malignant form of glioma is continuously evolving; however, these strategies do not provide a better life and survival index. Currently, neurosurgical debulking, radiotherapy, and chemotherapy are the treatment options available for glioma, but these are non-specific in action. Patients invariably develop resistance to these therapies, leading to recurrence and death. Receptor Tyrosine Kinases (RTKs) are among the most common cell surface proteins in glioma and play a significant role in malignant progression; thus, these are currently being explored as therapeutic targets. RTKs belong to the family of cell surface receptors that are activated by ligands which in turn activates two major downstream signaling pathways via Rapidly Accelerating Sarcoma/mitogen activated protein kinase/extracellular-signal-regulated kinase (Ras/MAPK/ERK) and phosphatidylinositol 3-kinase/a serine/threonine protein kinase/mammalian target of rapamycin (PI3K/AKT/mTOR). These pathways are critically involved in regulating cell proliferation, invasion, metabolism, autophagy, and apoptosis. Dysregulation in these pathways results in uncontrolled glioma cell proliferation, invasion, angiogenesis, and cancer progression. Thus, RTK pathways are considered a potential target in glioma management. This review summarizes the possible risk factors involved in the growth of glioblastoma (GBM). The role of RTKs inhibitors (TKIs) and the intracellular signaling pathways involved, small molecules under clinical trials, and the updates were discussed. We have also compiled information on the outcomes from the various endothelial growth factor receptor (EGFR)-TKIs-based nanoformulations from the preclinical and clinical points of view. Aided by an extensive literature search, we propose the challenges and potential opportunities for future research on EGFR-TKIs-based nanodelivery systems.
Collapse
Affiliation(s)
- Sathishbabu Paranthaman
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.P.); (M.G.S.); (M.M.)
| | | | - Manohar Mahadev
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.P.); (M.G.S.); (M.M.)
| | - Afrasim Moin
- Department of Pharmaceutics, Hail University, Hail PO BOX 2440, Saudi Arabia;
| | | | | | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Devegowda Vishakante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (S.P.); (M.G.S.); (M.M.)
- Correspondence: ; Tel.: +91-9663162455
| |
Collapse
|
38
|
Daisy Precilla S, Kuduvalli SS, Thirugnanasambandhar Sivasubramanian A. Disentangling the therapeutic tactics in GBM: From bench to bedside and beyond. Cell Biol Int 2020; 45:18-53. [PMID: 33049091 DOI: 10.1002/cbin.11484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant form of adult brain tumor with a high mortality rate and dismal prognosis. The present standard treatment comprising surgical resection followed by radiation and chemotherapy using temozolomide can broaden patient's survival to some extent. However, the advantages are not palliative due to the development of resistance to the drug and tumor recurrence following the multimodal treatment approaches due to both intra- and intertumoral heterogeneity of GBM. One of the major contributors to temozolomide resistance is O6 -methylguanine-DNA methyltransferase. Furthermore, deficiency of mismatch repair, base excision repair, and cytoprotective autophagy adds to temozolomide obstruction. Rising proof additionally showed that a small population of cells displaying certain stem cell markers, known as glioma stem cells, adds on to the resistance and tumor progression. Collectively, these findings necessitate the discovery of novel therapeutic avenues for treating glioblastoma. As of late, after understanding the pathophysiology and biology of GBM, some novel therapeutic discoveries, such as drug repurposing, targeted molecules, immunotherapies, antimitotic therapies, and microRNAs, have been developed as new potential treatments for glioblastoma. To help illustrate, "what are the mechanisms of resistance to temozolomide" and "what kind of alternative therapeutics can be suggested" with this fatal disease, a detailed history of these has been discussed in this review article, all with a hope to develop an effective treatment strategy for GBM.
Collapse
Affiliation(s)
- S Daisy Precilla
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | |
Collapse
|
39
|
Bhatia S, Bukkapatnam S, Van Court B, Phan A, Oweida A, Gadwa J, Mueller AC, Piper M, Darragh L, Nguyen D, Gilani A, Knitz M, Bickett T, Green A, Venkataraman S, Vibhakar R, Cittelly D, Karam SD. The effects of ephrinB2 signaling on proliferation and invasion in glioblastoma multiforme. Mol Carcinog 2020; 59:1064-1075. [PMID: 32567728 DOI: 10.1002/mc.23237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/29/2022]
Abstract
The aggressive nature of glioblastoma multiforme (GBM) may be attributed to the dysregulation of pathways driving both proliferation and invasion. EphrinB2, a membrane-bound ligand for some of the Eph receptors, has emerged as a critical target regulating these pathways. In this study, we investigated the role of ephrinB2 in regulating proliferation and invasion in GBM using intracranial and subcutaneous xenograft models. The Cancer Genome Atlas analysis suggested high transcript and low methylation levels of ephrinB2 as poor prognostic indicators in GBM, consistent with its role as an oncogene. EphrinB2 knockdown, however, increased tumor growth, an effect that was reversed by ephrinB2 Fc protein. This was associated with EphB4 receptor activation, consistent with the data showing a significant decrease in tumor growth with ephrinB2 overexpression. Mechanistic analyses showed that ephrinB2 knockdown has anti-invasive but pro-proliferative effects in GBM. EphB4 stimulation following ephrinB2 Fc treatment in ephrinB2 knockdown tumors was shown to impart strong anti-proliferative and anti-invasive effects, which correlated with decrease in PCNA, p-ERK, vimentin, Snail, Fak, and increase in the E-cadherin levels. Overall, our study suggests that ephrinB2 cannot be used as a sole therapeutic target. Concomitant inhibition of ephrinB2 signaling with EphB4 activation is required to achieve maximal therapeutic benefit in GBM.
Collapse
Affiliation(s)
- Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Sanjana Bukkapatnam
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado.,Department of Bioengineering, University of Colorado Denver, Aurora, Colorado
| | - Andy Phan
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Ayman Oweida
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Adam C Mueller
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Miles Piper
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Laurel Darragh
- Department of Immunology, University of Colorado Denver, Aurora, Colorado
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Ahmed Gilani
- Department of Pathology, Children's Hospital, University of Colorado Denver, Aurora, Colorado
| | - Michael Knitz
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Thomas Bickett
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| | - Adam Green
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | | | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Diana Cittelly
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
40
|
Anthony C, Mladkova-Suchy N, Adamson DC. The evolving role of antiangiogenic therapies in glioblastoma multiforme: current clinical significance and future potential. Expert Opin Investig Drugs 2019; 28:787-797. [PMID: 31356114 DOI: 10.1080/13543784.2019.1650019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults, but its prognosis remains poor despite significant advances in our understanding of its molecular biology and investigation of numerous treatment modalities. Despite conventional treatment consisting of surgical resection, radiotherapy, and temozolomide marginally prolonging survival, most GBM patients die within 2 years of initial diagnosis. Bevacizumab (Bev) is the best-studied antiangiogenic agent for GBM and currently the only FDA-approved second-line treatment. Areas covered: Areas covered in this review include the molecular pathways of angiogenesis in glioblastoma, specifically the overexpression of vascular endothelial growth factor (VEGF) and robust formation of tumor neovasculature. In addition, this review covers pharmacological targeting of this process as a longstanding attractive clinical strategy, specifically by Bev. Expert opinion: This review attempts to discuss the history of early studies of antiangiogenic treatment for GBM that eventually failed in subsequent studies and the evolving modern role of Bev in the course of treatment for a variety of indications, including symptom control, reduced glucocorticoid use, and improved quality of life.
Collapse
Affiliation(s)
- Casey Anthony
- Department of Neurosurgery, Emory University , Atlanta , GA , USA
| | - Nikol Mladkova-Suchy
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London , UK
| | - David Cory Adamson
- Department of Neurosurgery, Emory University , Atlanta , GA , USA.,Neurosurgery section, Atlanta VA Medical Center , Decatur , GA , USA
| |
Collapse
|
41
|
Mogilevsky M, Shimshon O, Kumar S, Mogilevsky A, Keshet E, Yavin E, Heyd F, Karni R. Modulation of MKNK2 alternative splicing by splice-switching oligonucleotides as a novel approach for glioblastoma treatment. Nucleic Acids Res 2019; 46:11396-11404. [PMID: 30329087 PMCID: PMC6265459 DOI: 10.1093/nar/gky921] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/06/2018] [Indexed: 11/14/2022] Open
Abstract
The gene encoding the kinase Mnk2 (MKNK2) is alternatively spliced to produce two isoforms-Mnk2a and Mnk2b. We previously showed that Mnk2a is downregulated in several types of cancer and acts as a tumor suppressor by activation of the p38-MAPK stress pathway, inducing apoptosis. Moreover, Mnk2a overexpression suppressed Ras-induced transformation in culture and in vivo. In contrast, the Mnk2b isoform acts as a pro-oncogenic factor. In this study, we designed modified-RNA antisense oligonucleotides and screened for those that specifically induce a strong switch in alternative splicing of the MKNK2 gene (splice switching oligonucleotides or SSOs), elevating the tumor suppressive isoform Mnk2a at the expense of the pro-oncogenic isoform Mnk2b. Induction of Mnk2a by SSOs in glioblastoma cells activated the p38-MAPK pathway, inhibited the oncogenic properties of the cells, re-sensitized the cells to chemotherapy and inhibited glioblastoma development in vivo. Moreover, inhibition of p38-MAPK partially rescued glioblastoma cells suggesting that most of the anti-oncogenic activity of the SSO is mediated by activation of this pathway. These results suggest that manipulation of MKNK2 alternative splicing by SSOs is a novel approach to inhibit glioblastoma tumorigenesis.
Collapse
Affiliation(s)
- Maxim Mogilevsky
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Odelia Shimshon
- Institute for Drug Research, The School of Pharmacy, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Saran Kumar
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Adi Mogilevsky
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Eli Keshet
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Eylon Yavin
- Institute for Drug Research, The School of Pharmacy, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada, Faculty of Medicine, the Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| |
Collapse
|
42
|
Galanis E, Anderson SK, Twohy EL, Carrero XW, Dixon JG, Tran DD, Jeyapalan SA, Anderson DM, Kaufmann TJ, Feathers RW, Giannini C, Buckner JC, Anastasiadis PZ, Schiff D. A phase 1 and randomized, placebo-controlled phase 2 trial of bevacizumab plus dasatinib in patients with recurrent glioblastoma: Alliance/North Central Cancer Treatment Group N0872. Cancer 2019; 125:3790-3800. [PMID: 31290996 DOI: 10.1002/cncr.32340] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/23/2019] [Accepted: 05/04/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND Src signaling is markedly upregulated in patients with invasive glioblastoma (GBM) after the administration of bevacizumab. The Src family kinase inhibitor dasatinib has been found to effectively block bevacizumab-induced glioma invasion in preclinical models, which led to the hypothesis that combining bevacizumab with dasatinib could increase bevacizumab efficacy in patients with recurrent GBM. METHODS After the completion of the phase 1 component, the phase 2 trial (ClinicalTrials.gov identifier NCT00892177) randomized patients with recurrent GBM 2:1 to receive 100 mg of oral dasatinib twice daily (arm A) or placebo (arm B) on days 1 to 14 of each 14-day cycle combined with 10 mg/kg of intravenous bevacizumab on day 1 of each 14-day cycle. The primary endpoint was 6-month progression-free survival (PFS6). RESULTS In the 121 evaluable patients, the PFS6 rate was numerically, but not statistically, higher in arm A versus arm B (28.9% [95% CI, 19.5%-40.0%] vs 18.4% [95% CI, 7.7%-34.4%]; P = .22). Similarly, there was no significant difference in the median overall survival noted between the treatment arms (7.3 months and 7.7 months, respectively; P = .93). The objective response rate was 15.7% in arm A and 26.3% in arm B (P = .52), but with a significantly longer duration in patients treated on arm A (16.3 months vs 2 months). The incidence of grade ≥3 toxicity was comparable between treatment arms, with hematologic toxicities occurring more frequently in arm A versus arm B (15.7% vs 7.9%) (adverse events were assessed as per the National Cancer Institute Common Terminology Criteria for Adverse Events [version 4.0]). Correlative tissue analysis demonstrated an association between pSRC/LYN signaling in patient tumors and outcome. CONCLUSIONS Despite upregulation of Src signaling in patients with GBM, the combination of bevacizumab with dasatinib did not appear to significantly improve the outcomes of patients with recurrent GBM compared with bevacizumab alone.
Collapse
Affiliation(s)
| | - S Keith Anderson
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota
| | - Erin L Twohy
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota
| | - Xiomara W Carrero
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota
| | - Jesse G Dixon
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota
| | - David Dinh Tran
- Oncology Division, Washington University School of Medicine, St. Louis, Missouri
| | | | - Daniel M Anderson
- Department of Hematology/Oncology, Regions Hospital, St Paul, Minnesota
| | | | - Ryan W Feathers
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | | | - Jan C Buckner
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - David Schiff
- Department of Neurology, University of Virginia Medical Center, Charlottesville, Virginia
| |
Collapse
|
43
|
Liu X, Chen X, Shi L, Shan Q, Cao Q, Yue C, Li H, Li S, Wang J, Gao S, Niu M, Yu R. The third-generation EGFR inhibitor AZD9291 overcomes primary resistance by continuously blocking ERK signaling in glioblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:219. [PMID: 31122294 PMCID: PMC6533774 DOI: 10.1186/s13046-019-1235-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022]
Abstract
Background Glioblastoma (GBM) is a fatal brain tumor, lacking effective treatment. Epidermal growth factor receptor (EGFR) is recognized as an attractive target for GBM treatment. However, GBMs have very poor responses to the first- and second-generation EGFR inhibitors. The third-generation EGFR-targeted drug, AZD9291, is a novel and irreversible inhibitor. It is noteworthy that AZD9291 shows excellent blood–brain barrier penetration and has potential for the treatment of brain tumors. Methods In this study, we evaluated the anti-tumor activity and effectiveness of AZD9291 in a preclinical GBM model. Results AZD9291 showed dose-responsive growth inhibitory activity against six GBM cell lines. Importantly, AZD9291 inhibited GBM cell proliferation > 10 times more efficiently than the first-generation EGFR inhibitors. AZD9291 induced GBM cell cycle arrest and significantly inhibited colony formation, migration, and invasion of GBM cells. In an orthotopic GBM model, AZD9291 treatment significantly inhibited tumor survival and prolonged animal survival. The underlying anti-GBM mechanism of AZD9291 was shown to be different from that of the first-generation EGFR inhibitors. In contrast to erlotinib, AZD9291 continuously and efficiently inhibited the EGFR/ERK signaling in GBM cells. Conclusion AZD9291 demonstrated an efficient preclinical activity in GBM in vitro and in vivo models. AZD9291 has been approved for the treatment of lung cancer with good safety and tolerability. Our results support the possibility of conducting clinical trials of anti-GBM therapy using AZD9291. Electronic supplementary material The online version of this article (10.1186/s13046-019-1235-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuejiao Liu
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangyu Chen
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Shi
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qianqian Shan
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiyu Cao
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenglong Yue
- Surgical Department 9, Xuzhou children's hospital, Xuzhou, Jiangsu, China
| | - Huan Li
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shengsheng Li
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Wang
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shangfeng Gao
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingshan Niu
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Rutong Yu
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
44
|
Saleem H, Kulsoom Abdul U, Küçükosmanoglu A, Houweling M, Cornelissen FMG, Heiland DH, Hegi ME, Kouwenhoven MCM, Bailey D, Würdinger T, Westerman BA. The TICking clock of EGFR therapy resistance in glioblastoma: Target Independence or target Compensation. Drug Resist Updat 2019; 43:29-37. [PMID: 31054489 DOI: 10.1016/j.drup.2019.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
Targeted therapy against driver mutations responsible for cancer progression has been shown to be effective in many tumor types. For glioblastoma (GBM), the epidermal growth factor receptor (EGFR) gene is the most frequently mutated oncogenic driver and has therefore been considered an attractive target for therapy. However, so far responses to EGFR-pathway inhibitors have been disappointing. We performed an exhaustive analysis of the mechanisms that might account for therapy resistance against EGFR inhibition. We define two major mechanisms of resistance and propose modalities to overcome them. The first resistance mechanism concerns target independence. In this case, cells have lost expression of the EGFR protein and experience no negative impact of EGFR targeting. Loss of extrachromosomally encoded EGFR as present in double minute DNA is a frequent mechanism for this type of drug resistance. The second mechanism concerns target compensation. In this case, cells will counteract EGFR inhibition by activation of compensatory pathways that render them independent of EGFR signaling. Compensatory pathway candidates are platelet-derived growth factor β (PDGFβ), Insulin-like growth factor 1 (IGFR1) and cMET and their downstream targets, all not commonly mutated at the time of diagnosis alongside EGFR mutation. Given that both mechanisms make cells independent of EGFR expression, other means have to be found to eradicate drug resistant cells. To this end we suggest rational strategies which include the use of multi-target therapies that hit truncation mutations (mechanism 1) or multi-target therapies to co-inhibit compensatory proteins (mechanism 2).
Collapse
Affiliation(s)
- Hamza Saleem
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - U Kulsoom Abdul
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Asli Küçükosmanoglu
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Megan Houweling
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Fleur M G Cornelissen
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands; Division of Biology, Nature Science Building, 9500 Gilman Drive, CA, 92093-0377, United States
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Baden-Württemberg, Germany
| | - Monika E Hegi
- Department of Clinical Neurosciences, Lausanne University Hospital, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | - Mathilde C M Kouwenhoven
- Department of Neurology, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - David Bailey
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK
| | - Tom Würdinger
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands
| | - Bart A Westerman
- Department of Neurosurgery, Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
45
|
Villani V, Fabi A, Tanzilli A, Pasqualetti F, Lombardi G, Vidiri A, Gonnelli A, Molinari A, Cantarella M, Bellu L, Terrenato I, Carosi M, Maschio M, Telera SM, Carapella CM, Cognetti F, Paiar F, Zagonel V, Pace A. A multicenter real-world study of bevacizumab in heavily pretreated malignant gliomas: clinical benefit is a plausible end point? Future Oncol 2019; 15:1717-1727. [PMID: 30977687 DOI: 10.2217/fon-2018-0826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This multicenter, retrospective study evaluates the clinical benefit (CB) of bevacizumab, alone or in combination, in recurrent gliomas (RG). Patients & methods: The CB was measured as a reduction of corticosteroid dosage and an improvement ≥20 points in the Karnofsky Performance Status lasting ≥3 months. Results: We collected data of 197 RG patients. A CB was observed in 120, patients without significant differences between patients treated with bevacizumab alone or in combination. The rate of patients who achieved a CB and free from progression at 1 year was 21.5 versus 1.4% in patients who did not report CB. Conclusion: The majority of RG patients treated with bevacizumab reported CB. Moreover, patients with CB showed improved survival.
Collapse
Affiliation(s)
- Veronica Villani
- Neuroncology Unit, IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53 00144, Rome, Italy
| | - Alessandra Fabi
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Tanzilli
- Neuroncology Unit, IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53 00144, Rome, Italy
| | - Francesco Pasqualetti
- Radiation Oncology, Department of Oncology, Azienda Ospedaliero-Universiaria Pisana, Via Roma, 67, 56126 Pisa, Italy
| | - Giuseppe Lombardi
- Department of Clinical & Experimental Oncology, Medical Oncology 1, Veneto Institute of Oncology, IRCCS, Padua, Italy
| | - Antonello Vidiri
- Neuroradiology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Gonnelli
- Radiation Oncology, Department of Oncology, Azienda Ospedaliero-Universiaria Pisana, Via Roma, 67, 56126 Pisa, Italy
| | - Alessandro Molinari
- Radiation Oncology, Department of Oncology, Azienda Ospedaliero-Universiaria Pisana, Via Roma, 67, 56126 Pisa, Italy
| | - Martina Cantarella
- Radiation Oncology, Department of Oncology, Azienda Ospedaliero-Universiaria Pisana, Via Roma, 67, 56126 Pisa, Italy
| | - Luisa Bellu
- Department of Clinical & Experimental Oncology, Medical Oncology 1, Veneto Institute of Oncology, IRCCS, Padua, Italy
| | - Irene Terrenato
- Biostatistic Unit, Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- Division of Pathology, Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Maschio
- Neuroncology Unit, IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53 00144, Rome, Italy
| | - Stefano Maria Telera
- Neurosurgery Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Francesco Cognetti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiola Paiar
- Radiation Oncology, Department of Oncology, Azienda Ospedaliero-Universiaria Pisana, Via Roma, 67, 56126 Pisa, Italy
| | - Vittorina Zagonel
- Department of Clinical & Experimental Oncology, Medical Oncology 1, Veneto Institute of Oncology, IRCCS, Padua, Italy
| | - Andrea Pace
- Neuroncology Unit, IRCCS Regina Elena National Cancer Institute, via Elio Chianesi 53 00144, Rome, Italy
| |
Collapse
|
46
|
Gao Y, Vallentgoed WR, French PJ. Finding the Right Way to Target EGFR in Glioblastomas; Lessons from Lung Adenocarcinomas. Cancers (Basel) 2018; 10:cancers10120489. [PMID: 30518123 PMCID: PMC6316468 DOI: 10.3390/cancers10120489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
The EGFR gene is one of the most frequently mutated and/or amplified gene both in lung adenocarcinomas (LUAD) and in glioblastomas (GBMs). Although both tumor types depend on the mutation for growth, clinical benefit of EGFR tyrosine kinase inhibitors (TKIs) has only been observed in LUAD patients and, thus-far, not in GBM patients. Also in LUAD patients however, responses are restricted to specific EGFR mutations only and these ‘TKI-sensitive’ mutations hardly occur in GBMs. This argues for mutation-specific (as opposed to tumor-type specific) responses to EGFR-TKIs. We here discuss potential reasons for the differences in mutation spectrum and highlight recent evidence for specific functions of different EGFR mutations. These mutation-specific effects likely underlie the differential treatment response between LUAD and GBMs and provide new insights into how to target EGFR in GBM patients.
Collapse
Affiliation(s)
- Ya Gao
- Department of Neurology, Erasmus MC Cancer Institute; 3015 CD Rotterdam, The Netherlands.
| | - Wies R Vallentgoed
- Department of Neurology, Erasmus MC Cancer Institute; 3015 CD Rotterdam, The Netherlands.
| | - Pim J French
- Department of Neurology, Erasmus MC Cancer Institute; 3015 CD Rotterdam, The Netherlands.
| |
Collapse
|
47
|
Sirven-Villaros L, Bourg V, Suissa L, Mondot L, Almairac F, Fontaine D, Paquis P, Burel-VandenBos F, Frenay M, Thomas P, Lebrun-Frenay C. Bevacizumab: Is the lower the better for glioblastoma patients in progression? Bull Cancer 2018; 105:1135-1146. [DOI: 10.1016/j.bulcan.2018.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
|
48
|
D’Alessandris QG, Montano N, Martini M, Cenci T, Lauretti L, Stumpo V, Pignotti F, Olivi A, Fernandez E, Larocca LM, Pallini R. Eight-year survival of a recurrent glioblastoma patient treated with molecularly tailored therapy: a case report. Acta Neurochir (Wien) 2018; 160:2387-2391. [PMID: 30306271 DOI: 10.1007/s00701-018-3697-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
Treatment options for recurrent glioblastoma are scarce; targeted therapy trials were disappointing, probably due to enrollment of patients without molecular selection. We treated with bevacizumab and erlotinib a 66-year-old male suffering from recurrent glioblastoma, IDH-wildtype and MGMT unmethylated, after three neurosurgeries. Treatment was tailored on molecular profile of recurrent tumor-namely, EGFRvIII positivity, VEGF overexpression, normal PTEN, low total VEGF and VEGF-121 mRNA-and resulted in complete, exceptionally durable response (51-month progression-free survival). Notably, histology of further recurrence after therapy was reminiscent of sarcoma. We suggest a thorough molecular screening for personalization of targeted therapy in recurrent glioblastoma.
Collapse
|
49
|
Bahrami N, Piccioni D, Karunamuni R, Chang YH, White N, Delfanti R, Seibert TM, Hattangadi-Gluth JA, Dale A, Farid N, McDonald CR. Edge Contrast of the FLAIR Hyperintense Region Predicts Survival in Patients with High-Grade Gliomas following Treatment with Bevacizumab. AJNR Am J Neuroradiol 2018; 39:1017-1024. [PMID: 29622553 PMCID: PMC6002890 DOI: 10.3174/ajnr.a5620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Treatment with bevacizumab is standard of care for recurrent high-grade gliomas; however, monitoring response to treatment following bevacizumab remains a challenge. The purpose of this study was to determine whether quantifying the sharpness of the fluid-attenuated inversion recovery hyperintense border using a measure derived from texture analysis-edge contrast-improves the evaluation of response to bevacizumab in patients with high-grade gliomas. MATERIALS AND METHODS MRIs were evaluated in 33 patients with high-grade gliomas before and after the initiation of bevacizumab. Volumes of interest within the FLAIR hyperintense region were segmented. Edge contrast magnitude for each VOI was extracted using gradients of the 3D FLAIR images. Cox proportional hazards models were generated to determine the relationship between edge contrast and progression-free survival/overall survival using age and the extent of surgical resection as covariates. RESULTS After bevacizumab, lower edge contrast of the FLAIR hyperintense region was associated with poorer progression-free survival (P = .009) and overall survival (P = .022) among patients with high-grade gliomas. Kaplan-Meier curves revealed that edge contrast cutoff significantly stratified patients for both progression-free survival (log-rank χ2 = 8.3, P = .003) and overall survival (log-rank χ2 = 5.5, P = .019). CONCLUSIONS Texture analysis using edge contrast of the FLAIR hyperintense region may be an important predictive indicator in patients with high-grade gliomas following treatment with bevacizumab. Specifically, low FLAIR edge contrast may partially reflect areas of early tumor infiltration. This study adds to a growing body of literature proposing that quantifying features may be important for determining outcomes in patients with high-grade gliomas.
Collapse
Affiliation(s)
- N Bahrami
- From the Center for Multimodal Imaging and Genetics (N.B., N.W., C.R.M.)
- Department of Psychiatry (N.B., Y.-H.C., C.R.M.)
- Department of Radiology (N.B., N.W., R.D., A.D., N.F., C.R.M.)
- Multimodal Imaging Laboratory (N.B., N.W., A.D., C.R.M.)
| | - D Piccioni
- Department of Neurosciences (D.P., A.D., N.F.)
| | - R Karunamuni
- Department of Radiation Medicine (R.K., T.M.S., J.A.H.-G.), University of California, San Diego, La Jolla, California
| | - Y-H Chang
- Department of Psychiatry (N.B., Y.-H.C., C.R.M.)
| | - N White
- From the Center for Multimodal Imaging and Genetics (N.B., N.W., C.R.M.)
- Department of Radiology (N.B., N.W., R.D., A.D., N.F., C.R.M.)
- Multimodal Imaging Laboratory (N.B., N.W., A.D., C.R.M.)
| | - R Delfanti
- Department of Radiology (N.B., N.W., R.D., A.D., N.F., C.R.M.)
| | - T M Seibert
- Department of Radiation Medicine (R.K., T.M.S., J.A.H.-G.), University of California, San Diego, La Jolla, California
| | - J A Hattangadi-Gluth
- Department of Radiation Medicine (R.K., T.M.S., J.A.H.-G.), University of California, San Diego, La Jolla, California
| | - A Dale
- Multimodal Imaging Laboratory (N.B., N.W., A.D., C.R.M.)
- Department of Neurosciences (D.P., A.D., N.F.)
| | - N Farid
- Department of Radiology (N.B., N.W., R.D., A.D., N.F., C.R.M.)
- Department of Neurosciences (D.P., A.D., N.F.)
| | - C R McDonald
- From the Center for Multimodal Imaging and Genetics (N.B., N.W., C.R.M.)
- Department of Psychiatry (N.B., Y.-H.C., C.R.M.)
- Department of Radiology (N.B., N.W., R.D., A.D., N.F., C.R.M.)
- Multimodal Imaging Laboratory (N.B., N.W., A.D., C.R.M.)
| |
Collapse
|
50
|
Affronti ML, Jackman JG, McSherry F, Herndon JE, Massey EC, Lipp E, Desjardins A, Friedman HS, Vlahovic G, Vredenburgh J, Peters KB. Phase II Study to Evaluate the Efficacy and Safety of Rilotumumab and Bevacizumab in Subjects with Recurrent Malignant Glioma. Oncologist 2018; 23:889-e98. [PMID: 29666296 PMCID: PMC6156179 DOI: 10.1634/theoncologist.2018-0149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/09/2018] [Indexed: 12/07/2022] Open
Abstract
Lessons Learned. Due to evolving imaging criteria in brain tumors and variation in magnetic resonance imaging evaluation, it is not ideal to use response rate as a primary objective. Future studies involving antiangiogenic agents should use overall survival. Disease‐expected toxicities should be considered when defining the clinical significance of an adverse event. For example, vascular thromboembolic events are common in brain tumor patients and should not be attributed to the study drug in the safety analysis.
Background. Recurrent malignant glioma (rMG) prognosis is poor, with a median patient survival of 3–11 months with bevacizumab (BEV)‐containing regimens. BEV in rMG has 6‐month progression free survival (PFS‐6) of ∼40% and an objective response rate of 21.2%. BEV‐containing regimens improve PFS‐6 to 42.6%–50.3%, indicating that BEV combination therapies may be superior to single agent. Rilotumumab, a hepatocyte growth factor (HGF) antibody, inhibits angiogenesis and expression of angiogenic autocrine factors (e.g., vascular endothelial growth factor [VEGF]) by c‐Met inhibition. Combination of rilotumumab with BEV to block vascular invasion and tumor proliferation may synergistically inhibit tumor growth. Methods. Thirty‐six BEV‐naïve rMG subjects received rilotumumab (20 mg/kg and BEV (10 mg/kg) every 2 weeks. Endpoints included objective response rate (using Response Assessment in Neuro‐Oncology [RANO] criteria), PFS‐6, overall survival (OS), and toxicity. Results. Median patient follow‐up was 65.0 months. Objective response rate was 27.8% (95% confidence interval [CI]: 15.7%–44.1%). Median OS was 11.2 months (95% CI: 7–17.5). PFS‐6 was 41.7% (95% CI: 25.6%–57.0%). Most frequent treatment‐related grade ≤2 events included weight gain, fatigue, allergic rhinitis, and voice alteration; grade ≥3 events included venous thromboembolism (four patients), including one death from pulmonary embolism. Conclusion. Rilotumumab with BEV did not significantly improve objective response compared with BEV alone, and toxicity may preclude the use of rilotumumab in combination BEV regimens.
Collapse
Affiliation(s)
| | | | | | | | | | - Eric Lipp
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | |
Collapse
|